

American Institute of Aeronautics and Astronautics

1

Goal-Function Tree Modeling for Systems Engineering
and Fault Management

Stephen B. Johnson1
Jacobs ESSSA Group, Dependable System Technologies LLC, and University of Colorado, Colorado Springs

Jonathan T. Breckenridge2
Jacobs – ESSSA Group / Ducommun Incorporated, Miltec Systems, MSFC, Huntsville, AL, 35763, USA

Abstract: This paper describes a new representation that enables rigorous definition and
decomposition of both nominal and off-nominal system goals and functions: the Goal-Function
Tree (GFT). GFTs extend the concept and process of functional decomposition, utilizing state
variables as a key mechanism to ensure physical and logical consistency and completeness of the
decomposition of goals (requirements) and functions, and enabling full and complete traceabilitiy
to the design. The GFT also provides for means to define and represent off-nominal goals and
functions that are activated when the system’s nominal goals are not met. The physical accuracy of
the GFT, and its ability to represent both nominal and off-nominal goals enable the GFT to be
used for various analyses of the system, including assessments of the completeness and
traceability of system goals and functions, the coverage of fault management failure detections,
and definition of system failure scenarios.

I. Introduction
YSTEMS engineering (SE) as currently practiced has a number of significant shortcomings. Many current SE
methods and practices, such as development of requirements and specification of interfaces, are primarily based

on natural language. For example, requirements traces attempt to connect individual requirements from semi-
structured lists to each other, but this is hampered by the fact that they link inherently ambiguous natural language
statements using individual judgment to determine the appropriate connections between them. It is thus difficult if
not impossible to determine if the requirements specified for the system are complete, or to determine the accuracy
of the relationships between them. Natural language ambiguities also make it difficult to map from requirements to
functions, and functions to designs. Another problem with current SE is that to the extent it recognizes off-nominal
perspectives at all; it poorly integrates nominal to off-nominal functions, goals, and designs. This problem can be
stated in fairly simple terms: for each nominal goal or requirement to be achieved (in this paper we will consider the
words “goal”, “requirement”, and “objective” to be synonyms), there is the possibility that this goal will not be
achieved. In this situation, which is usually called “failure”, what should the system to do? If the system is to predict
or detect failure and then perform some action to prevent or mitigate the failure, then the system now has new off-
nominal goals and associated functions, which we will identify as “fault management” (FM). In turn, FM is the
operational subset of “system health management” (SHM) which is the set of system capabilities put in place to
ensure that the system meets its intended goals.

A number of techniques to improve systems engineering move away from natural language and instead use
models, under the rubric of “Model-Based Systems Engineering” (MBSE). Other efforts are ongoing to develop
SHM and FM as the “dark side” of SE.1 This paper will describe a new model-based representation, known as the
Goal-Function Tree (GFT), which provides significant improvements over current SE practice by integrating
nominal and off-nominal perspectives, and providing rigor to the classical notion of the functional decomposition.

The GFT representation, as its name implies, is not merely a functional decomposition, because it inherently
integrates goals (requirements) and functions together. The GFT representation and its corresponding development
methodology provides a means to represent, decompose, and elaborate system goals and functions in a rigorous
manner that connects directly to design through use of state variables, which also enable translation of natural

1 President, Dependable System Technologies, LLC; Associate Research Professor, Department of Mechanical and

Aerospace Engineering, University of Colorado, Colorado Springs; Analysis Lead, Mission and Fault Management, Space
Launch System Program, National Aeronautics and Space Administration; AIAA member.

2 Assistant Fault Management Analysis Lead, Mission and Fault Management, Space Launch System Program,
Marshall Space Flight Center (MSFC), AIAA Member.

S

American Institute of Aeronautics and Astronautics

2

language requirements and goals into logical-physical state language. The state variable-based approach also
provides the means to directly connect FM to the design, by specifying the range in which state variables must be
controlled to achieve goals, and conversely, the failures that exist if system behavior go out of range. This in turn
allows for the systems engineers and SHM/FM engineers to determine which state variables to monitor, and what
action(s) to take should the system fail to achieve that goal. In sum, the GFT representation provides a unified
approach to early-phase SE and FM development.

This representation and methodology has been successfully developed and implemented using Systems
Modeling Language (SysML) on the National Aeronautics and Space Administration (NASA) Space Launch System
(SLS) Program. It enabled early design trade studies of failure detection coverage to ensure detection of all failure
scenarios that can threaten the crew. The representation maps directly both to FM algorithm identification and to
failure scenario definitions needed for design analysis and testing. The GFT representation provided a basis for
mapping of abort triggers into scenarios, both needed for initial and successful quantitative analyses of abort
effectiveness (detection and response to crew-threatening events).

Section II explains the utility of tree-like, hierarchical models in systems engineering, whose value is typically
taken as a given. This section also describes some earlier attempts to create success-space models. Section III
describes the motivations, problems and issues that inspired the development of the GFT on the SLS Program, and
further issues and problems with systems engineering that it is well-suited to address and improve over standard
practice. The details of the GFT representation and the methodology to construct a GFT model for a given system
are presented in Section IV. Section V describes how the GFT is and can be used for a variety of analytical purposes
for SE, SHM, and FM.

II. Tree Models and Intentionality
Success-space, hierarchical models have been researched and occasionally used in systems engineering for

several decades. Despite this, their utility and purposes have not been universally accepted as part of the standard
systems engineering process. We will describe in this section several approaches to develop top-down hierarchical
representations along with some of the uses of these representations. Lastly, to understand why hierarchical models
are important, but have some significant limitations, we must explore what these hierarchical models actually
represent, given that a system design is at best only partially hierarchical.

The most common form of a success-space decomposition is the traditional functional decomposition. In it, the
systems engineer attempts to define the functions of the system, usually in natural language, and arrange these
functions into a top-down, inverted tree structure with the root (or perhaps the trunk) at the top and the branches
below. In general, the top function or functions represent the overall activity that the system is to perform. This top
function is then decomposed into other functions that must be provided for the top level function to successfully
occur, and so on as the tree is developed further into many levels. The typical use of this decomposition is to
determine the functions and the corresponding requirements needed to ensure these functions are provided.

The tree structure is useful as a method to trace system functions and requirements in an attempt to ensure
completeness. However, it is difficult to be sure that the functions and related requirements developed in this way
are complete, mainly due to the problems of interpreting natural language. Requirement trace and function trace
tools provide means to track the tree structure and traceability, but the inherent difficulty lies in the interpretation of
natural language, so as to know whether the trace is technically legitimate. The trace tools merely enable traces to be
tracked and searched once the modeler decides that one requirement traces to another. The validity of that decision
is not addressed. Note that the typical functional decomposition is distinct but somewhat ambiguously related to
trace of its corresponding requirements, with the normal assumption being that there should be a requirement
associated with each function. In systems engineering today, functional decompositions are often given lip service,
but in practice they are not used consistently, implying that they do not always provide enough value to merit
standard and consistent implementation.

Hierarchical decompositions are also used, and perhaps more frequently and consistently, in failure space models
usually described as “fault trees.” Unlike success trees, fault trees attempt to determine how the system may fail,
starting from the top level functions that the system must achieve and specifying how the system might fail to
perform its highest-level function. These failure types are then decomposed further into lower level failures, once
again leading to an inverted tree structure. Eventually the fault tree can be developed all the way down to the failure
modes as described in a typical failure modes and effects analysis (which itself is a matrix). In practice a tree
developed all the way to the failure modes becomes overwhelmingly large and hence the trees are not typically
developed to this level of detail. As with success space representations, the ways in which functions can fail are
described in natural language, though the trees can be associated with logical and mathematical attributes to enable

American Institute of Aeronautics and Astronautics

3

probabilistic and logical operations on the fault tree model. However, the validity of these logical and mathematical
operations depends at least in part on whether the “failure functions” in fact have the assumed tree-like relationships,
which in turn depends on proper interpretation of the natural language descriptors. Fault trees have a long track
record of use and success, ensuring that they are used more consistently for the design of highly reliable systems
than success space functional decomposition.

