Implementation of a Goal-Based Systems Engineering
Process Using the Systems Modeling Language (SysML)

Jonathan T. Breckenridge'
Jacobs — ESSSA Group / Ducommun Incorporated, Miltec Systems, MSFC, Huntsville, AL, 35763, USA

and

Dr. Stephen B. Johnson'
Dependable System Technologies LLC / Jacobs — ESSSA Group, MSFC, Larkspur, CO, 80118, USA

Abstract: This paper describes the core framework used to implement a Goal-Function Tree
(GFT) based systems engineering process using the Systems Modeling Language. It defines a set
of principles built upon by the theoretical approach described in the InfoTech 2013 ISHM paper
titled “Goal-Function Tree Modeling for Systems Engineering and Fault Management” presented
by Dr. Stephen B. Johnson. Using the SysML language, the principles in this paper describe the
expansion of the SysML language as a baseline in order to: hierarchically describe a system,
describe that system functionally within success space, and allocate detection mechanisms to
success functions for system protection.

I. Introduction

As described in the Infotech@Aerospace 2013 paper “Goal-Function Tree Modeling for Systems Engineering
and Fault Management” by Stephen B. Johnson, a Goal-Function Tree (GFT) is defined as a top-down functional
decomposition of system goals and functions, arranged by major system phase/configuration; to define what
functions the system must perform for the system to successfully perform its mission/objectives. The GFT utilizes a
hierarchical decomposition of system intentions, or “Goals”, within success space, the identification of the system’s
State Variables at each level of the tree, and a structure inherently related to the system’s physics and real behaviors.
The system’s Goals are hierarchically decomposed in success space to show the relationship between the differing
levels of the tree. This relates the fact that for one level of Goals to be successful, all hierarchically decomposed
Goals of a lower level must first be successful. For a Goal succeed, that Goal’s State Variables must be held within a
specified range. State Variables are defined as inputs and outputs to a system’s Functions as in the mathematical
expression y=f(x) where x is the input State Variable to Function f, and y is the State Variable output from f. This
strict correlation between Goals, State Variables, and Functions enforces a strong connection of the functional
decomposition to the system’s physical laws and causation. The State Variables are the connection between
Function and design as they exist in both function space and design space. Additionally due to the fact that every
Goal inherently describes the nominal range for its allocated State Variables, an off-nominal Goal can be assigned to
require an action the system must take if the nominal range is violated (i.e. For every nominal Goal, there is a
potential off-nominal Goal). The GFT is an important new representation within the emerging paradigm of Model-
Based Systems Engineering (MBSE), as it enables representation of the designer’s intention for a system within a
rigorous state-based, goal-based methodology. The physical and logical rigor of the GFT enables it to be used for a
variety of purposes, including robust system planning, analysis of failure coverage, and generation of failure
scenarios.

The GFT approach was developed on the National Aeronautics and Space Administration’s (NASA) Space
Launch System Program (SLSP). Some of the modeling constructs developed and described below are specifically
associated with the SLSP, but the concepts are general in nature. This paper will describe the concepts involved in
developing a GFT using SysML as a baseline and show all of the additions that are needed to be made to standard
SysML in order to create a GFT.

' Assistant Fault Management Analysis Lead, Mission and Fault Management, Space Launch System Program,
Marshall Space Flight Center (MSFC), AIAA Member.
" Fault Management Analysis Lead, Mission and Fault Management, Space Launch System Program, Marshall
Space Flight Center (MSFC), AIAA Member.
1
American Institute of Aeronautics and Astronautics

I1. GFT Development Process

Using all of the diagrams, constructs, and construct connections described in Section 111, this section describes a
process for creating the GFT in its entirety. This process was developed using Enterprise Architect (EA), a modeling
tool developed by Sparx Systems, with the SysML 1.2 module installed. Although all aspects of this process are
explicit in the use of EA, there is nothing keeping it from being used with other SysML tools such as MagicDraw. In
addition, the examples and explanations that follow are specific to NASA launch vehicle design and have a much
greater emphasis on things like “Mission” and “Crew”. Though “Mission Success” and “Crew Safety” are specific
to human-rated space vehicle design, the ideas that they convey can be used in many systems. For example a
Dishwasher has a “Mission” to clean dishes while the “Crew” could refer to the person using the dishwasher or even
the dishes themselves.

A. GFT Model Process

The GFT Model Process is recursive; it continually repeats itself until the desired level of abstraction is reached
for the system being modeled. The process description is divided into two main parts: the Nominal GFT Process and
the Off-Nominal GFT Process.

1. Nominal GFT Process
The Nominal GFT Process is distributed across four different modeling views; each view has its own set of
diagrams, which are described in detail in Section Il1l.A. Additionally there are distinct constructs and construct
connections that are used within each modeling view. These are described in Sections I11.B and Section I11.C,
respectively. Figure 1 below shows the process graphically.

After Loop is completed once
F — Connect Goals with
utios * Decompositonor
{Function Process) ﬁ Create Goal % Elaboration Line

o™
= : v
Determine nextlevel Determine (;oal
G:Jncﬁon Breakdown | or'= el *:m:‘ | Goal Breakdown View sn';v‘mb : 7 d,«ﬂo %

Create Functionand
connect all objects

clof
ide st o
5 ubd,\\ﬂ wm\e‘ed

L)
KM\BI: \'oog:(,e\ Create Stats

Assign State
Variable/Vector Object
to Goal

Variable(s) Type

Create State Determine Goals
VectorType State Variable{s)

Create State
Variable Object
Create State
Vector Object

Deploy Elaborated Goals
and State Variable/Vector
Objects to Diagram

l\X

Create State
Variable(s) Type
Create State
VectorType

Create Function

Package

Assign State
Variable/Vector Object
to Goal

Create State
Variable Object
Create State
Vector Object

Figure 1: Nominal GFT Development Process

The Nominal GFT Process starts with the creation of a Goal in the Goal Breakdown View. The first Goal in the
GFT will be a high level goal that represents the system's overall purpose. Goal diagrams, constructs, and construct
connections are described in Section I11.A.1, Section 111.B.1, and 111.C.1, respectively. Once the top level Goal is
created the modeler must determine the Goal’s State Variable(s). This is done outside of the model with input from
subject matter experts to ensure that all of the State Variables that are needed for the success of the Goal are
captured. Once the State Variables have been determined, they are created within the model library as a variable
type and then grouped into a State Vector. State Variable and Vector diagrams, constructs, and construct
connections for use within the model library; these are described in Section I11.A.4, Section 111.B.3, and Section

2
American Institute of Aeronautics and Astronautics

111.C.4, respectively. Now that the Variable types are in the model they can be classified as objects in the State
Vector Breakdown View for the specific use by the Goal. State Variable and Vector diagrams, construct, and
construct connections, for use within the State Vector Breakdown View is described in Section I111.A.3, Section
111.B.3, and Section 111.C.3, respectively. With the Goal, and Variable/Vector Object existing within the model they
can be connected to the associated Goal. The Variable/Vector Object is “Deployed” onto the Goal Diagram and
connected to the Goal. Deployed is the term used to describe the act of taking a construct from one part or view of
the model (usually the Model Library) and placing it onto a diagram in another part of the model.

With a Goal and its associated Variables/\Vectors being modeled, the next level of the tree can be determined
and created. As Goals are created further down the tree, they must be connected to higher-level Goals using a
Decomposition or an Elaboration. If a set of Variables associated with a Goal can be logically subdivided without
introducing any new State Variables, then a Decomposition is used. When using a Decomposition, no new State
Variables are created within the Model Library or State Vector Breakdown View since they already exist within the
model. Therefore the decomposed Goal is linked to a pre-existing State Vector/Variable(s) that is/are deployed to
the Goal Diagram from State Vector Breakdown View. The process of breaking down the Goals and their higher
level vectors into smaller Vectors and Variables continues until new Variables are needed to continue describing the
system. At this point an Elaboration is needed. This in turn implies the need for a Function. Function diagrams,
constructs, and construct connections are described in Section I11.A.2, Section 111.B.2, and Section I11.C.2,
respectively. Once an Elaboration connection is established, a Function must accompany it in order to create the new
Variables. This follows the equation y=f(x) where y is the variable attached to the higher level goal, x is the variable
attached to the lower level goal, and f is the function that creates y from x.

