Dynamic Mechanical Analysis (DMA) to Help Characterize Vespel SP-211 Polyimide Material for Use as a 750°F Valve Seal on the Ares I Upper Stage J-2X Engine

Doug Wingard NASA/Marshall Space Flight Center (MSFC) Materials Test Branch/EM10 doug.wingard@nasa.gov August 6, 2013

- DuPont[™] Vespel[®] SP-211 polyimide was selected as the top candidate seal material for use in the Oxidizer Turbine Bypass Valve (OTBV) in the J-2X Upper Stage engine of NASA's Ares I manned flight vehicle.
 - The program for the Ares I vehicle was cancelled, but the J-2X engine was chosen for continued use in development of NASA's Space Launch System (SLS), a heavy-lift launch vehicle capable of leaving Earth orbit and going into deep space. The J-2X was built by Pratt & Whitney Rocketdyne (PWR).
 - The Vespel SP-211 material in the OTBV could be exposed to multiple temperature cycles up to 750°F for ≈ 10 minutes at a time during engine operation. DuPont determined the upper limit continuous use temperature of SP-211 as 500°F, with allowable excursions to 900°F.
 - Vespel SP-211 contains 15 weight % graphite powder and 10 weight % PTFE polymer.
 - Dynamic Mechanical Analysis (DMA) was the primary of several experimental techniques used to characterize Vespel SP-211 to help prove its worthiness for use on the OTBV of the J-2X engine.

Fig. 1. Steps in sample preparation for various tests on Vespel SP-211.

Left—Broken tensile specimen from Pratt & Whitney Rocketdyne (PWR) was machined down the middle with a low speed circular saw to make two rectangular samples. The longer of the two samples was tested in the DMA by three-point bending.

Middle—The remainder of the tensile specimen was machined into 25-30 small cubic-to-rectangular pieces with a low speed circular saw.

Right—The small pieces (middle) were ground into a powder with a freezer/mill. Powdered samples were used for porosity, DSC, TGA testing and IR spectroscopy.

70°F Tensile Tests		
PWR sample I.D.	PWR Sample Description	Tested at MSFC
ARC-4, -5, -6	As-machined control	ARC-4, ARC-5
AR2X-4, -5, -6	As-machined + 2 cycles thermal shock	None
AR5X-4, -5, -6	As-machined + 5 cycles thermal shock	None
AR10X-4, -5, -6	As-machined + 10 cycles thermal shock	AR10X-4
CC-1, CC-2	Thermal conditioned control	CC-1
C2X-1, C2X-2	Thermal condition $+ 2$ cycles thermal shock	None
C5X-1, C5X-2	Thermal condition $+ 5$ cycles thermal shock	C5X-1
750°F Tensile Tests		
ARC-7, -8, -9	As-machined control	ARC-7, ARC-8
AR2X-7, -8, -9	As-machined + 2 cycles thermal shock	AR2X-7
AR5X-7, -8, -9	As-machined + 5 cycles thermal shock	AR5X-7
AR10X-7, -8, -9	As-machined + 10 cycles thermal shock	AR10X-7, AR10X-8
CC-3, CC-4	Thermal conditioned control	CC-3
C2X-3, C2X-4	Thermal condition + 2 cycles thermal shock	None
C5X-3, C5X-4	Thermal condition + 5 cycles thermal shock	C5X-3, C5X-4

Table 1.Tensile specimens of Vespel SP-211 tested at Pratt & Whitney Rocketdyne (PWR) and
NASA/Marshall Space Flight Center (MSFC).

- One thermal conditioning cycle: Heat (anneal) material at a slow heating rate to 399°C (750°F) and hold for a specified time. Turn off furnace and do not open until temperature is ≤ 100°F.
- One thermal shock cycle: Immediately expose material to 750°F and soak at that temperature for 10 min. Remove the material and cool to ambient temperature. Repeat procedure until desired total of thermal shock cycles are performed.

Fig. 2. Vespel SP-211 sample machined from broken tensile specimen and mounted in the DMA three-point bend clamp for testing. The DMA used was the 2980 model made by TA Instruments.

- Used 20 mm length threepoint bend clamp.
- Amplitude (displacement) of 30 µm.
- Frequency of 1 Hz.
- Flowing air test environment at ≈ 65 psi.
- For each sample, 10 heat-cool-heat cycles between 20 and 400°C (752°F) at 4°C/min., with a 10 min. hold at 400°C for each heating scan.
- Initial static force of 0.1 N for each sample test.
- Average sample thickness of 3.19 mm, \rightarrow L/T = 6.27. This thickness, along with no measurable Tg, prevented sample sag.

Fig. 3. DMA plot of storage modulus and temperature vs. time for 10 heating and cooling scans on a sample of Vespel SP-211 (ARC-4, as-machined control tensile tested at 70°F). There was a 10-min. hold at 400°C at the end of each heating scan.

Left: DMA plot of storage modulus and tan delta vs. temperature for a Vespel SP-211 sample (AR10X-4, as-machined Fig. 4. + 10 cycles of 750°F thermal shock). This is a plot for the first heating scan only. Tan delta peaks at 121°C and 316°C are for the PTFE component in SP-211: alpha glass transition temperature and melting temperature, respectively.