Significant research in success space hierarchical methods has focused on goals. A recent goal methodology is
described in van Lamsweerde’s book, Requirements Engineering: From System Goals to UML Models to Software
Specifications.2 As implied by the title of the book, van Lamsweerde views goals as being directly related to
requirements. Van Lamsweerde believes that goal tree specification using “goal diagrams” is essential, and that it is
effective to use formal models in Unified Modeling Language (UML) to represent these goals. Conversely to the
fault tree structures that use OR gate structures for the basic logic of the fault tree, with AND gates to model
redundancy, in success space van Lamsweerde uses AND gate structures, with OR-gate modifications for
redundancy. Van Lamsweerde’s work emphasizes the utility of goal tree structures to understand and model
requirements for complex systems controlled by software, so as to rigorously specify software requirements and link
them to other UML software design models. Van Lamsweerde correctly notes that tree structures for representation
of goals is common in artificial intelligence, going back at least to (Nilsson 1971).3 Its introduction into
requirements engineering, according to van Lamsweerde, came with the work of (Dardenne et al., 1991)4 and
(Mylopoulos et al., 1992).5

This link to artificial intelligence is clear in the work of Kim and Modarres (1986),6 who introduced a Goal Tree-
Success Tree representation for use in operator advisory systems. This approach developed in the mid-1980s for
nuclear power systems modeling, and was tied to expert system development, which in turn is part of the artificial
intelligence research tradition. For Modarres, the goal tree portion represented the top-level goals, and the success
tree accounted for lower level goals that needed to be accomplished for the higher level goals to be achieved. It too
used an AND-gate structure as primary, with OR-gates for alternative methods to achieve a goal. In the advisory
system application, achievement of success of lower level goals (the lower level “success trees”) was required to
achieve high-level goals. Modarres (1999)7 continued to develop the GTST approach, creating “master logic
diagrams” of top level goals as columns and “support functions” as rows to begin assessing how failures affected
goals. This approach developed into a highly complex methodology and model. Its application to other systems
seems to have been quite limited. However, it does point to the difficult but critical issue of mapping from goals and
functions to design, which is a many-to-many complex problem.

Another goal-tree-related development is the state analysis and Mission Data System (MDS) under development
at Jet Propulsion Laboratory (JPL). Ingham et al. (2005)8 provides a description of this approach. The JPL work uses
a state-based approach to develop an autonomous, on-board deep space computing architecture. This architecture
employs a goal-tree-like structure to represent goals, for the same reasons that artificial intelligence applications use
tree structured search spaces. Fragments of the tree can be shifted around based on changes to the vehicle
configuration, representing changes to the mechanisms needed to operate system functionality. A separate set of
models represents system constraints. As a state-based approach, the JPL representations utilize state variables as a
key aspect of their models, which aim toward an operational, deep-space architecture.

Each of these approaches provide important clues as to the various attributes that can and/or should be modeled
to provide benefits for systems engineering and fault management. Standard functional decompositions have a
potentially useful relationship to problems of requirements completeness and traceability. Fault trees attempt to
develop near-complete representations of failures in safety-critical systems, and quantitative methods and tools have
been developed to further their utility. Formal modeling methods to represent goals have been developed to create
more complete and higher quality requirements for software systems, and to support the development of expert
systems in safety critical applications. When linked to state-based methods and artificial intelligence techniques,
JPL’s methods attempt to apply goal tree models to deep-space autonomous architectures. The GFT method
described in this paper utilizes aspects of each of these techniques, but then integrates and applies them to systems
engineering and fault management.

Unstated, but underlying all of these methods is a fundamental question: what do hierarchical structures, whether
in success space or failure space, actually represent? After all, unless the designer is building an artificial tree, a tree
structure does not match the actual system design. For systems in general, components link to each other in all kinds
of ways, including feedback loops that do not divide cleanly into independent, separate branches. Put another way,
what makes some goals and functions more important than others, such that other goals and functions merely
support these “important” goals and functions?

What gives some goals and functions a “higher importance” than others is the intention of the designer or
operator. Engineered systems exist to fulfill some purpose, whose intent is specified originally by the system

American Institute of Aeronautics and Astronautics

4

designers, and later on by the system operators or users, who may decide to use the system differently from the
designers. It is intentionality that creates hierarchy among the system’s goals and functions. For example, the
primary purpose of a launch vehicle such as the SLS is to transport a functioning payload of a certain volume and
mass to a destination in space. This describes a primary set of goals, such as the specific destinations the launch
vehicle is capable of providing to payloads of the relevant size and mass, and primary functions, which are the
corresponding transport activities or operations the launch vehicle must perform to move the payload from Earth to
its destination. All other goals and functions exist to support these primary goals and functions. In the actual design,
the control of the vehicle’s accelerations, velocities, positions, and attitudes are achieved by control loops, which are
enabled by further open or closed loop control of power, computing, fluids and so on. In the design representation,
all of these loops, components and structures are connected in complex ways that have little resemblance to a tree.
Intention is what enables the flat, interconnected design to be fruitfully represented and analyzed as a hierarchy,
even when the design is only partially hierarchical.

III. Motivations for the GFT
The GFT originated from concrete FM analytical and design problems that arose on NASA’s Ares I launch

vehicle project during its development from 2006-2011. One key problem was attempting to determine whether the
abort detections (called “abort triggers”) on Ares I actually detected all Ares I failures that threatened the crew,
which was in the Orion crew capsule on top of Ares I. Another problem was determining the physical and logical
relationship between the various abort conditions and triggers. Abort conditions are vehicle failure behaviors, which
if they occur, would immediately or ultimately threaten the crew through their “downstream” failure effects. In most
cases, failures produce a variety of effects, and in many cases, two or more abort conditions and triggers could be
activated in a single failure scenario (one particular failure occurring, leading to many downstream failure effects).
The design question was whether some abort triggers (detections) were superfluous, because the relevant failure
effects (abort conditions) were already being detected by other abort triggers. In essence, the question is if there
were gaps and/or overlaps in the detection coverage of crew-threatening launch vehicle failures. Lastly, were there
any missing abort conditions? A common theme among the first three items (abort trigger detection coverage,
physical and logical relationships of abort conditions, and potential missing abort conditions) is that they cannot be
resolved using “bottom up” approaches.

On Ares I, candidate abort conditions were generated using engineering judgment and documented as a list
containing the conditions and a variety of condition attributes. As the list was developed, a number of issues arose,
which the FM team had great difficulty in addressing. One particularly troublesome issue was trying to determine
what was meant by a “monitored condition”. Some conditions were potentially monitored “at” the location of the
abort condition, such as a Thrust Vector Control (TVC) Hardover abort condition, monitored by direct measurement
of the gimbal angles. This condition was ultimately classified to be “non-monitored”. This was because the gimbal
angle position sensors were of insufficient criticality, meaning it would have been costly to upgrade them and add
more sensors, and because failure effects of a TVC gimbal hardover would be visible and adequately monitored and
detected by the Guidance, Navigation, and Control Abort Triggers: attitude error and attitude rate error in this case.
These attitude and rate triggers were “causally downstream” from the gimbal position. A good case could be made
that this meant the condition was actually monitored, though not directly.

This case was only one of many examples showing the existence of a physical, causal relationship between abort
conditions, but in list form it was difficult to determine these relationships in a consistent and complete way. If there
was more than one way to monitor an abort condition, how does one identify the several possible abort triggers that
could monitor the condition, and determine which of these triggers should be implemented? If more than one trigger
was implemented, is unneeded system complexity being created, adding to cost and perhaps decreasing reliability?
Does monitoring mean “directly monitored” as opposed to “indirectly monitored”, and if so, can one define more
precisely what “directly monitored” means? Finally, could the relevant analysis be done early enough in the design
process to select and develop the relevant hardware and software in a cost efficient manner?