The modeler must define the Variables attached to the elaborated Goal outside of the model with inputs from
subject matter experts and then incorporate them into the Model Library as Types and the State Vector Breakdown
view as Objects. Then the State Variable/Vector Object can be deployed onto the Goal Diagram. However, with the
existence of a Function, a Function Package must be created within the Function Breakdown View, deployed to the
Goal Breakdown View, and connected as described in Section I11.B.2 and Section 111.C.2. With the creation of the
Function Package, a Function Diagram can be manipulated within the model. This is where the details of the
Elaboration of one Variable into another are maintained. With the process being cyclical, it repeats the
decomposition process until a new Function is needed. This continues until the system is described to the lowest
level needed for the work being done.

2. Off-Nominal GFT Process
Once the system is defined using the nominal GFT process, it can be analyzed for placement of Off-Nominal
Functions and Goals. Figure 2 below shows this process in conjunction with the nominal process from Figure 1.

Function Breakdown View

Connect Abort Condition to Goal Breakdown View
Input State Variable(s), Daterrrlnell
Output State Variable(s), gfﬂ:omlnal
and Abort Condition oal is e
Goal (Abort Condifion)
After L] mﬂpﬂe ed cw:e -

Connect Abort Condition

to Nominal Goal with
Aggregation

Crezte Off-Nominal
Function (Abort
Trigger)

—

VI

Figure 2: Off-Nominal GFT Development Process

3
American Institute of Aeronautics and Astronautics

When determining if an Off-Nominal Goal is needed, the modeler must take into account the State Variables that
the Off-Nominal Function will monitor. Off-Nominal Goals can exist without an Off-Nominal Function, but if this
occurs it indicates that there is no monitoring or detection mechanism to determine if the State Variable(s) is outside
of its nominal range. This is known as a “Non-Monitored Condition”. Off-Nominal Goals are created in the same
way as Nominal Goals, but are connected to other Goals using an Aggregation. Additionally, an Off-Nominal Goal
is usually created at the same place that an Elaboration exists. With the Off-Nominal Goal created in the Goal
Breakdown View, the Off-Nominal Function is then added to the associated Function Breakdown View that was
created by the original nominal Elaboration. This Off-Nominal Function takes the y variables in the equation y=f(x)
as inputs, and outputs a notification variable to be used for analysis once the model is completed. Usually (the
exception being Caution and Warning, which is merely a notification), the Off-Nominal Function activates a system
response of some kind, which for Goal Changes must be modeled as a new GFT, because it represents a new set of
system Goals, Functions, and activities.

I11. SysML Baseline

Systems Modeling Language (SysML) is commonly used for systems engineering applications and supports the
specification, analysis, design, and verification and validation of diverse systems. The language uses a specific set of
diagrams and rules to visually describe the system being modeled. In the development of the GFT only a select few
SysML diagram types and rules were used. When the limitations of the baseline SysML language were reached,
additions were made to the language through the use of the stereotype function within the language. Additionally, a
strict set of conventions were developed and implemented to ensure standardized application of the theoretical
principles explained in detail within the AIAA InfoTech@Aerospace 2013 conference paper “Goal-Function Tree
Modeling for Systems Engineering and Fault Management” presented by Dr. Stephen B. Johnson.

A. GFT Modeling Views

The GFT uses three types SysML Baseline diagrams: Requirement Diagrams, Activity Diagrams, and Block
Diagrams. The SysML Requirement Diagram is known as the Goal Diagram and is used to graphically represent the
breakdown of the systems Goals. These diagrams make up the Goal Breakdown View of the model which is
described in Section II1.LA.1. The SysML Activity Diagram is used in two ways. First, it shows the detailed
information between goals and functions in a Function Diagram which make up the Function Breakdown View of
the model described in Section 111.A.2. Second, it describes the interrelations between the State Variables and State
vector objects which makeup the State Vector Breakdown View described in Section 111.A.3. The SysML Block
Diagram is used to maintain and create the State Variable and State Vector types that are maintained and created
within the Model Library described in Section I11.A.3.

The GFT process starts with the definition of four different modeling views: the Goal Breakdown View, the
Functional Breakdown View, the State Vector Breakdown View, and the Model Library. Each of these views is an
extrapolation of the construct and construct connection sections described below. Finally, a Navigation View
enables quick navigation through the system model and its various diagrams, and enables global review of the model
structure.

1. The Goal Breakdown View

The Goal Breakdown View contains all of the System Goals and Goal Diagrams, and can be accessed from the
project browser. The Goal Breakdown View is broken up into different packages in order to subdivide the modeling
view into smaller, more manageable diagrams. In the SLS Project implementation, these packages specific to SLS
and are referred to as: the Top Level Goal Breakdown Package, the Mission Success Goal Breakdown Package, the
Crew Safety Goal Breakdown Package, and the Abort Package. The Top Level Goal Breakdown Package holds the
top level of the tree where most of the Goals are Achievement Goals. These Achievement Goals are decomposed to
a level where the system’s phases and modes of operations become logically apparent. In the case of the Launch
Vehicle example, these are the vehicle mission phases, whereas for a dishwasher it would consist of the dishwasher
operating modes such as defining the wash options, loading and unloading modes, and the wash and rinse cycles
themselves. Once the system is decomposed into its operational phases a package is created for each within the
Mission Success Goal Breakdown Package. Individualizing the operational phases within the Mission Success Goal
Breakdown Package is done so that differing teams can work on the different mission phases independently of each
other. It also compartmentalizes the system in a functional way so that different nominal ranges can be assigned to
the same Goals and Variables/VVectors across operational phases. Next, the Crew Safety Goal Breakdown Package,
which is very specific to launch vehicles, will hold the goals that are unique to keeping the crew safe and not to the

4
American Institute of Aeronautics and Astronautics

attainment of nominal orbit (that is, mission success). For example, axial roll rate must not only be controlled for
launch vehicle structural reasons, but also for crew safety reasons. Of the two limits, the crew safety limit will
typically be reached first due to the fact that the crew will lose the ability to perform their mission adequately due to
axial roll rate before it causes a structural failure. The Abort Package is used to maintain all of the Abort Condition
Goals, for analytical reasons. Additionally, it is inherently true that an abort is not done in order to successfully
complete a mission, but rather for the sole purpose of protecting the crew.

Figure 3 shows an example of a Goal Diagram in the Goal Breakdown View. It shows the breakdown of one of
the top level goals in the SLSP GFT developed for NASA. This section of the model starts with the “Deliver Booster
CS to CS Separation Point”, which is the first phase of the launch vehicle ascent mission. To successfully complete
this goal the vehicle must “Control Trajectory” AND “Maintain Structural Integrity”. Without both of those goals
being successful there is no way to successfully complete the higher level goal. Additionally, each of the goals at the
second level are broken down into the goals that must be successful for the level two goals to be successful. The
diagram also shows the State Variables that must be maintained within a particular range for each of the goals to be
successful and the Function Packages that describe the Elaboration of the defined State Variables into new State
Variables. State Variables, Function Packages, and Elaborations are defined in later sections of this paper.