310

1 2 3

4 5 6

DMA heating scan #

7

8

9 10

appeared to slightly lower Tg and Tm (onset) compared to as-machined (ARC) samples.

Fig. 5. DMA plot of storage modulus at 400°C vs. heating scan # for as-machined controls (ARC-4, -7) and thermally conditioned controls (CC-1, -3) that were tensile tested at 70°F and 750°F.

- This type of plot was made for all Vespel SP-211 samples tested by DMA. A good portion of the increase in storage modulus for each sample occurred between heating scan #'s 1 and 2.
- Thermally conditioned controls tensile tested at 70 and 750°F showed a substantial increase in modulus over an as-machined control tensile tested at 70°F.
- An as-machined control tensile tested at 750°F showed the highest increase in modulus vs. heating scan # in Fig. 5.

Fig. 6. *Left:* Percent change in DMA storage modulus (based on 1st heating scan) vs. heating scan # at 23°C and 400°C for as-machined control samples: ARC-4 (tensile tested at 70°F) and ARC-7 (tensile tested at 750°F).

- *Right:* The table shown is a summary of data of the type shown in the plot in Fig. 6.
 - For DMA heating scan #'s 2 to 10 for each Vespel sample, an increase in E' > 20% at 400°C was considered undesirable.
 - The last two rows in the table indicate that thermal conditioning/annealing of a Vespel SP-211 part before use would give it better thermal stability during repeated heat cycling up to 750°F. An as-machined part would not have such thermal stability.

Fig. 7. *Left:* DMA storage modulus at 400°C vs. time at 400°C (0-10 min.) for sample ARC-4 (as-machined control tensile tested at 70°F). Modulus vs. time curves are shown for DMA heating scan #'s 1, 2, 4, 6, 8 and 10.

Right: Percent change in DMA storage modulus (400° C/10 min.) vs. heating scan # for Vespel SP-211 control samples: as machined (ARC-4, -7 tensile tested at 70, 750°F) and thermally conditioned (CC-1, -3 tensile tested at 70, 750°F).

- % change in storage modulus E' at 400°C was a concern, as was % change in E' at 400°C during a 10-min. hold.
- Unlike % change in E' at 400°C vs. # of heating scans, % change in E' at 400°C during a 10-min. hold was not more than +6.6% for any Vespel SP-211 sample.
- The thermally conditioned control tensile tested at 750°F (CC-3) showed little or no change in E' at 400°C/10 min. for heating scans 2-10, *indicating that such annealing plus some 750°F exposure may enhance thermal stability of SP-211*.

Fig. 8. DMA storage modulus (from 1st heating scan) vs. porosity (avg. pore diameter of intermediate-to-larger pores) for several powdered samples of Vespel SP-211.

Sample Legend		
CC-1	Thermally conditioned control, tensile test at 70°F	
CC-3	Thermally conditioned control, tensile test at 750°F	
AR5X-7	As-machined + 5 cycles thermal shock, tensile test at 750°F	
AR10X-8	As-machined + 10 cycles thermal shock, tensile test at 750°F	
C5X-4	Thermally conditioned + 5 cycles thermal shock, tensile test at 750°F	
ARC-8	As-machined control, tensile test at 750°F	
ARC-5	As-machined control, tensile test at 70°F	

- Average pore diameter ranged from \approx 280-370 Å. For geologic rock material, this is intermediate or "meso" porosity.
- Quality porosity data could not be obtained until each SP-211 sample was ground into a powder with a freezer/mill.
- Fig. 8 shows that as-machined controls had the highest porosity, and thermally conditioned controls had the lowest porosity (another advantage of annealing). Samples with 5-10 cycles of thermal shock were about in the middle range of all the measured porosity values for SP-211 material. These mid-range porosities correlated with the highest values of E'.

- Summary and Conclusions
 - DuPont Vespel[®] SP parts and shapes yield a material with ≈25-50% crystallinity. Yet, such a material is not a true thermoplastic (no observable melting point) and is closer to a thermoset material.
 - Vespel SP-211 material was chosen for a hot gas valve in a NASA upper stage rocket engine, and the SP-211 could be exposed to multiple cycles up to 750°F for ≈10 min. at a time during engine operation. Vespel SP-211 contains 15 weight % graphite powder and 10 weight% PTFE polymer.
 - Ten (10) DMA heat-cool-heat cycles were performed on molded samples of Vespel SP-211. These samples had previous thermal histories such as 2, 5 and 10 thermal shock cycles at 750°F.
 - During the 10 controlled heating scans (4°C/min.) for each SP-211 sample, an increase in DMA storage modulus E' > 20% at 400°C (752°F) was considered undesirable. Such a significant increase in modulus could lead to increases in cross-link density and brittleness for a thermoset-like material such as SP-211.
 - For SP-211 samples with a prior history of thermal conditioning/annealing, DMA data indicated these samples had much greater resistance to E' > 20% at 400°C than as-machined samples.
 - Samples of SP-211 with 5-10 previous thermal shock cycles at 750°F had mid-range porosities for all powdered samples measured. These mid-range porosities correlated with the highest values of storage modulus determined by DMA on molded samples.