The same kinds of problems arose on the SLS program as it began after the cancellation of Ares I and
Constellation. To address these problem, a new analytical method and approach was needed. This is the genesis of
the GFT (which on SLS is called the Goal Tree / Success Tree (GTST)). It was hypothesized that a top-down
approach in success space may be able to address these questions. Unlike failure space, in success space it does not
matter how a system goal is not achieved, and hence the analyst can ignore the specific failure modes that can cause
failure of the goal. It matters only that the goal is not being achieved, because if the goal is not achieved, then
higher-level goals will also be compromised, ultimately compromising the system’s ultimate purpose(s). Given that
one of the major problems with SHM and FM is the impossibility of identifying all possible causes of failure, a

method tha
Finally, a t
would then
major issu
Instead of
be perform

The GF
System Hea
function as
terms of th
which is th
allocated t
function f
function pr
of an inpu
transforma
the input st

Alterna
system’s a
defined as
function (it
y ≤ Rh, wh
the intende
vector y ca
the upper a
state vecto
state variab
limits.” Th
if the value

In the
transforme
(flow rate)
used to pro
thrust is an

Figure 2

at focuses on w
top-down appr
n enable poten
e for FM in g
this “FM Band

med in parallel w

IV
FT can be see
alth Managem
s intended. SHM
he equation y =
he transformat
to mechanisms

can be imple
reservation sim
ut state vecto

ation ensures th
tate vectors are
atively, SHM c
ability to achie

controlling th
ts goal) is simp

here Rl is the lo
ed range, whe
an be construct
and lower rang

or y. Figure 1 s
bles. A goal is

he connection t
es of output sta
GFT, the stat

ed, of the entit
) are the state
ovide thrust. T
n attribute of th

2: Off-Nominal
Ame

what must be
roach would al

ntial design cha
eneral, which
d-Aid”, it is de
with the nomin

V. The GFT
en as a direct o

ment: with Aero
M theory preci
= f(x), where x
ion that maps
s (which can b
emented in sev
mply states tha
or x to the ap
hat the goals as
e within their n
can be defined
eve goals. Ho
e output state v
ply that its outp
owest value of
ere these inten
ted from a vari
ges are also ve
shows a simple
s simply the c
to off-nominal
ate vector y stra
te variables ar
ties being cont
variables whos
he thrust itself

he mass of prop

Goal and Func
Achieved erican Institute

achieved, as o
llow assessmen
anges to occur
typically has b

esirable to hav
nal design, not

Representat
outgrowth of a

ospace Applica
isely defines fu
x is the input
the input state
be hardware,
veral possible
at SHM exists
ppropriate outp
ssociated with
nominal ranges
as the system’
w then are go
vector y within
put remains wi
f the intended
nded ranges ca
ety of individu
ctors, with sam
e function bloc
ontrol of the o
l representation
ay outside of in
re the characte
trolled. For ex
se range must
f is the state va
pellants that are

ction if Nominal
of Aeronautics

5

opposed to how
nt of these issu
before they be

been designed
e an analysis a
after.

tion, Constru
aspects of the
tions, SHM’s p
unctions in the
state vector, y
e into the outp
software, or h
ways. The co
to ensure the
put state vect
the function ar

s.
’s set of capabi
oals related to
n the intended
ithin the intend
range, and Rh

an vary over t
ual state variab
me number of v
ck with the rel
output state ve
n is simply to
ntended limits.
eristics that m
xample, for a l

be controlled,
ariable being c
e being expelle

l Goal is Not
s and Astronau

w the system m
ues well befor
ecame “locked
after the nom

and design met

uction, and N
theory of SH

primary goal is
standard way

y is the output
put state. Funct
humans), such
ore SHM prin
correct transfo

tor y. In turn
re preserved as

ilities that pres
o functions? G
d range. Succes
ded range. Tha
is the highest

time. The outp
bles, which imp
variables as th
evant input an

ector y within
note that failu
.

must be contro
launch vehicle
, of the liquid

controlled as th
ed at a certain v

of the GF
attributes
explicitly
examples
will not
updates t
will be fu

For e
possibility
achieved.
off-nomin
achieved,
a new
activated
achieved,
function
variable y
to take s

utics

might fail, has
re the design w
d in”. This has

minal system ha
thod that enabl

Nuances
M. In that the
s to preserve th
identified in m
state vector, a
tions are
that the

nciple of
ormation

n, proper
s long as

serve the
Goals are
ss of any
at is, Rl ≤

value of
put state
plies that
he output
nd output
“success

ure exists

olled and
e, temperature,
or solid prope

he output of the
velocity. In the
FT, these entiti
s are the state
y identified in t
s to be shown

be shown. H
to the GFT r

ully incorporate
each and every
y that the
. If the system
nal action wh
, then this imp
off-nominal
when the n

, and a corresp
to detect tha

y is outside its
some action. F

Fig
Inp

distinct advan
was complete,
s been identifie
as been determ
les the FM des

eory, as describ
he system’s abi

mathematical te
and f is the fun

, pressure, and
ellants that are
e rocket engin
e initial develo
ies (the items
variables) we

the model, and
n in this paper
However, in
representation,
ed into the mod
y goal, there
goal will n

m must perform
hen the goal
plies the existe
goal that wi
ominal goal
ponding off-no
at the output
s nominal rang
Figure 2 show

gure 1: Functio
put and Output

Vectors

ntages.
which

ed as a
mined.9
sign to

bed in
ility to

exts, in
nction,

d mass
 being
es; the

opment
whose

ere not
d in the
r, they
future
these

del.
is the
ot be

m some
is not

ence of
ill be
is not
ominal
t state
ge and
ws the

n with
t State

existence o
achieved (t

Constru
of the tree
heuristics i
every func
inherently
variables f
constructio
will manip

For exa
and the oth
work, it i
decomposi
many detai

For bot
although i
elsewhere
has the ide
For both sy
on Earth to
along with
support, th
of the tree,
tree identi
separation
intermedia
stage’s ope
elevator, it
elevator-lik
further fun
the attitude
attitude is
mechanism

A. Decom

of an off-nomin
that is, the stat
uction of a GF
e. However, t
imposed by th

ction is simply
defines the ph

from the input
on of the tree f
pulate physical
ample, let us c
her a space el
is essentially
ition, more de
ils of the desig
th systems, the
t is clear that
requires furthe

entical objectiv
ystems, the top
o a location in
h the projected
hen the variable
, “level 2”, the
fies the interm
functions in b

ate location for
eration. We w
ts second leve
ke modes such

nctions that dep
e, velocity, an
fixed while ve

m for power as

mposition and E

Fig

Ame

nal goal and as
e of the nomin
T, just like any

the constructio
he state variabl

a transformatio
hysics and log
t state variable
from the top to
laws to achiev

compare two h
evator. It is im
impossible to
tailed assumpt

gn.
e objective is th
t the space ele
er means of tra
ve of going to
p level state va
space. The sta
mass and volu

es representing
e functions imm
mediate locatio
between. Succ
the separation

will assume tha
el of functiona
h as an ascent m
pend on their r
d acceleration
elocity and ac
the input, alon