5
American Institute of Aeronautics and Astronautics

(€"vlll weibeiq woy)

«[e09:uoneIoge|I»

«oj”abuey 8y sauyea»

«eo9:uonebaibhy»

«|eo9:uonsodwodsg»

«eo9:uonsodwodag»

«|eOD:UONRIOqR|T»

«|eo9:uonsodwodsg»

«|eo9:uonsodwodag»

(€'v'lIl weibelq wouy)

- S

«[e0D:uoNeIOqe|I»

(€'v'Ill weibeiq wouy)

«|eo9:uonebaibby»

ay Jo youeiq Alubajul feimonns

10} pauyap Aja1a|dwod aq 0}
194 aney suonoung pue siopaA aeIS
HHOM QHVMHO4

«eo9:uoneioqe|3» | |

«eoo:uonebaibhy»

« Jo"uoneloqe|3 sauyag»

«[e09:uonsodwosag»

N (2'vIl weibeiq woy)

Aajes abuey +
OBNO +
Kio1ale1] 01592104 31U UIAUOD +

1ul0d uoneredss Jesoog

0} $O-1915008 J2A1180

uonsodwodaq (g0 .

— (K10103 ey [011U0D) T weibeig

apaiql oy

0T :UOKIOA

TVl weibeiq :abeyoed

a|dwex3 umopjealg (209 aweN

\ [aidwex3 umopseaig [eo9] T'v'||| weibeiq [abexoed] bas

Example

: Goal Diagram

Figure 3

American Institute of Aeronautics and Astronautics

Nominal Goals in the Goal Breakdown View

To create the diagrams within the Goal Breakdown View, every Goal or SysML Requirement is made composite
(a typical SysML option for blocks). This will create a new SysML Requirements Diagram. Each new diagram will
have three levels, the top level will be the goal that is being made composite, the second level will be the goals that
are being elaborated and/or decomposed from the top level, and the third level will show the next level goals that are
being elaborated and/or decomposed. Nominal and Off-Nominal Goals, Function Packages, and System State
Variables/VVector Objects will be the only constructs to appear on Goal Diagrams. Only the first and second level of
the diagram will show the Function Packages and System State Variables/Vector Objects. Also, only the
connections described in Section 111.C.1 will be applied to the constructs of a Goal Diagram.

Off-Nominal Goals in the Goal Breakdown View

All of the Off-Nominal Goals appear in the Mission Success branch of the GFT, and are described with an
Aggregation connection. However, ONLY Off-Nominal Goals, as described in Section I11.B.1, appear in both the
Mission Success Goal Breakdown Package AND the Abort Package. The Off-Nominal Goals within the Mission
Success Goal Breakdown Package diagrams use the Aggregation connection, while the Off-Nominal Goals within
the Aborts Package diagrams use the Decomposition connections.

2. The Functional Breakdown View

The Function Breakdown View is used to maintain the Function Packages created during the formation of the
Goal Diagrams. These Function Packages are placed within a phase package, and are associated with the systems
operational phases that are maintained within the project browser under the Functional Breakdown View. Each
Function Package will be associated with an Elaborated Goal and describes all of the details of the creation of new
State Variables needed for further Goal Decomposition. The Function Packages, as they appear within the project
browser, will consist of nominal and off-nominal Function Constructs, and Function Construct Connections as
described in Section I11.B.2 and Section 111.C.2, respectively. Additionally, each Function Package will create a
Function Diagram, or SysML Activity Diagram, for the deployment of System Goals, System State
Variables/Vectors, and Nominal/Off-Nominal Functions.

Figure 4 shows an example of a Function Diagram within the Function Breakdown View that is consistent with
the Function Package shown in Figure 3. Just as in Figure 3 this diagram is an example pulled from the SLSP GFT
and shows the Elaboration of Vehicle Thrust, Vehicle Drag, and Vehicle Attitude Control State Variables into the
Vehicle Trajectory State Variables. This diagram shows how the GFT uses the equation y=f(x) by showing that the
Thrust, Drag, and Attitude Variables are inputs ‘x’ in to the Nominal Function ‘f’ to create the output State
Variables ‘y’ shown here as the Trajectory State Variables. More detail about the constructs and construct
connections are defined later in this paper.

7
American Institute of Aeronautics and Astronautics

€Vl weibeiq wouy)

«andup»

(g'vIIl weibeiq woy)

«andup»

(vl weibeiq wouy)

«andup»

«oj abuey sy sauyeg»

«0y abueyayr saulaa»

10193 [eU] 0] $32104 3|9IY3A 148 AUOD
«uonoung»

«oj"abuey "oy Ssuea»

(1w wesbeig woy)

(1wl weibeiq woy)

(1w wesbeig woy)

(€'vlll weiBeiq wouy)

«01D9A~BreIS UoNS0dWodag»

€'Vl weibeig wou)

«indino»

«I0)99 A~ @relS uonsodwodag»

«ndup»

(g'vIlweibeiq woiy)

«ndino»

«0)99\” 9re1S:uonsodwoaag»

«ndup»

«ndup»

Kojes abuey
«13b6111"1I0gy:uonouUN»

&

I

I

I
«az|[eay»

Il weibeiq wouy)

«az|[eay»
1

JBNO
«J1abB11L T10qyiuonauUNg»

\

|BUIWON-HO

«oy~abueyay) saulag»

10d uopesedss Jeis0og
011915009 / SO JanIjad

(T'v' weibeig woy)

apoaiq!

0T

(fioroalel] jonuod) z'v Il weibeiq
a|dwex3 weibeiq uonouny

Joyny
[UOKIAA
:abwjoed
‘aweN

\ [e1dwex3 weibeiq uonound] (10308 fell jonuod) z'v 11l weibeiq [abexoed] 10e

Diagram Example

Function

Figure 4

American Institute of Aeronautics and Astronautics

The Function Package on a Goal Diagram will be linked to a Function Diagram. This Function Diagram will
show the functional relationship between the original Goal linked to the Function Package and the Elaborated Goals
on the Goal Diagram. Therefore, all associated Goals, and their State Variable/VVectors, of the elaboration being
explained on the Function Diagram must be deployed to the Function Diagram. After the Goals are deployed, the
Function can be created and the construct connections defined in Section 111.C.2 can be used to link the lower level
Goal State Variable/Vectors to the Function and the Function to the higher level Goal State Variable/Vectors.

Off-Nominal Functions

When an Off-Nominal Goal is aggregated, the Off-Nominal Goal is also deployed to the Function Diagram. On
the Function Diagram, the Off-Nominal Function is also deployed, and the State Variable/VVector created by the
Nominal Function is then an input to the Off-Nominal Function. This represents the idea that the Off-Nominal
Function monitors the State Variable/Vector for deviations from the nominal range set forth by the System State
Variable/Vector associated with the System Goal. Occasionally, there is a need to subdivide a State Vector into sub
vectors or single variables in order to explain the Goal Elaboration. In this case the construct connections described
in Section 111.C.3 are used. For Off-Nominal Notification Goals, the Off-Nominal Function has an output State
Variable. This State Variable is the notification that a detection is tripped and is associated with an Off-Nominal
Functions.

3. The State Vector Breakdown View

The State Vector Breakdown View of the GFT Model is a repository for the System State Variable and Vector
objects used within the Goal and Function diagrams. The State Vector Breakdown View is separated into packages
that represent each of the operational phases of the system being modeled. This is done to allow for different limits
to be enforced on the same State Vector across system operational phases. Sub-packages are created within the
higher level operational phase package to represent the different system components. In the launch vehicle example,
this would be the Main Propulsion System, Thrust Vector Control System, Structural System, and others. It is within
these component packages that the State Variables and Vector Objects are maintained. Additionally, each of the
component packages hold an activity diagram that is used to detail the interconnections of the State Variables and
Vectors independent of, but consistent with the Goal and Function Diagrams. Any System State Variable or Vector
Object that is used within the model, such as in a Goal Diagram or a Function Diagram, is deployed from this view.
Deployment is defined as the act of taking a SysML construct from a place in the model and duplicating it, creating
a link to the original, and placing it into another part of the model).

