TFAWS Passive Thermal Paper Session

Modeling and Analysis of the Hurricane Imaging Radiometer (HIRAD) Stephanie Mauro

Thermal & Fluids Analysis Workshop TFAWS 2013 July 29-August 2, 2013 Kennedy Space Center KSC, FL

NA SA

Outline

- HIRAD Overview
 - Components & Heat Dissipation
- 2012 Modeling and Analysis
 - Goals
 - Thermal Desktop Model & Analysis
 - Correlation to Experimental Data
 - Recommendations
- 2012 Season Flight Data
- 2013 Modeling and Analysis
 - Goals
 - Thermal Desktop Model Updates
 - Correlation to Flight Data
 - Environmental Chamber Testing
 - Recommendations
- Conclusions and Forward Work
- Lessons Learned

HIRAD Overview

- Hurricane Imaging Radiometer
- Airborne sensor flown on UAVs through hurricanes
- Flown up to 60,000 ft.
- Purpose:
 - Produces a wide-swath image of ocean surface wind speed
 - Measures near surface rain rates

TFAWS 2013 – July 29 – August 2, 2013

HIRAD Components

- Electronics affixed to mountplate:
 - **Power Distribution Unit** (PDU)
 - Command & Data Handing (C&DH)
 - Inertial Navigation System (INS)
 - Local Oscillator (LO)
 - Controllers (2)
 - Receivers (10)
- MLI blanket covers the receivers, controllers and LO
- Stack below mountplate:
 - **Delrin Spacer**
 - Antenna
 - **Fiberglass Insulation**

TFAWS 2013 – July 29 – August 2, 2013

Heat Dissipation by Electronics Boxes

• All electronic components running at maximum power:

Component	Power [W]			
Power Distribution Unit	128			
Command & Data Handing	126			
Inertial Navigation System	39			
Local Oscillator	56			
Receivers	4.5 each			

TFAWS 2013 - July 29 - August 2, 2013

2012 Thermal Modeling Goals

- Build representative thermal model
- Correlate receiver temperatures of model to minimal flight data from 2011 Season flight:

 Recommend heater design to maintain steady receiver temperatures throughout flight

TFAWS 2013 – July 29 – August 2, 2013

2012 Thermal Modeling Analysis

- MLI blanket covering forward avionics boxes
- Effective heat loss from avionics components to boundary
- Transient boundary conditions:
 - 0 hrs: 31 °C
 - 0.5 to 6 hrs: constant -60 °C

Receiver Temps of 2012 Correlated Model

- Transient Boundary Conditions
 - 0 hrs: 31 °C
 - 0.5 to 6 hrs: constant -60 °C
- Effective heat loss selected: $h_{effective} = 4.5 \text{ W/m}^2/\text{K}$

Receiver Temperatures: h_{effective} = 4.5 W/m²/K

TFAWS 2013 – July 29 – August 2, 2013

Heater Positions

- Birk Manufacturing flexible Kapton heaters
 - 1.75 x 10 in
 - 28 V, 28 W each
- Two different heater layouts investigated:
 - Heaters on mountplate
 - Heaters primarily on receivers

Layout 1: Heaters on Mountplate

Recommendation based on 2012 Model

- Recommended placing heaters on the sides of each receiver to provide the least temperature variation from receiver to receiver
 - Set temperatures: 28 to 31 °C recommended

Receiver Temperatures: Set Temps 28 to 31 °C

TFAWS 2013 – July 29 – August 2, 2013

2012 Flight Data

- NASA
- Latest receiver temperatures recorded throughout Global Hawk flight using heaters on the side of each receiver with set point of 25 °C

TFAWS 2013 – July 29 – August 2, 2013

Conclusions based on 2012 Flight Data

- Midplate receivers reach higher temperatures than receivers on the end of the plate
- Brackets and Controllers (previously not modeled) contribute to thermal environment
- Each heater heats the receiver it is attached to through conduction and adjacent heaters through convection

Forward Work for 2013

- Update 2012 HIRAD thermal model to simulate 2012 flight data
 - Add brackets and controllers to model
 - Remove fiberglass insulation
- Correlate model to latest collected data
 - Adjust effective heat loss if needed
 - Compare model with heater set points of 25 °C to 2012 flight data
- Recommend changes to the heater locations and set points to maintain a constant temperature of <u>each</u> receiver throughout flight.
- Determine placement of instrumentation for environmental chamber testing to assist future model correlation

2013 Thermal Modeling

- Changes made to 2012 model:
- Components removed
 - Fiberglass insulation
- Components added
 - Antenna split into two pieces
 - Bracket frame and clips
 - Controllers
- Location of heater set point corrected
 - Measured from outer aft surface of receivers

TFAWS 2013 - July 29 - August 2, 2013

15

Recommendation Based on 2013 Model

 Set temperatures based on model temperatures reached without heaters

RCVR	1	2	3	4	5	6	7	8	9	10
Set Temp ± 0.25 °C	27.75	27.75	28.75	29.75	31.75	30.75	27.75	25.75	25.75	25.75

RTD Temperature of Receivers

TFAWS 2013 – July 29 – August 2, 2013

NASA

2013 Environmental Chamber Testing

- Thermocouple locations requested
 - Around edges of mountplate
 - Mountplate near receivers
 - Temperature inside MLI blanket
 - Temperature of bracket
- Test Set up
 - Assembly positioned upside down
 - MLI blanket NOT included
 - Different brackets used
 - Fiberglass insulation over antenna
- Preliminary Observations
 - No MLI blanket = receivers are more easily controlled by heaters due to increased cold environment
 - Receiver temperatures are impacted by adjacent receiver heating levels
 - Fiberglass insulation causes a longer amount of time needed to reach equilibrium temperatures

2013 Flight Recommendations

- Not to include the MLI blanket
 - Receivers can be controlled at a lower temperature
- Set temperatures in real time
 - Set temperatures of outer receivers first (in cooler locations)
 - Determine temperatures of inner receivers once outer receivers have reached steady temperature.
- Requested additional temperature sensors
 - Air temp of HIRAD environment
 - Air temp inside MLI blanket (if blanket is used)
 - Temperature of Radome
 - Mountplate temperatures

Planned Configuration for 2013

- August 20 September 23
- MLI blanket folded over frame, covering top of receivers, controllers, and LO
 - Remaining in assembly to protect from possible fuel or oil leaking
 - Not covering sides of components up to height of frame
- No fiberglass insulation will be used
- Set points to be adjusted during flight

Conclusion

- Completed modeling and analysis
 - 2012
 - Created and correlated model based on flight data with no heaters
 - Modeled 2 heater layouts at several set temperatures to determine most effective heater placement
 - Recommended heaters on receivers with set points 28-31°C
 - 2013
 - Updated and correlated model based on flight data flown with heaters on receivers at set point of 25°C
 - Recommended to remove MLI blanket and set heater temperatures in real time
- Forward Work
 - Analyze environmental chamber test results
 - Correlate model to test results
 - Analyze 2013 season data
 - Recommend changes based on flight data and further analysis

Lessons Learned

- Clearly define goals of modeling and reasoning behind goals
- Organize models through labeling and descriptive titles
- It is very helpful to see hardware in person to visualize problems
- Thoroughly document results
- Ask lots of questions!