Elaboration

gure 3: Elabora

erican Institute

ssociated off-n
nal output state
y other hierarc
on of each lev
e methodology
on or mapping
gic to be mani
es. As system
o lower levels

ve its goals.
hypothetical sp
mportant to rea
 create a fun
tions must be

he same, to tra
evator can on
ansportation. F
the same locat

ariables and fun
ate variables w
ume of the pay

g these characte
mediately begi
ons that each
cess at the sec
n event, and the
at the launch v
al hierarchy re
mode and a des
respective desi

by controlling
celeration are

ng with the pas

tion and Decom

of Aeronautics

6

ominal functio
vector y is out

chical represent
vel is tightly
y and the math

g of input state
ipulated by th

ms engineers an
implies some

ace transportat
alize that with
nctional decom

made, until u

ansport an obje
ly transport an
or the sake of
tion as the spa
nction is the sa

would represent
yload to be tra
eristics must a
in to differ. Fo
stage of the

cond level mea
en successful s
vehicle has no
epresent mode
scent mode. Fo
gn concepts. F
g rocket engin
controlled in
sive or active c

mposition

s and Astronau

on that are activ
tside of its inte
tation, is a pro
constrained an

hematical defin
variables to ou

he function to
nd safety engi
 assumption at

tion systems: a
hout some basi
mposition. At
ultimately the

ect of some ma
an object to O

argument, we
ace elevator, si
ame, to move a
t the classical o
ansported. If th
also be describe
or a space laun

launch vehicl
ans delivery o
separation even
o capability to
es of operation
or each system,
For the launche
ne thrust vector

the vertical on
control of the e

utics

vated when the
ended range).
ogressive const
nd significant
nition of a fun
utput state vari
enable control
ineers know w
t each level ab

a classical stag
ic concept of h

each deeper
hierarchy has

ass and volume
ONE location i

will describe a
imply to enabl
a mass and vol
orbital elemen
he payload req
ed. However, a

nch vehicle, the
le transports th
of the function
nts needed befo
return the pay

n are quite dif
, the next level
er, this means
rs, whereas fo
nly, using elec
elevator structu

The
methodolo
definition
controlled
how that
This leads
distinct w
state va
subdivided
decomposi
elaboratio
means th
vector is
into sma
which all
variables
vector. Th
variables
example,
output sta

e nominal goal

truction of each
ly improved b

nction. By defi
iables. This ma
l of the outpu

well, the progr
bout how the s

ged chemical r
how the system
level of func
implicitly spe

e to a point in
in space, and
a launch vehic
le direct compa
lume from a lo

nts of the destin
quires power an
at the very nex
e second level
he payload to
ning payload t
fore going to th
yload. For the
fferent, and re
l of hierarchy d
the ability to c
r the space ele

ctrical or some
ure itself.

state va
ogy requires p
of the physics
, with a conc
control will

s immediately t
ways in whic
ariables can
d and de
ition

on. Decompo
hat an output

simply subd
aller state ve

use the same
as the output

hat is, no new
are created
assume tha

ate vector repr

l is not

h level
by the
nition,
apping

ut state
ressive
system

rocket,
m will
ctional
ecified

space,
going

cle that
arison.
ocation
nation,
nd life

xt level
of the

o, with
to that
he next

space
efer to
defines
control
evator,
e other

ariable
precise
s to be
cept of
occur.
to two

ch the
n be
efined:

and
osition
t state
divided
ectors,
e state
t state

w state
. For

at the
resents

the position
v3, a1, a2, a
for acceler
merely a re
transforma

The alt
thrust of a
injected in
inputs. Th
decomposi

B. Passive
Functio

because ph
structural f
many struc
of thrust a
acceleratio
then comm
active, as t
measured a

C. Physic
In cas

constructin
to be contr
represent t
function to
the require
current dir
the thrust v
correspond

When m
matches th
its ultimat
using natu
that the tre

n, velocity, an
a3). This state v
ration. In this c
earrangement a
ation.
ternative situat
a liquid rocket
nto the combus
he creation of
ition to an elab

e and Active F
ons can be eith
hysics inheren
functions, whic
ctures, there is
and the direct

ons, determinat
mands sent to c
they require an
accelerations a

ally Correct M
es of active

ng the tree, whe
rolled, such as
the steps requ
o command th
ed direction,
rection. This o
vector direction
ding functions r
modeled in th

he physics and
e goals. Unlik

ural language,
ee structure ma

based tr
in which
that imp
in which
probabil
for a su
function
(convers
invalid b
sensor f
indepen
manner

By c
which a
higher le

Figure 5
of Co

Success
and C

Ame

d acceleration
vector can be d
case, there is n
and division of

tion is when n
t engine is gen
stion chamber.
f a new funct
boration.

Functions
her passive or a
ntly makes it h
ch provide con
no active cont

tion of thrust
tion of the diff
control the dire
n operational a
and rotations, in

Model Structu
control, ther

ere the highest
the thrust vect

uired to achiev
he direction, th

and finally, t
ordering reflect
n, and the leve
required to ach
is way, the tre

d logic required
ke a traditiona

the state vari
tches the syste
ee can easily b
h there is a sen
plements the co
h the sensor, pr
listic models, t
uccess tree use
ns at the lowe
sely, failure sp
because the ca

failure does NO
dent in this m
that is logicall

contrast, the sta
also yields the
evel function t

: Serial Mappin
ontrol Loop in
Tree is Logical

Causally Valid

erican Institute

of the launch v
decomposed int
no function tha
f the state varia

ew state variab
nerated from t
We have thus

tion and new

active. Given a
happen. There

ntrol of the rele
trol by a contro
are determine

ference betwee
ection and mag
activity of the
nto controlled o

ure
e is a prefer
t level represen
tor direction. T
ve that contro
hen the functio
to measure or
ts that the goa
els below it are
hieve that contr
ee structure cr
d for the syste

al functional d
able methodol

em’s true paths
be built that doe
nsor, a processo
ontrol. A typic
rocessor, and a
this yields prob
es AND gates
er level must
pace models us
ausal behavior
OT cause a pro
odel. Put anot
y correct, but p
ate variable GF

correct proba
to succeed. Ho

words, se
required f
of the fun
addition,

ng

ly

of Aeronautics

7

vehicle, with th
to three state ve
at is required to
ables into diffe

bles are requir
the mass, pres
s defined a fun

state variabl

thrust, a mass,
e are other pa
evant state vari
ol system. If w
ed by measure
en the desired
gnitude of the t
system to tran
output state va

rred order to
nts the variable
The next levels
l, such as the
on to compute
r estimate the
al is to control
e the goals and
rol.
reated closely
em to achieve
ecomposition
logy requires
 of causal beha
es not match th
or to determine

cal natural lang
actuator are all
babilities that a
s as the defau
be successful

se OR gates as
rs are not inde
ocessor failure
her way, it is
physically inac
FT requires tha
abilities and lo
owever, it also
ensor success
for actuation su
nctions must su

the flow of c

s and Astronau

he nine relevan
ectors, one for
o move down

erent state vecto

red. For examp
ssure, and tem
nction f that ge
es we call el

, and an enviro
assive function
iables (stress, s

we drive the GF
ement of tran
and actual tran
thrust vector. T

nsform the rele
ariables of the t

o
e
s
e
e
e
l
d

aviors. To see w
he physics, let
e how to comm
guage decompo

on the same le
are correct, bec
ult assumption

for the highe
 their default).

ependent of ea
e, which cause
possible to co

ccurate.
at the sensor, p
ogic because a
ensures the co
is required f

uccess, in that
ucceed for the h
ausation must

Figure 4: Pa
Success Tree

utics

nt state variabl
r position, one
the tree structu
or groupings; t

ple, in the laun
mperature of th
enerates thrust
laboration. Fi

onment, a launc
ns, such as is
strain) through
FT further, we
nslational and
nslational and
The functions
evant state inp
thrust magnitud

why a tradition
us look at a typ

mand the actua
osition can eas
evel. In many p
cause the typic

between leve
er level functi
. However, the

ach other. By t
s an actuator f

onstruct a succ

processor, and a
all functions m
orrect behavior
for processing
order. It is no

higher level fu
t also be valid

arallel Mapping
e is Logically C

Invalid

les: (x1, x2, x3,
for velocity, an
ure, because th
there is no func

nch vehicle cas
he fuel and ox
t from the prop
igure 3 compa

ch vehicle will
often the case

h design margin
find that the a
rotational rate
rotational rate
to perform the
ut variables, su
de and directio

nal natural lang
pical control sy
ator, and the ac
sily create the
purely logical

cal assumed str
els, meaning th
ion to be succ
e model is phy
this, we mean
failure. These
ess or fault tre

actuator are in
must succeed f
ral causality. In
g success, wh
ot merely true t
unction to succe
d since these a

g of Control Loo
orrect but Cau

v1, v2,
nd one
here is
ctional

se, the
xidizer
pellant
ares a

l move
e with
ns. For
amount
es and
es, and
ese are
uch as

on.

guage-
ystem,
ctuator
model
and/or

ructure
hat all
cessful
sically
that a
are all

ee in a

serial,
for the
n other
hich is
that all
eed; in
are not

op in
sally

American Institute of Aeronautics and Astronautics

8

independent functions. This is the correct model to represent the flow of actual physical operations in time. Figures
4 and 5 shows these two distinct ways to represent control loop functions in a tree hierarchy, with only the series
representation being physically correct. For our purposes, correct physical causality is an essential property of the
GFT, not just probabilistic and/or logical consistency.