9
American Institute of Aeronautics and Astronautics

act [Package] Diagram I1I.A.3 [State Vector Breakdow n Diagram Example] /
Name: State Vector Breakdown Diagram Example «Object: State_Vecton
Package: Diagram II.A.3 Vehicle Velocity :Velocity
Version: 1.0 «State_Variable»
Author: jtbrecke ZVelocity
P «Decomposition:State_Vector» Y\fe\l’s'cf(;"y
Vehicle Trajectory : - Y-Velocity
Trajectory ::X-Velocity
«State_variable» - Xvelocity
:2Y-Acceleration
- Y-Acceleration
+:X-Position «Object:State_Vector»
- X-Position Vehicle Position :Position
“EPositon «State_Variable»
- Zhositiog :X-Position
:Y-Position o = X-Position
2 ViPostiod «Decomposition:State_Vector Nk
:Z-Velocity Z.Position
- Z-Velocity » o
N Y-Position
Y-Velocity -~ Y-Postion
- Y-Velocity
:Z-Acceleration
- Z-Acceleration T
“X-Velocity «Object:State_Vector»
- X-Velocity Vehicle Accel_eration 3
:X-Acceleration Acceleration
- X-Acceleration «State_Variable»
e i
«Decomposition:State_Vector» - Y-Acceleration
:Z-Acceleration
- Z-Acceleration
g :X-Acceleration
2 2 ° - X-Acceleration
S S o
S S >|
> > g
Al Al |
g g 2
2} 2] S
s H g
: : 2
g g E
¥ ¥
«Object:State_Ve...
Vehicle Attitude
Control :Attitude:
Control
«State_Variable»
'Yaw-Moment
Obiect:! V... «Obiject: V... - Yaw-Moment
Vehicle Thrust :Axial Vehicle Drag :Drag #iPitch Angle
Thrust - Pitch Angle
«State_Variable» :Yaw Angle
«State_Variable» ::Friction - YawAngle
iz-Thrust - Friction :Roll Angle
- z-Thrust - Roll Angle
+:Roll-M
- Roll-Moment
:Yaw Angular Rate
- Yaw Angular Rate
::Pitch Angular Rate
- Pitch Angular Rate|
::Pitch-Moment
- Pitch-Moment
::Roll Angular Rate
- Roll Angular Rate

Figure 5: State Vector Breakdown Diagram Example

The State Vector Breakdown View uses two types of construct connections, the
<<Decomposition:StateVector>>, and the <<Elaboration:StateVVector>>. These two construct connections are
used in the same way that decompositions and elaborations are used within the Goal Diagrams. When a Goal is
created and decomposed or elaborated, the Variables and/or Vectors that the elaborated or decomposed Goals are
associated with get the same type of linkage within the State Vector Breakdown View. This gives a detailed
breakdown of all of the variables and vectors that the system uses to reach its overall Goal without additional
Functions or Goals needing to be viewed. It also gives an additional sanity check to the goal breakdown by ensuring
that the physical attributes of the system are connected correctly through the goal elaborations and decompositions.

4. The Model Library

The Model Library is the location in the GFT where the State Variables and Vectors originate from. It is also
referred to as the State Variable/Vector Type Library. Before a State Variable or Vector Object can be created
within the State Vector Breakdown View and then deployed to a Goal or Function Diagram it must first exist within
the Model Library as a “Class” or type. By creating types of State Variables and Vectors, the same kind of Variables
and Vectors can be reused in multiple places in the model by utilizing the SysML Instance Classifier operation. The
Instance Classifier operation creates the State Variable/Vector Objects that are maintained and deployed from The
State Vector Breakdown View. The Model Library View is subdivided into packages associated with groupings of
State Variables and Vectors. Examples of this, for launch vehicles, include Propellant, Structural, Trajectory, Thrust,
and Control properties among others. These groupings are design-specific due to the fact that the State Variables and
Vectors are the essential link between a functional model and a physical model. Additionally, these design-specific

10
American Institute of Aeronautics and Astronautics

packages include a block diagram that shows how the State Variables and Vectors are created. The Model library
uses two GFT constructs. The <<Class:State_Variable>>, and the <<Class:State_Vector>>. The Variable Class
construct is created first and given a name to represent the variable being created.

bdd Package] Diagram ILA4 [Atitude Contro] / bdd [Package] Diagram I A.4 [Trajectory] /
«ClassState_Variable» «ClassState_Var.
Atitude Control:Yaw Angle ITraj ectory::X-Position|
«State_Variable» «State_Variable»
o LD - X-Position
e eciasssinicE «ClassState_V...
Atitude Control:Atitude. S ITrajectory::Position|
«ClassState_Variable» «ClassState_Var.
2 State_Variable - .
Atitude Control:Roll Angle: :‘:Pucning\s S Trajectory::Y-Position| «State_Variable»
F—————- PichAngle i:X-Position
« » ~ - -F i
State_Variable: «nherity Yaw Angle «State_Variable» «Inherit» X-Position
- Roll Angle " Nawhogle - Y-Postion :ZPosition
<Roll Angle - ZPosition
- Roll Angle +Y-Position
A/“'""e““’ «Inherit> - Y-Postion
«ClassState_Variable» «ClassState_Var... Q/
Attude Control:Pitch Angle Traj ectory::Z-Position
«State_Varable» «State_Variable»
 Pich Angle nherity - ZPosition
«Inherit> «ClassState_V...
«ClassState_Variable «ClassState_Vectom «ClassState_Var... Trajectory::
Atitude Control:Pitch Angular |Atitude Control:Atitude Contro Traj ectory::X-Velocity| Trajectory
Rate
p—— st Vaiables «State_Variable» «State_Variable»
«State_Vatiable» =Yaw-Moment - X-Velocity “Y-Acceleration
- Pitch Angular Rate - Yawhoment - V-Acceleraiio
. ~C:s;‘ﬂ°_l‘m =Pitch Angle «ClassState_V... -X-Position
titude Control:Atitude _ Pitch Angle 5 i ; i
ainhgibr s o~ Mqleg p— «Inherit> Jiral ectory: VEIEEES - X-Postion
. «dc\acssm‘e{ana:\g»‘ e Tr“ ﬂtx EVEQ Ia" T T :Z-Position
itude um;} aw Angular s Vaibles s ajectory:Y-Velocity, eState " Zpostion
& Yaw Angular Rate " Roll Angle | & veldly }————— :Y-Position
alnherits - Yaw Angular Rate nherity -RollMonent «State_Variable» «Inherit> - ZVelocity «Inherit» " V-Postion
«State_Varable» Pich AngularRate i - Y-Velocity Y-Velocity e
- Yaw Angular Rate - = [ERE - Y-Velocity #2-velocity
- Pitch Angular Rate “Yaw Angular Rate. N - ZVelocity
e “Roll Angular Rate " Yaw Angular Rate XVelocity ¥ Velosity
" Roll Angular Rate " 5 Inherit» - X-Velocity i
ClassState _Vaiable gk e «ClassState_Var.. - Y-Velocity
d _Variable» - Pitch Angular Rate v :Z-Acceleration
Atitude Control:Roll Angular Rate| -Pilch-Morrent Trajectory::Z-Velocity - 3
E - ZAcceleration
- Pitch-Moment “X-Veloci
«State_Variable» Roll Angular Rate «State_Variable» X-Velocity
- Roll Angular Rate " Roll Angular Rate - ZVelocity - XVelocity
1:X-Acceleration
- X-Acceleration
«Inherit>
«ClassState_Varizble» «Clas=StateRVElY
Atitude Control:PitchMoment et] 9?"’“"
dnherit> X-Acceleration
«State_Variable»
- Pitch-Moment «State_Variable»
- X-Acceleration «ClassState_V...
«ClassState_Vecton Trajectory::
Atitude Control; Moment «Inherit> Acceleration
nheiity «
«ClassState_Variable» Class State_Varg
Atitude Contol:Yaw-Moment «State_Varabler gl ecton «State_Variable»
“Yaw-Monent Y . i
«State_Variable» et - Yawhoment «Inherit» v, i
- YawMoment =Roll-#oment «State_Variable» __Z_:c/c\:lc::ir::on
- Rollfoment - Y-Acceleration N 3
e - ZAcceleration.
X-Acceleration
e - Pitch-Moment «Inherit»
N et «ClassState_Var. ﬂ/ - X-Acceleration
«ClassState_Variable» Trajeciorg
Attitude Control::Roll-Moment Z-Acielerz{lun
«State_Variable»
R «State_Variable»
- ZAcceleration

Figure 6: State Vector Library Diagram Example Figure 7: State Vector Library Diagram Example
(Attitude Control) (Trajectory)

B. SysML Baseline Constructs
There are 5 SysML constructs used in the GFT:
e Requirements are used to represent System Goals.
Activities are used to represent System Functions within a Function Diagram
Packages are used to represent System Functions within a Goal Diagram
Obijects are used to represent specific instances of System State Variables and System State Vectors
Classes are used to represent differing types of System State Variables and System State Vectors

1. System Goals

System Goals, or simply “Goals”, are SysML Requirement constructs with specific Stereotypes that identify
their use within the GFT. There are two high-level types of Goals used in the GFT, Nominal and Off-Nominal
Goals. Of the two types of high-level Goals, there are three types of Nominal Goals and four types of Off-Nominal
Goals.

Nominal Goals

The three Nominal Goals are Achievement Goals, Maintenance Goals, and Prevention Goals. An Achievement
Goal is a proposition that must be true in the final state of the Goal and is used to indicate the end of a phase or set
of phases that the system must go through to be successful. The Achievement Goal is denoted by a golden color and

11
American Institute of Aeronautics and Astronautics

has the Stereotype <<Goal_Nom:Achievement>>. A Maintenance Goal is a proposition that must be true in every
state over time for the associated State Variables. One or more Maintenance Goals together make up a time-phase
that sometimes culminate in an Achievement goal. The Maintenance Goal is denoted by a purple color and has the
Stereotype <<Goal_Nom:Maintenance>>. A Prevention Goal is a proposition where the system must inhibit an
event or action. Prevention Goals are used in association with Achievement Goals, and indicates the goal of “Not
performing something”. The Prevention Goal is denoted by a gray color and has the Stereotype
<<Goal_Nom:Prevention>>.

act [Package] Diagram I11.B.1 [Nominal Goals] /

Name: Nominal Goals
Package: Diagram IIl.B.1
Version: 1.0

Author: jtbrecke

IIAchievemem Goal - II Prevention Goal

Figure 8: Nominal Goals

Off-Nominal Goals

The four Off-Nominal Goals, which are specifically associated with the SLSP, are Abort Goals, Caution &
Warning (C&W) Goals, Redundancy Management (RM) Goals, and Safing Goals. An Abort Goal is a proposition to
notify the system for Loss of Mission (LOM) conditions. It implies the creation of a function that performs the task
of monitoring for the particular states and behaviors declared in the Abort Goal, and ultimately leading to an abort
response to remove the crew (astronauts) from an impending or currently occurring hazardous situation, such as an
exploding launch vehicle or loss of vehicle control. Specifically, an Abort Goal will indicate a position in the tree
where the system’s behaviors will be monitored, so as to ultimately activate an abort to prevent Loss of Crew
(LOC). In all cases the mission is lost and the crew must be returned safely to Earth. The Abort Goal is denoted by a
red color and has the Stereotype <<Goal_OffNom:Abort>>. A C&W Goal is a proposition to notify the system for
warning alerts. It implies a function that performs the task of monitoring for the particular issues declared in the
C&W Goal and sending a notification to the crew if the monitored behavior occurs. Specifically a C&W Goal will
indicate a position in the tree that monitors for a degraded function and a notification to the crew could/should be
sent. The C&W Goal is denoted by an orange color and has the Stereotype <<Goal_OffNom:C&W>>. An RM
Goal is a proposition to provide either passive or active management of redundant system capabilities in order to
maintain overall system functionality and still continue the mission. Specifically, an RM Goal will indicate where
redundant systems will be used to respond to a failed or degraded state of one of several redundant components in
the system. The RM Goal is denoted by a blue color and has the Stereotype <<Goal_OffNom:RM>>. A Safing
Goal is a proposition that, if a critical failure occurs, will change the state of the system into a “Safe State” that
prevents or mitigates further damage to the system. The Safing Goal is denoted by a lavender color and has the
Stereotype <<Goal_OffNom:Safing>>. An example of a Safing goal is the shutdown of a liquid propellant rocket
engine to prevent it from exploding and causing a direct and immediate hazard to the crew. Once shut down, the
mission might or might not be lost, depending on when the engine shutdown occurs during a launch vehicle ascent.

act [Package] Diagram 111.B.2 [Off-Nominal Goals] /

Name: Off-Nominal Goals
Package: Diagram III.B.2
Version: 1.0

Author: jtbrecke

Abort Goal - RM Goal I“ Safing Goal

Figure 9: Off-Nominal Goals
As the GFT was initially developed exclusively for launch vehicle design, the above Off-Nominal Goals will not
be suitable in all circumstances. Therefore, the analyst will need to define appropriate off-nominal goals for his or
her system. In general, Fault Management theory, as described in Chapter 1 of System Health Management: with

12
American Institute of Aeronautics and Astronautics

Aerospace Applications, indicates general categories such as failure detection, failure prognosis, failure recovery,
goal change, and others."

2. System Functions

System Functions appear in two diagrams within the GFT: Goal Diagrams and Function Diagrams. A Function
as it appears in a Goal Diagram is simply a SysML Package. This package construct is used to define a location in
the model where further detail is needed. A Package in a Goal Diagram leads to a Function Diagram. The Function
Diagram, in turn, shows explicitly which State Variable/Vectors are used by Nominal and Off-Nominal Functions to
create new State Variables/Vectors. Once a Function Diagram is created, the Functions themselves must be created.
The actual Function is a SysML activity that transforms one or more input State Variable into a different set of
output State Variables. All Functions are “realizations” of their associated Goals and cannot exist independent of a
Goal. There is only one type of Nominal Function but there are four Off-Nominal Functions, each correlating to an
Off-Nominal Goal: Abort Function, C&W Function, RM Function, and Safing Function with the respecting
Stereotype tags: <<Function:Abort Trigger>>, <<Function:C&W _Trigger>>, <<Function:RM>>, and
<<Function:Safing>> and their respective color associations.

act [Package] Diagram II1.B.3 [Function] /

Name:

Version: 1.0
Author: jtbrecke

Function
Package: Diagram IIl.B.3

«Function»
Nominal Function

)

«Function:Abort_Trigger» «Function:C&W_Trigger» «Function:Safing»
Abort Function C&W Function Safing Function

Figure 10: Nominal and Off-Nominal Functions

«Function:RM>»
RM Function

3. State Variables and Vectors

A State Variable is defined as a physical attribute of a system that must be maintained within an appropriate
range for the success of an assigned goal. In the GFT, SysML Object and Class constructs are used to define State
Variables. A SysML Class construct is used to create a generic State Variable that is used in multiple places within
the model. The State Variable Class is denoted with a stereotype <<Class:State_Variable>>. A SysML Object
construct is used to create a specific instance of a State Variable that is used in a specific location within the model.
The State Variable Object is denoted with a stereotype <<Object:State Variable>>. An example of the difference
between the class the instance is “Pressure” being a State Variable Class and “Helium Tank B Pressure” being a
State Variable Object. Both are ‘Pressures’ but the first is generic and the second is specific. State Variables start out
as Classes; when created, an attribute is given to the variable whose name is the same as the variable itself. When a
series of variables can logically be combined, depending on the physics of the system being modeled, a State Vector
is created. A State Vector is a combination of the attributes from the individual State Variables that make up the
State Vector. The State Vector Class is denoted with a stereotype <<Class:State_Vector>>. Additionally, this State
Vector Class is a generic state vector that can be used in many places in the model. The specific state vector uses the
SysML Obiject and is denoted with a stereotype <<Object:State Vector>>, in much the same way the Class and
Obiject State Variables are used.