D. Tree Fragment Replication: Similar but Distinct Requirements
Another feature of tree representations in general is the fact that some tree fragments are replicated in several

locations, because these fragments represent a common set of functions that support several other functions. These
fragments appear in different parts of the tree. The GFT also shares this feature, but with its state variable
formulation, it distinguishes subtle but important differences between these otherwise identical tree fragments. With
a human-rated launch vehicle, for example, accelerations must be controlled for several different reasons: to prevent
breakage of the launch vehicle structure, to prevent breakage of the crew vehicle structure, and to prevent damage to
the humans in the crew vehicle. The fact that accelerations must be limited shows up in three different locations in
the GFT, and with acceleration state variables. Their appearance in three different locations indicates that these are
really three different requirements, which in the GFT appear as three distinct ranges associated with the output
acceleration state vector that appears in the three different locations in the tree. These must be tracked and traced as
three distinct goals; that is, three distinct requirements.

E. Goal Types
It is often convenient to differentiate different kinds of nominal goals. For example, in the SLS GFT, it was

found useful to define three nominal goal types: achievement, maintenance, and prevention. Achievement goals
represented requirements to achieve a specific objective at a single point in time, such as attaining the appropriate
altitude at the end of the first stage burn. Maintenance goals, on the other hand, are goals that must be maintained
over long periods of time so as to attain an achievement goal. So in the first stage achievement goal just mentioned,
the launcher must provide thrust and attitude control from the moment it lifts off the ground until it reaches the end
of the first stage burn in preparation for first stage separation. Prevention goals are requirements to prevent
something from happening. In the same case described above, separation of the first stage from the second stage
must be prevented prior to the appropriate separation time. This leads to specific functions such as command inhibits
and lockouts to prevent premature separation.

F. Requirements Capture, Completeness and Traceability
A typical feature of systems engineering work is the capture and traceability of requirements. The GFT improves

this process in four important ways. The first is its identification of requirements as the control of the ranges of the
output state variables of system functions. This precise manner of goal / requirement specification enables the
translation of natural language requirements into a precise mathematical, physical, logical language. A second
significant improvement is that the GFT’s state variable methodology provides a much more structured and rigorous
way of ensuring that the goals generated at each level of the tree are a complete representation of the state space that
must be provided as inputs to functions so as to enable the control of the output state variables within their nominal
ranges. This methodology enables a much better chance that the system engineers will determine a complete or near-
complete set of requirements for GFT-modeled functions. A third significant improvement over typical systems
engineering practice is that the GFT inherently creates a hierarchy of goals and requirements through its very
construction, not just a hierarchy of functions as with a classical function decomposition. Finally, that same
hierarchical structure means that requirement traceability is inherent in the GFT model. It is no longer a guessing
game as to which requirements decompose into other requirements. In terms of physical relationships, functions, and
requirements tied to these relationships, the hierarchy and traceability is guaranteed within the representation itself.

However, it is not obvious whether the functional hierarchy and physical relationships specified by the GFT are
the “right kind” of hierarchy desired by the systems engineers or program managers. This is because the
requirements decomposition that they desire is based not on function, but on the organizational and institutional
structure of the project. Because organizations build the system’s components, it is usually true that the interfaces
between components are also the interface between organizations. Requirements must generally be specified at the
interfaces between components, and hence at the interfaces between organizations. It therefore appears that there are
at least two or three distinct kinds of hierarchical representations that are of relevance to systems engineering. The
issue of how the GFT maps to the design components, and how these components relate to organizations, becomes
important. This paper will address the former in the next subsection, but will not attempt to address the latter; this is
a topic for future research.

American Institute of Aeronautics and Astronautics

9

G. Mapping of Requirements and Functions to Design
Functions describe the operations or physical transformations (which, as described earlier, can be passive or

active) that the system must perform to achieve its objectives. The design describes the means by which these
physical operations and transformations are achieved. Using the GFT to describe the system’s goals and functions,
the mapping to the design is based on the state variables and the entities being controlled, which are common to
both. Mapping from the GFT to the design is merely a case of searching the GFT and the design for the common
entities and the state variable attributes of those entities that must be controlled. The mapping simply links the
common entities and state variables from the design model to the GFT and vice versa.

In success and fault trees, the same or closely related functions are identified in many locations of the tree. Thus,
in a launch vehicle, for example, “thrust vector control functions” appear in several locations to control attitude so as
to facilitate proper trajectory, to ensure structural integrity, control structural temperatures, and to protect payload
integrity or human safety. These are repeated in several major tree branches because these same functions are
necessary for several system activities. Thus the thrust vector state variables appear tens of times in the overall
success tree, but these all map to the same mechanism that performs these functions. It is also true that several
mechanisms could map to the same function. There is in general a many-to-many mapping from a GFT to the
corresponding system design.

One of the major reasons for developing a functional model is to determine what the system must do (its
functions), with some independence from how the system will perform the function. This enables problems to be
encapsulated, to enable trade studies of different methods and designs to perform the function. Within a GFT, the
more precise definition of functions implies that the input and output state variables should be the same for all
design options to perofrm the function. To enable a trade study for the function, the GFT modeler needs to consider
the proper level of granularity for the function. As an example, consider a trade study of the potential use of reaction
wheels or thrusters to perform spacecraft attitude control, that is, to provide rotational force. To set up the trade
study, the function boundaries should be set with common inputs and outputs for both alternatives as much as
possible. In this case, the output state vector is the rotational force vector, and a common input state vector, which
would include electrical power for the actuator (whether reaction wheels or thruster valves), and the desired amount
of rotational correction. In the case of thrusters, this would command a certain amount of thrusting, and for reaction
wheels, a command to accelerate or decelerate the relevant wheels. Assuming that propellant is necessary for
spacecraft trajectory maneuvers already, propellant would be necessary as an input for thrusters. The trade study
would, among other things, have to determine if this would need to be added as an input to the rotation function.

H. Fault Management Goals / Requirements
Fault management comes into play in the GFT by the identification of off-nominal goals to be achieved should a

nominal goal not be achieved. For every nominal goal, there is the possibility that the goal is not achieved, which
simply means that the values of the state variables of the entity being controlled (i.e. the output state vector of the
function), either are deviating, or are predicted to deviate out of range. Deviation out of nominal range is a failure,
whereas prediction that deviation out of nominal range will occur in the future, based on a degradation occurring
now, is a prognostication. If the systems engineer decides that nothing will be done if that state variable(s) goes out
of range, then there is no off-nominal requirement at that location. If something will be done based on an estimate or
measurement of that state variable(s), then an off-nominal goal is placed at that “monitored state variable” location.

The off-nominal goal can be of two distinct types insofar as the GFT is concerned. The first type is that the goal
of the fault management is to maintain the current set of nominal goals for the system, such as a message that simply
notifies a system operator that a problem exists, without actually taking any action to change the system’s nominal
functions. Another example is when a failure is produced from an external cause, and the system is able to fix the
failure effects without having to change system goals. Because the failure was caused from an external event such as
wind or cosmic rays that produce Single Event Upsets that flip software bits, if the system can detect and respond
appropriately the mission may be able to continue. Examples of appropriate responses would be temporary
activation of a different control algorithm to maintain control, or use of error detection and correction (EDAC) code
to flip changed bits back to their correct state.