To create a State Variable/Vector Object from a Class, the “Instance Classifier” function within the SysML
language is used. Also, it is important to note that State Variable/Vector Objects are maintained within a different
model view than the State Variable/Vector Classes. This is described in the Modeling Views section of the paper.

i Stephen B. Johnson, et al., eds. System Health Management: with Aerospace Applications, Chichester, UK: John Wiley UK,
2011, chapter 1.
13

American Institute of Aeronautics and Astronautics

act [Package] Diagram |l1.B.4 [Object and Class Variable-Vector] /

Name: Object and Class Variable-Vector
Package: Diagram 111.B.4
Version: 1.0

Author: jtbrecke «Class:State_Variable» «Class:State_Vector
Variable Type Vector Type
«Object:State_Variable» «Object:State_Vector»
Variable Vector

Figure 11: State Variable/Vector Classes and Objects

C. SysML Baseline Construct Connections

SysML has a wide variety of construct connections that can be utilized by the modeler, and though the GFT uses
many of the baseline connections from the language they are extremely precise in their applications. The following
sections will explain in detail the construct connections that are used within the GFT.

1. Goal Diagram Construct Connections

As stated previously, Goal Diagrams are SysML Requirement Diagrams that show the hierarchical links between
different Goals within the GFT. Goal Diagrams are used to show the links from Goal to Goal, Goal to System State
Variable/Vector, and Goal to Function Package.

Goal to Goal Connections
The GFT process uses three types of Goal to Goal connections: Goal Decomposition, Goal Elaboration, and Goal
Aggregation. Each of these connections are based on SysML norms but are defined specifically for GFT use. A Goal
Decomposition is a segmentation into a complete set of sub goals necessary to achieve the higher level goal. To
determine when a goal decomposition is needed, the State Vector must be evaluated. If the State Variables within a
State Vector can be partitioned into a subset of State Vectors without introducing any new State Variable(s), then a
goal decomposition is appropriate. For example, in the State Vector(Xy, X, Xs, Vi, Vo, Vs, a1, @y, a3), Where X’s
correspond to position components, v’s correspond to velocity components, and a’s correspond to acceleration
components, the State Vector is often decomposed into three State Vectors, one for position alone, another for
velocity alone, and a third for acceleration alone. If a new State Variable, or set of state Variables, are needed then a
functional Elaboration is needed. In the previous example, if acceleration is generated by thrust from a rocket
engine, then the next lower-level goal that supports the acceleration goal will be a thrust goal, with a new thrust
State Vector that has magnitude and direction components. Introducing new State Variables in this way is not a
decomposition; rather, it is an elaboration. A new function will then be introduced, in which the input State
Variables will represent thrust components, and the output State Variables will include acceleration components.

Goal Decomposition connectors are standard SysML Decomposition lines stereotyped as
<<Decomposition:Goal>>. A Goal Elaboration is a transformation of the State Vector; it implies that a function or
set of functions with new State Variables are needed to continue development of the tree along the particular path. A
function is added to transform the newly introduced State Variable(s) into the higher level existing State Variable(s).
Goal Elaboration connectors are standard SysML Decomposition lines stereotyped as <<Elaboration:Goal>>.
Usually an added visual cue is given to the line such as an added line thinness and color change.

A Goal Aggregation is used to indicate that there is a Goal to monitor the attributes of a State Vector to
determine if the states observed from the Vector’s State Variables will diverge from their nominal ranges. The Goal
Aggregation is only used to aggregate the off-nominal Goals within the lower level goals. This gives a clear visual
cue to where the off nominal goals are within the GFT and allows for analysis of which State Variables are
monitored and protected from going outside of their nominal range. Goal Aggregation connectors are standard
SysML Aggregation lines stereotyped as <<Aggregation:Goal>>. A SysML Aggregation connection is used due to
the fact that the success of the higher level goal does not depend on the success of the off-nominal goal. All Goal to
Goal connections point FROM the lower level goal TO the higher level goal.

14
American Institute of Aeronautics and Astronautics

act [Package] Diagram 111.B.6 [Goal to Goal Connections] /

Name: Goal to Goal Connections
Package: Diagram IIl.B.6

Version: 1.0

Author: jtbrecke

«Decomposition:Goal»

«Decomposition:Goal»

«Aggregation:Goal»

«Elaboration:Goal»

«Decomposition:Goal» «Decomposition:Goal»

«Decomposition:Goal» «Decomposition:Goal»

Figure 12: Goal to Goal Construct Connections
Goal to State Variable/Vector Connections
A Goal Diagram also shows the relationship between a Goal and its State Variable/Vector. A SysML
Dependency Line, stereotyped as <<Defines_the_Range_for>>, is used to show the connection between a Goal and
its State Variable or Vector. Only the specific Object version of a State Variable/Vector is used on a Goal Diagram,
and the arrow points FROM the Goal TO the State Variable/Vector Object.

act [Package] Diagram 1I.B.7 [Goal to Variable-Vector Connection] /

Name: Goal to Variable-Vector Connection p
. «Object:State_Ve
Package: Diagram II.B.7 st iy
Version: 1.0 nstance of :Vec
Author: jthrecke «State_Variable»
«Defines_the_Range_for» ::Variable 2b
Variable 2b
(from Diagram Ill.B.6) :Variable 1b
Variable 1b

(from Diagram ll.B.5)

«Decomposition:Goal» «Decomposition:Goal»

1
«Defi nes_thel_Range_fo ™

')

«Object:State_Variab...
Instance of :Variable 1b

(from Diagram I.B.6) (from Diagram l.B.6)

«Defines_the_Ran

'

«Object:State_Variab...
Instance of :Variable 2b

ge_for

-

«State_Variable»
::Variable 1b
Variable 1b

«State_Variable»
::Variable 2b
Variable 2b

(from Diagram ll.B.5) (from Diagram lll.B.5)

Figure 13: Goal to State Variable/Vector Construct Connections
Goal to Function Package Connections
When a Goal Elaboration is used, and a new State Variable/VVector must be created, a Function Package is
created and placed on the Goal Diagram to explicitly define that transformation. The SysML Activity Diagram, or
Function Diagram, that is created alongside the Function Package contains the explicit transformation. The Function

Package is connected to the Goal that is being elaborated on the Goal Diagram with a standard SysML Dependency
Line that is stereotyped as <<Defines_Elaboration_of>>.

15
American Institute of Aeronautics and Astronautics

act [Package] Diagram 111.B.8 [Goal to Function Connection] /

Name: Goal to Function Connection
Package: Diagrammtss — _~IMlMaintenance Goalda | - _ _ _ _ _ _ _ _ _
Version: 1.0 «Aggregation:Goal» «Defines_Elaboration_of » !

Author: jtbrecke 1

(from Diagram ll.B.6)

Function Package I
Iﬂ Abort Goal -

i Elaboration:Goal
(from Diagram lll.B.6) «Elaboration:Goal»

(from Diagram ll.B.9)

(fromDiagram lll.B.6)

Figure 14: Goal to Function Construct Connections

2. Function Diagram Construct Connections

A Function Diagram shows the connection of the input State Variables to the Function, and of the Function to its
output State Variables, thus defining on a single diagram the equation y = f(x). The Goal associated with the
Function is the limitation on the range of the output State Variables “y”. Function Diagrams consist of many of the
previously defined constructs such as Goals and State Variables and Vectors, and connections such as Goal to State
Variable/Vector Connections. Therefore, it is only necessary to define connections between State Variables/\VVectors
to Functions, and Functions to Goals. The connections between State Variables/Vectors to Functions use a standard
SysML Object Flow Line. This connection is stereotyped in two ways: <<Input>>, and <<Output>>. The Input
Object Flow is used to show which System State Variable/Vector(s) “x” flow into the Function, and the Output
Object Flow is used to show the output state vector “y” flow out of the Function. When relating back to the Goal
Diagram the higher level Goal is associated with the State Variable/Vector “y” and the lower level Goal is
associated with the State Variable/Vector “x”.