The second type is when the off-nominal action changes the system’s nominal functions. In general, these
actions produce goals and functions that differ from the nominal GFT, because by definition, new, off-nominal
functions are activated. Once activated, these new functions produce new required system behaviors, and these mean
that there is a new and different GFT to represent that new set of required goals and functions. In general, because
the off-nominal functions use parts of the existing nominal functions (and corresponding designs), parts of the
existing nominal GFT are used in the new off-nominal GFT. Thus the new GFT is an amalgamation of parts of the
old GFT, typically re-arranged in some manner, and with some new goals and functions that enable this re-

American Institute of Aeronautics and Astronautics

10

arrangement. Different systems may choose to create system-specific categories of off-nominal goals, but if they are
anything other than notifications, they will lead to the creation of new trees or sub-trees to address the off-nominal
functions.

This re-arrangement of the GFT for systems engineering purposes can be seen in another, operational light. In
the development of highly autonomous systems and of mission planners, artificial intelligence (AI) techniques are
frequently used. These techniques typically include hierarchical tree structures to represent the implementation of
system goals, which are searched and re-arranged by the AI system as the intentions for the system change as it
reacts to novel circumstances. The GFT can therefore be seen as the equivalent of the AI planning model of system
goal priorities, when translated into an operational, autonomous environment. A future research topic is how to
relate the systems engineering GFT to the autonomous goal structures such as JPL’s Mission Data System, briefly
mentioned above in section II.

I. Tree Structure and Causality
Hierarchical tree structures highlight the causal independence of mutually supporting functions. Returning to the

structural control described in section B above, in which structures are typically controlled in a passive manner, we
find that structural integrity for a launch vehicle is controlled both passively and actively. For example, in a launch
vehicle GFT, one finds that to maintain vehicle attitude (rotational) control, we must maintain structural integrity.
However, it is also true that if we lose attitude control of the vehicle, we lose structural integrity. For one branch of
the tree, maintaining vehicle attitude control is a top function, and a supporting function is to maintain structural
integrity. However in other branches of the tree, maintaining structural integrity is the high level function, and
maintaining vehicle attitude control is a supporting function! This is not a mistake; these alternative situations
represent two distinct causal paths of mutually supporting functions (another example, we need power to perform
computing, but we must compute properly to control power). In the GFT path where maintaining vehicle attitude
control is the high level function and structural integrity is supporting, a failure of structural integrity will cause loss
of vehicle control, but not the other way around. In the other branch, where maintaining structural integrity is the top
function and vehicle attitude control supports it, a failure of vehicle attitude control will create loss of structural
integrity (that is, the vehicle will break up), but not vice versa. Both paths together capture all possibilities.

This example shows an important feature of the GFT: its ability to be used for physically accurate analysis. In
the case described in the previous paragraph, one sees that introducing failures into the system will lead to an
accurate analysis of the potential outcomes in terms of how they physically and logically propagate to compromise
system goals. Although this analysis is accurate for what it does model, it does not model all possible failure
behaviors, as will be described below.

V. Analyses Using the GFT
The GFT enables a variety of assessments and analyses of the system for both nominal and off-nominal

purposes.

A. Nominal Requirement and Function Completeness and Traceability
The GFT is inherently a top-down hierarchical representation of both goals and functions, with precise

relationships between them. Both goals and functions are represented in a hierarchical manner, and the state variable
methodology provides great value in ensuring that as the GFT is constructed from the top down, that the resulting
goals and functions trace correctly and completely. Functional and goal traceability is guaranteed within the tree
structure, to the extent that the modelers properly and precisely model those relationships as guided by the state
variable elucidation of the physics to be controlled. Since goals are requirements, requirements traceability is
guaranteed by definition. If requirements were developed separately from the GFT, the GFT can be developed as an
independent check of requirements completeness and traceability. If the GFT was the mechanism for requirements
development, the structure of the GFT model and the state variable methodology provide strong evidence of
completeness. For functions, the same logic applies as it does for goals / requirements to assess function
completeness and traceability.

However, this happy story is complicated by the fact that a functional decomposition is not the same as an
institutional decomposition. Because requirements and functions need to be specified at component and institutional
boundaries, the functional representation of the GFT must be mapped to component (design) and institutional
hierarchy representations. Determining the proper method to achieve this is future research.

American Institute of Aeronautics and Astronautics

11

B. Failure Detection Coverage
One of the major questions of FM design is the coverage of failure detections. Historically, to the extent this has

been addressed in FM design analyses, coverage has been assessed from the bottom up. In this bottom-up
methodology, design models are built that show the location and relationship of all components (at a relevant level
of component decomposition), including sensors, and also including the failure modes of the modeled components.
Diagnostic models using directed graphs are typical examples; one is described in Kurtoglu et al. (2008).10 Failure
detection coverage is assessed and measured as the number and identity of the failure modes that can be potentially
detected by a failure detection algorithm that uses a given set of sensors. There are a number of uses for this sort of
coverage assessment, but one thing that it cannot directly do is to determine whether the failure modes being
detected are important in terms of the system’s goals. Failure detection coverage is perhaps better assessed by
whether failure detections “cover”, or detect all possible failures that can lead to compromise of critical system
goals. In current typical methodologies, failure modes are assigned criticality values that appear in the failure modes,
effects, and criticality analysis (FMECA) matrix. These criticality values represent the result of an informal analysis
of the propagation of the failure effects to compromise critical goals such as human safety and success. Thus it is in
theory possible with a complete model of failure modes with assigned criticalities to indirectly assess coverage of
system goals. Unfortunately, by the time all of these failure modes are known and modeled, if any problems are
found it is very far along in the design process, making any fixes quite expensive or impossible.

Another issue is that for any complex system, it is impossible in practice to determine all possible ways in which
the system to fail. History shows that many system failures that have actually occurred were for a variety of reasons
not considered or ruled out as extremely improbable. In a few cases, the failure mechanisms were not identified. In
others, these failure mechanisms were considered, but judged not credible because pre-predicted probabilities of
failure indicated that the probability of failure occurrence was trivially small, such as cases of multiple coincident
failures. However the problems nonetheless occurred because the design or manufacturing assumptions behind the
probabilistic estimate were violated. In yet other cases, the failure mechanism was understood, but the consequences
underestimated or not understood at all. Any approach that relies purely on identification of failure modes, whether
from the top down or bottom up, is doomed to failure (pun intended) due to the lack of imagination of the analysts
and/or the vagaries of how seemingly trivial problems can slip through the nets of testing and analysis and lead to
system failure.

A better approach is enabled by the GFT. Failure detection coverage can be directly assessed by determining
whether there are any paths from the bottom to the top of the tree that do not have at least one failure detection goal
(and hence a corresponding detection response function) along that path. A quick visual scan, or for large models,
automated searches can quickly discover any “uncovered paths.”

One nuance to this rather simple approach is when there exist several locations in the GFT where the same state
variables exist and are monitored, but with potentially different success (and hence failure) ranges. As described in
IV.D above, for a launch vehicle, control of acceleration state variables is required to prevent breaking the launcher,
the crew capsule, and the crew. These state variables each have different ranges, and hence a failure detection to
monitor for vehicle acceleration could have thresholds based on any of these three possibilities. Only one of them is
the most stringent range. If this most-stringent range is not selected, then it is possible that a system failure can
occur without detection because an incorrect, looser range was selected. As an example, if the most stringent range
is to protect the astronauts, but the acceleration detection instead uses a range that is valid for protecting breakage of
the launch vehicle, then the safety of the astronauts can be put at risk without the acceleration detection occurring.