The connection of the Function to the Goal is denoted with a standard SysML Realization line and is stereotyped
<<Realizes>>. This is used to graphically show which goal creates the function

act [Package] Diagram 111.B.9 [Function Package] /

Name: Function Package
Package: Diagram IIl.B.9
Version: 1.0

Author: jtbrecke

«Object:State_Variable»

Instance of :Variable 1a
_ «Defines_the_Range_for» > «State_Variable»

:Variable 1a
(from Diagram lI.B.6) ariable

Variable 1a
| Abort Goal

(from Diagram .B.6) /\
T «Function:Abort_Trigg...
I Abort Function

N TP eTyenyay
«Realizes»

I
I
I
I
: (from Diagram IIl.B.5)
I
I
I
I
I
I

«Input»

«Realizes> «Output»

(from Diagram II.B.3)

«Function»
Nominal Function

(from Diagram II.B.3)

«Input»

«Object:State_Vector»
Instance of :Vector C

> «State_Variable»
<Defines_the. Range. for i:Variable 2¢
- Variable 2c
(from Diagram II.B.6) ::Variable 1c

Variable 1c

(from Diagram II.B.5)

Figure 15: Function Package Diagram Construct Connections

3. System State Vector Object Construct Connections
The State Vector object decompositions and elaborations are created and maintained separately from the Goal
Diagrams. These Vector Breakdown Diagrams are created in concert with the Goal Diagrams so that they are
16
American Institute of Aeronautics and Astronautics

relatable and consistent with each other. These diagrams are explained in detail within the Modeling View section of
this paper. However, there are some construct connections that must be defined first.

When a Goal and its associated State Vector is decomposed within the Goal Diagram the State Vector must also
be decomposed. A State Vector Decomposition shows the partitioning of one State Vector into its sub State VVectors.
For example, a single State Vector consisting of all positions, velocities, and accelerations together can be
decomposed to three State Vectors: one for position, one for velocity, and one for acceleration. If taken to the lowest
level possible, a State Vector can be eventually decomposed to its individual State Variables. In our example, the
position State Vector can be decomposed to the three position State Variables (in whichever coordinate system is
appropriate). This is done within the State Vector Breakdown View of the model with a standard SysML
Decomposition line stereotyped as <<Decomposition:StateVector>>. Just as Goals can be Elaborated and not just
Decomposed so to can a State Vector. A State Vector Elaboration shows the connection between two State Vectors
that have been elaborated by a Function. It is used when one or more new State Variables are introduced that did not
exist in the higher level State Vector. This is done with a standard SysML decomposition Line stereotyped as
<<Elaboration:StateVVector>>.

act [Package] Diagram I11.B.5 [Variable-Vector Elaboration-Decomposition] /

«Object:State_Vector»

Variable-Vector Elaboration-Decomposition
Instance of :Vector A

Name:
Package: Diagram I1.B.5
Version: 1.0

Author: jtbrecke

«State_Variable»
:Variable 1a

- Variable 1a
:Variable 2b

- Variable 2b
:Variable 1b

- Variable 1b

T

«Decomposition:State_Vector» «Decomposition:State_Vector»

«Object:State_Vector»
Instance of :Vector B

«Object:State_Variable»
Instance of :Variable 1a
«State_Variable»
::Variable 2b

- Variable 2b
::Variable 1b

- Variable 1b

I

«Decomposition:State_Vector»

«State_Variable»
:Variable 1a
- Variable 1a

«Elaboration:State_Vector» X
«Decomposition:State_Vector»

«Object:State_Vector
Instance of :Vector C

«State_Variable»
:Variable 2¢

- Variable 2¢
:Variable 1c

- \Variable 1c

T

«Object:State_Variable»
Instance of :Variable 1c

«State_Variable»
:Variable 1c
- Variable 1c

«Decomposition:State_Vector»

«Object:State_Variable»
Instance of :Variable 1b

«State_Variable»
:Variable 1b
- Variable 1b

«Object:State_Variable»
Instance of :Variable 2¢c

«State_Variable»
:Variable 2c
- \Variable 2¢c

«Decomposition:State_Vector»

«Object:State_Variable»
Instance of :Variable 2b

«State_Variable»
:Variable 2b
- \Variable 2b

Figure 16: State Variable/Vector Object Construct Connections

4. Block Diagram Construct Connections

Block Diagrams are used in the GFT to create types of State Variables. These types of State Variables are used
within the Block Diagram to create State Vectors by passing the variable attributes from a set of variables to a single
vector. This allows for the creation and maintenance of all of the State Variable/Vectors in one location. From this

17
American Institute of Aeronautics and Astronautics

location, the analyst can then instantiate the Variable/VVector type to a specific State Vector Object in the relevant
SysML diagrams. This process is explained further within the Modeling Views section of this paper.

The GFT Block Diagram only uses System State Variable and Vector Classes. The only construct connection
used on this diagram is the stereotyped SysML Generalization line, <<Inherit>>. The <<Inherit>> stereotype was
created during the development of the GFT and is based on the SysML Generalization line to facilitate the “source”
inheriting the attributes of the “target”. SysML defines Generalization as a taxonomic relationship between a more
general classifier and a more specific classifier. Each instance of the specific classifier is also an indirect instance
of the general classifier. Thus, the specific classifier inherits the features of the more general classifier". The term
“Generalization” implies a mechanism for combining similar classes of objects into a single, more general class.
“Inheritance” is a more limited concept, referring to the mechanism that permits subclasses to share attributes with
superclasses.” Currently the SysML language combines these two ideas into one type of connection; for GFT
purposes it was necessary to separate and specifically use the “Inheritance” concept. This allows for passing of the
State Variable attribute from one State Variable/Vector to another. The connection is created to go FROM the vector
needing the variable attributes TO the Vector, or Variable, that has the variable attributes.

act [Package] Diagram I11.B.10 [Variable Type Connections] /
Name: Variable Type Connections «ClassState_Variable» «ClassState_Vector
Package: Diagram 111.B.10 N
c o Variable 1a Vector A
Version: 1.0
Author: jtbrecke «State_Variable» «Inherit» «State_Variable»
- Variable la :Variable la
- Variable 1a
:Variable 2b
«Class:State_Variable» - - Variable 2b
Variable 1b «Inherit» ::Variable 1b
- Variable 1b
«State_Variable» i
. Varable 1b «Class:State_Vector»
Vector B
«State_Variable»
«Class:State_Variable» «Inherit» :\Variable 2b
Variable 2b - \Variable 2b
:Variable 1b
«State_Variable» - Variable 1b
- Variable 2b
«Class:State_Variable»
Variable 1c
«State_Variable»
- Variable 1c «Class:State_Vector»
Vector C
«State_Variable»
«Class:State_Variable» «Inherit» ::Variable 2¢
Variable 2¢ - Variable 2¢c
:Variable 1c
«State_Variable» - Variable 1c
- Variable 2¢c

Figure 17: State Variable/Vector Model Library Construct Connections

IV. Conclusions

In conclusion, the GFT gives systems engineers a representation and process to define a system functionally in a
top down perspective that links the physical design to the functional design. It also allows for incorporation of
nominal and off nominal design during the functional expression of the system. The GFT, by linking the goals of a
system both to the functions and to the physical attributes of the system that must be controlled, also establishes a
mathematical and logical structure for creating requirements for the system that allows for systematic verification
and validation. Although the concepts described within this paper are applicable to SysML, with the current version
of the language it becomes difficult to reliably perform the steps described in a repeatable manner. This is due to
SysML’s heavy reliance on the physical components of a system and less so with the functional components and
system requirements. Although SysML was the best available language to start with in creating the concepts that
make up the GFT, it is not ideal because it is not optimized to model the inherent tree structure required by GFT

v The OMG UML specification (UML Superstructure Specification, v2.1.1, p. 73)

v “Generalization and Inheritance, Concepts of Generalization and Inheritance” Universal Teacher Publications,
[Online Article],http://www.universalteacherpublications.com/univ/free-asgn/2008/mcs32/pagel.htm [cited 8 July
2013]

18
American Institute of Aeronautics and Astronautics

implementation. By using SysML there is an additional layer of complexity involved in keeping track of the tree due
to the inherency of GFT branch crossing. Put another way, either the GFT replicates the same tree branch in several
locations, or it creates several connections from those several locations to the tree branch. An example of this is that
to maintain structural integrity of a launch vehicle one must maintain control, but it is also true that to maintain
control one must maintain structural integrity. Additional work would be needed to (a) create a tool that would
inherently utilize the concepts described above, or (b) utilize the particular aspects of SysML that do work and
expand on the language to incorporate GFT concepts into the core SysML architecture.