C. Failure Scenario Generation
Since the GFT is a causally correct representation, it can be used to identify many, though not all failure

scenarios. We define a failure scenario to be a unique combination of failure effects, failure responses, and system
configuration and/or time in which the failure occurs. Within the GFT, the failure effects are represented by the
changes to the values of state variables from the bottom of the tree as functions perform incorrectly along the failure
effect path (which corresponds to the nominal path) up the tree. If the failure can be contained, it will be stopped at a
certain location along this path. Otherwise it will continue to proceed up to the top of the tree, compromising the
system’s primary goal(s). Every path up the tree corresponds to a unique set of failure effects. Potentially different
responses are shown by the existence of one or more failure detections (which then link to different responses) along
that path. Different mission times and configurations are represented by the existence of several sub-trees in the
GFT, each sub-tree representing a unique system configuration and/or time (these create different tree structures). In
short, each path up the tree is directly tied to a set of failure scenarios.

Because each path of the tree shows the state variables being affected by the failure effects, it gives important
clues about the inherent physics and hence to the timing of the spread of failure effects. Different kinds of physics

American Institute of Aeronautics and Astronautics

12

imply different characteristic times by which the physics propagates. For example, radio signals propagate near the
speed of light, while fluid flows propagate much more slowly. Failure effects propagate at the rate dictated by the
physics of that propagation. These timing effects are of relevance to analyzing the effectiveness of potential failure
responses, as these must operate more quickly than the spread of the failure effects.

However, these GFT-defined scenarios do not define the total set of failure scenarios. This is because a GFT, as
a success-space representation, can only represent the system’s nominal causal connectivity. If a failure creates new
connections between functionss, new failure paths that do not follow the system’s nominal paths, then the GFT
cannot and does not represent these new paths. It is in fact true that some failures create new failure paths, which in
the GFT represent “sneak paths” from one part of the tree to another independent set of branches. Examples of these
include electrical short circuits and breaks of the physical structure from fires and explosions.

The implication of this is that fault trees and success trees for a given system are NOT complete logical
complements of each other, though parts of the respective trees are. Both success trees and fault trees provide value
for systems engineers and system health management engineers, but for different kinds of analyses.

VI. Conclusion
The GFT model, with its rigorous state variable-based methodology, extends the concept and methodology of the

standard systems engineering functional decomposition, and makes it physically and causally valid. This enables it
to be used for a variety of analytical uses and significantly improves the quality, comprehensiveness, and traceability
of both nominal and off-nominal requirements generation and maintenance. This utility has been demonstrated on
the NASA Space Launch System Program, providing significant value in the design and assessment of Fault
Management for this human-rated launch vehicle. The model and associated methodology enable direct analysis of
FM detection coverage of various combinations of abort triggers, the mapping of various failure detections to failure
scenarios, and enabled early assessments of expected failure response effectiveness.

Acknowledgments
Much of this work was performed on the NASA Space Launch System Program, contract NNM12AA41C. The

authors thanks Jonathan Breckenridge, Ben Hager, Bradley Biehn and Michael D. Watson at Marshall Space Flight
Center, Christian Neukom and Eric Barszcz at Ames Research Center, and Bill Maul from Glenn Research Center
for their many insights in the initial development of the SLS Goal Tree / Success Tree and the state variable
methodology. The author also thanks John C. Day, Bob Rasmussen, and Dan Dvorak at the California Institute of
Technology’s Jet Propulsion Laboratory for many fruitful discussions of fault management, success trees, and their
relationships to the operational success/planning trees under development with the Mission Data System, which is
the closest operational analog to the GFT approach to systems engineering described in this paper.

References

1 Johnson, S.B. et. al., eds. System Health Management: with Aerospace Applications. John Wiley & Sons, Chichester,

United Kingdom, 2011. Johnson, Stephen B., and John C. Day, “System Health Management Theory and Design Strategies,” for
AIAA Infotech@Aerospace Conference 2011, 29-31 March 2011, St. Louis, Missouri. AIAA paper 977233. Johnson, S. B., and
J. C. Day, “Conceptual Framework for a Fault Management Design Methodology,” AIAA Infotech Conference, Atlanta, Georgia,
April 2010; AIAA paper 227006.

2 Van Lamsweerde, A. Requirements Engineering: From System Goals to UML Models to Software Specifications. John
Wiley & Sons, Chichester, UK, 2009.

3 Nilsson, N.J. Problem Solving Methods in Artificial Intelligence. McGraw-Hill, New York, 1971.
4 Dardenne, A., Ficklas, S., and van Lamsweerde, A. ‘Goal-Directed Concept Acquisition in Requirements Elicitation,”

Proceedings of IWSSD-6 – 6th International Workshop on Software Specification and Design, Como, 1991, 14-21.
5 Mylapoulos, J., Chung, L., and Nixon, B. ‘Representing and Using Nonfunctional Requirements: A Process-Oriented

Approach’, IEEE Transactions on Software Engineering, Vol 18, No. 6, June 1992, 483-497.
6 Kim, I.S., Modarres, M. Application of Goal Tree-Success Tree Model as the Knowledge-Base of Operator Advisory

Systems. Chemical Process Systems Engineering Laboratory, Department of Chemical and Nuclear Engineering, University of
Maryland. Submitted to Nuclear Engineering and Design Journal, October 1986.

7 Modarres, M., and Cheon, S.W. “Function-Centered Modeling of Engineering Systems using Goal Tree-Success Tree
Technique and Functional Primitives,” Reliability and Safety Engineering 64, 1999, 181-200.

American Institute of Aeronautics and Astronautics

13

8 Ingham, M., Rasmussen, R., Bennett, M., and Moncada, A., “Engineering Complex Embedded Systems with State Analysis

and the Mission Data System”, AIAA Journal of Aerospace Computing, Information and Communication, Vol. 2, No. 12, Dec.
2005, pp. 507-536.

9 NASA Fault Management Handbook, NASA-HBK-1002, Draft 2, April 2, 2012.
10 Kurtoglu, T., Johnson, S. B., Barszcz, E., Johnson. J., and Robinson, P.I., “Integrating System Health Management into

Early Design of Aerospace Systems using Functional Fault Analysis,” 2008 International Conference on Prognostics and Health
Management, Denver, Colorado, October 2008.

Goal-Function Tree (GFT) Modeling for
Systems Engineering and Fault

Management

Dr. Stephen B. Johnson
sjohns22@uccs.edu and stephen.b.johnson@nasa.gov

Jacobs ESSSA Group, and Dependable System Technologies LLC
NASA Marshall Space Flight Center

EV43 Integrated System Health Management and Automation Branch
and

Mechanical & Aerospace Engineering Department
University of Colorado, Colorado Springs

19 August 2013
AIAA Infotech@Aerospace

Boston, Massachusetts

19 August 2013 Dependable System Technologies, LLC

What is a GFT?

A top-down hierarchical decomposition of system goals and
functions --- hierarchies are models of “intention”
 Arranged by major system phase/configuration,
 Defines the functions the system must perform and goals the system must

achieve for the system to successfully perform its mission/objectives
 Relationship between goals and functions defined through rigorous use of

state variables

The GFT extends the classical function decomposition through the
use of state variables to explicitly contain goals, and makes the
GFT causally, physically correct

 It is based on function, not design, though inherently you must
make some design assumptions
 Example: Goal is to place humans into trans-lunar trajectory
 Two possible solutions:

 Star Trek-style quantum transporter
 Space Launch System-style chemical rocket

 These two solutions yield very different function decompositions, SLS
has stages, the transporter does not, etc.

2

19 August 2013 Dependable System Technologies, LLC

State Variable Methodology

State variables are defined as inputs and
outputs to functions: y=f(x)
 x = inputs to the functions f
 f transforms the inputs into the outputs y

Goals = Requirements = define intended
range of the output state variables y

Failure = state (value) of output state
variable y is out of intended range

State variables enforce strong connection
of the functional decomposition to the
system’s physical laws and causation

The state variables are the connection
between function and design—exist in both
function and design representations

3

Function f

→

≤ ≤ G

19 August 2013 Dependable System Technologies, LLC

Off-Nominal Goals
 For every nominal goal there is the possibility of an off-nominal goal,

which is activated if the nominal goal is not achieved
 Value (state) of state vector y goes out of intended range

 If a new off-nominal goal is identified, this is an operational Fault
Management goal, with associated off-nominal functions to detect or
predict failure, and respond

4

Nominal
Function f

→
	 ≤ ≤ G ≥ , or ≥ ̅

Off-Nominal
Function ̅

→

19 August 2013 Dependable System Technologies, LLC

Elaboration vs. Decomposition

Decomposition merely re-arranges a state vector’s variables into
several state vectors containing the same variables
 No function exists

Elaboration creates new variables via a function

5

Generate Thrust

= { , , , , , , , , }F

= { , , }

= { , , }

Elaboration Decomposition

= { , , }

19 August 2013 Dependable System Technologies, LLC

Local Motivation for the GFT

 NASA Space Launch System – Fault Management Analytical Issues

 Does SLS detect failures properly in all SLS-caused failure scenarios that
threaten the crew? [i.e.: failure detection coverage and failure scenario
definition]

 What is the relationship of crew-threatening behaviors to each other, to
system goals, and to potential detections?

 What is the optimal distribution of FM detections and responses?

 For a complex system, it is impossible to determine all possible ways the
system can go wrong, but we can and should be able to specify completely
what must go “right”!

 Need to base SHM/FM design in part on protecting the functions needed to succeed,
regardless of how they might fail

 Early in a program, detailed design and related FMEAs do not exist, but
need to start FM early in design phase

 This must be a top-down analysis based on goals and intended functions, not just on
design (SLS is only partly heritage)

6

19 August 2013 Dependable System Technologies, LLC

Modeling for Logic and Causality in a
Control Loop

Sense Decide Respond

Decide

Sense

Respond

Control
Control

We require the GFT to be causally correct, not merely logically correct.

The State Variable methodology FORCES the model to be causally correct,
and hence it can be used for physical analyses of many kinds!!

In both constructions, the basic logic and related
probabilities of success are correct, because S-D-
R all must succeed for Control to succeed.
However, only the serial model is physically-
causally correct, because if S fails, then D and R
will both fail. S, D, and R, are NOT logically
independent!

Typical, but wrong!

Physically
and logically
correct;
causation is
correctly
modeled.

19 August 2013 Dependable System Technologies, LLC

Ascent/Abort GFT Example

Perform
BS

Ascent

Deliver to
Destination

Keep
crew
alive

Control
Trajectory

Control
Attitude

keep
capsule
intact

limit
forces

on
crew

provide
life

support

control
structural

temp

control
structural

loads

provide
desired
Pos/Vel

Measure
actual

Pos/Vel

Control Error
Between
Desired &

Measured Pos/Vel

X, V

X, V
Crew A P, Cabin T, O2

Capsule A,
Capsule Struc T

Capsule Struc T

Des X
Des V

Meas X
Meas V

X Err
V Err

Capsule A

A, Cabin T, O2, Θdot

Θ

Control Crew
Roll Rate

Abort

Maintain
Struc

Integrity

Nominal
control

Control
Structure
Defects

Control
LV Struc

Loads

Abort

Abort

Control
LV Struc
Temps

Θdot

LV Struc A LV Struc T

Struc Crack
Size, Alloy

Purity

Control
Attitude

Error

Θ Err

Separate
BS-CS

Core Ascent Perform
US Ascent
Mainstage

y = f (x)

x
f

y

Functioning
Crew

reaches
Orbit

X, V, Θdot, A, Struc T, Cabin
T, O2

Ignite
BS

Ignite CS
Engines

A, LV Struc T

X, V, Θdot, A, Struc T, Cabin T, O2
X, V, Θdot, A, Struc T, Cabin T, O2 LV “Ready”, Struc T, Cabin T, O2

Θdot

Abort
Abort = New Goal, with
new functions leading to
new GFTs

Trajectory
Trigger Attitude

Trigger

Θ Err
X Err, V Err

Roll
Trigger

Θdot

19 August 2013 Dependable System Technologies, LLC

GFT Analysis: Nominal Requirements
Generation and Traceability

Every GFT Goal is a system functional requirement.
 A typical functional decomposition is only about functions; the relationship to

their associated requirements is vague.
 The GFT inherently associates goals to requirements.

All requirements are represented in mathematical-physical
language, with constraints placed on state variable ranges.

The state variable methodology ensures correct physical
traceability and connectivity between functional requirements
 Natural language ambiguities make determining traces between natural

language requirements problematic. It is easy to miss or misinterpret proper
traces.

The state variable methodology provides much better evidence of
requirements completeness than typical natural language
requirements.
 The physics and logic being required are directly represented.

9

19 August 2013 Dependable System Technologies, LLC

Nominal Requirements Traceability and
Application Issues

Does a functional decomposition, even using a GFT, create the
“right kind” of traceability needed for systems engineering?

 Issue: requirements must be specified on interfaces between
components and hence on organizations, but how do these relate
to functions and functional requirements as represented in
classical function decompositions and the GFT?

 Implication: function-based trees in general do NOT easily
represent the kind of hierarchy desired, which is the institutional /
component hierarchies in which requirements must be specified
and levied on organizations to build components.

Future research: building the organizational and component
hierarchies and relating these to the GFT.

10

19 August 2013 Dependable System Technologies, LLC

GFT Fault Management Analyses #1

Every unique path up the GFT from bottom to top is a failure
scenario
 Though this does not generate all possible failure scenarios
 GFT paths are only nominal paths, but failures can create new off-nominal

paths, such as structure breakage or electrical short-circuits
 Scenario definition also requires a fault tree, not just a success tree, but this

fault tree must be based on the same state variable methodology as the GFT

Failure detection coverage is determined by identifying all paths
that have at least one failure detection along the path, and
conversely for any non-covered paths
 Nuance: when the same state variable exists in more than one GFT location,

it indicates a different requirement / range constraint levied on the same
state variable: example---acceleration constrained by need to protect the
crew, the crew capsule structure, and the launch vehicle structure

 When this occurs, it is possible that the threshold values set for the failure
detection associated with the state variable can be set to the wrong value; it
needs to be set to the tightest requirement

11

19 August 2013 Dependable System Technologies, LLC

GFT FM Analysis #2

Optimization of failure detection & response based on the
distribution and relationship of failure detections along GFT paths
 At least one failure detection should exist along every GFT path
 When more than one failure detection exists along a GFT path, then there is

redundant detection for a given scenario. These could indicate excess
redundancy, and this should be assessed. It could be that the detections are
needed to cover other scenarios.

 Failure response effectiveness is based on the race condition of the FM
response speed compared to the failure effect propagation rate. The latter
are related to the types of physics indicated by the state variables along the
GFT paths (note not all failure paths exist in the GFT, see previous page).
Examples: electrical state variables indicate electron flows with characteristic
speeds; these differ from pressure and temperature state variables and their
characteristic times for fluid flows.

 Some paths have failure probabilities higher than other paths. For these it is
appropriate to have detections “lower down” in the GFT to make more
response time available before compromise of high-level goals.

 Identify the “sneak paths” created by off-nominal paths.
12

19 August 2013 Dependable System Technologies, LLC

Conclusion

GFTs extend the classical “functional decomposition” to include
goals (requirements) and state variables

Requirements / goals are translated from natural language into
constraints on the range of controlled state variables, which in turn
are the outputs of functions

The rigor applied through state variables ensures the GFT is
physically and causally valid, and hence can be used for a variety of
physical analyses for both nominal and off-nominal purposes
 Requirement and function traceability and completeness
 Failure detection coverage and optimization
 Failure scenario generation

The GFT has been successfully applied to the NASA SLS Program,
and used for off-nominal analysis of abort conditions and
detections, using SysML as the modeling language

13