Although SysML is not the perfect tool to use to create and represent a GFT, it was the tool available during the
development of the concepts presented in this paper. SysML is also an emerging standard for systems engineering
modeling, so it was worthwhile to determine if SysML’s capabilities are sufficient to represent new systems
engineering methods such as the GFT. To properly define all of the stereotypes that were needed, an Enterprise
Architecture Toolbox was created on top of the SysML standard toolboxes. This tool box allowed for the correct
constructs and construct connections to be used in the development of the GFT. Figure 18 shows the graphical
representation of the Toolbox created for use in development of a GFT.

class GTST Toolbox_/

Name: GTST Toolbox
Package: «profile» Diagram IV.1
Verson: 1.0

Author: jtbrecke

«metaclass)
ObjectFlow

«metaclass
Requirement

+ direction :Direction = Source -> Desii
+ isMulticast :Boolean = false
+_isMultireceive_Boolean = false

«Extends»

«Extends> «Extends> «Extends> «Extends>

[goal_Nom:Achiev ementf

Output ﬂl

Goal_OffNom:RM

«Extends> «Extends> «Extends» «Extends»
Goal_Nom:Prevention | Goal_OffNom:Abort |

Goal_OffNom:Safing I

Input !“

«metaclass>
Aggregation

+ direction :Direction = Source -> Desii

«metaclass»
Object

«metaclass>
Class.

«metaclass
Composition

+ isActive :Boolean

+ direction :Direction = Source -> Desii

W

«Extends>
«Extends>

«Extends> «Extends>

«Extends> «Extends «Extends>

Object:State_Vector

Class:State_Vector .

Class:state_Variable [

]

State_Vector

]

<] Vectog

Object:State_Variable I

«Extends>

«metaclass»
Dependency

«metaclass
Realization

«metaclass»
Activity

+ isReadOnly :Boolean = false
+ isingleExecution :Boolean
+ postcondition :String
+ precondition :Sting

+ direction :Direction = Source -> Dei + direction :Direction = Source -> Desi

«Extends> «Extends> «Extends> «Extends>

«Extends> «Extends

«Extends «Extends> «Extends>

Function

I Function:Abort_Trigger I Function:C&W_Trigger I

Function:RM I Function:Safing I

Enables .l Realizes Same_s Precedes

Dependency

«metaclass>
+ direction :Direction = Source -> Desli

«metaclass»
Generalization

+ direction :Direction = Source -> Desi

+ isSubsiitutable :Boolean

«Extends «Extends>

«Extends>

«Extends>

Inherit I

Defines_Elaboration_of [

Defines_ine_Range_for [

Trace:State_Variable [

Figure 18: GFT Toolbox Profile

The profile diagram shown in Figure 18 gives the modeler the ability to use all of the required new stereotypes

developed for the GFT. Details

of each are listed in Table 1.
Table 1: GFT Stereotype List

GFT Stereotype SysML Metaclass Description
<<Goal_Nom:Achievemnt>> Requirement Nominal Goals used within the GFT
<<Goal_Nom:Maintenance>> Requirement
<<Goal_Nom:Precention>> Requirement
<<Goal_OffNom:Abort>> Requirement Off Nominal Goals used within the GFT

19
American Institute of Aeronautics and Astronautics

<<Goal OffNom:C&W>>

Requirement

<<Goal OffNom:RM>>

Requirement

<<Goal_OffNom:Safing>>

Requirement

<<Input>> ObjectFlow Object Flows used to show how and what State
; Variables/Vectors are used by Nominal and Off

<<Output>> ObjectFlow Nominal Functions

<<Aggregation:Goal>> Aggregation Used to connect Off Nominal Goals to Nominal Goals

<<Decomposition:Goal>> Composition Used to connect Nominal Goals to Nominal Goals

<<Elaboration:Goal>> Composition

<<Decomposition:State_Vector>> Composition Used to connect State Vectors to State Vectors

<<Elaboration:State_Vector>> Composition consistently with Goal Diagrams

<<Class:State_Vector>> Class Used to create “Types” of State Variables/Vectors to

<<Class:State Variable>> Class be specifically classified elsewhere in the model

<<Object:State_Vector>> Object Used to create specific State Variables/Vectors out of

<<Object:State_Variable>> Object State Variable/Vector “Types”

<<Function>> Activity Nominal and Off Nominal Functions used within the

<<Function:Abort Trigger>> Activity GFT

<<Function:C&W Trigger>> Activity

<<Function:RM>> Activity

<<Function:Safing>> Activity

<<Realizes>> Realization Used to link Functions to Goals

<<Inherit>>

Generalization

Used to pass State Variables to Vectors and lower
level State Vectors to higher level State Vectors

<<Defines the Range for>> Dependency Connects State Variables/Vectors to Goals
<<Defines_Elaboration_of>> Dependency C(_)nnects Function Packages to Goals in the Goal
Diagram
20

American Institute of Aeronautics and Astronautics

Implementation of a Goal-Based
Systems Engineering Process Using
the Systems Modeling Language
(SysML)

Jonathan T. Breckenridge
jonathan.t.breckenridge@nasa.govVv

NASA Marshall Space Flight Center
EVA43 Integrated System Health Management and Automation Branch

Miltec, A Ducommun Company and Jacobs ESSSA
19 August 2013

AlAA Infotech@Aerospace
Boston, Massachusetts

=S\Ducommun
@ Miltec

JACOBS What is a Goal Function Tree (GFT)? @

¢ A top-down hierarchical decomposition of system goals and
functions --- hierarchies are models of “intention”
e Arranged by major system phase/configuration,
e Defines the functions the system must perform and goals the system must
achieve for the system to successfully perform its mission/objectives
e Relationship between goals and functions defined through rigorous use of
state variables

¢ The GFT extends the classical function decomposition through the
use of state variables to explicitly contain goals, and makes the
GFT causally, physically correct

¢ It is based on function, not design, though inherently you must

make some design assumptions
e Example: Goal is to place humans into trans-lunar trajectory

e Two possible solutions:
— Star Trek-style quantum transporter
— Space Launch System-style chemical rocket

e These two solutions yield very different function decompositions, SLS
has stages, the transporter does not, etc.

19 August 2013 Ducommun Incorporated: Miltec Systems & Jacobs ESSSA 2

Ducommun
@ Miltec

JACOBS
ESSSA Group

Nominal GFT Development Process

Decomposition

Elaboration
(Function Process)

After Loop is completed once

View

ff&

Function Breakdown

Determine nextlevel
of Goals to be created

Create Functionand
connectall objects

f-_ : Connect Goals with
T’Af Create Goal %

Goal Breakdown View

2

Assign State
Variable/Vector Object

Objects to Diagram

Deploy Elaborated Goals
and State Variable/Vector

.

Package

CreateFunction

to Goal

Project Browser

19 August 2013

Assign State
Variable/Vector Object

to Goal

Decompositionor
St
Determine Goals ‘“Qo
State Variable(s) oecp
A 5

- o

(o]

=
Create State
Variable(s) Type

Elaboration Line
Create State
VectorType

Determine Goals
State Variable(s)

Create State
Variable Object
Create State
VectorObject

Create State
Variable(s) Type

Create State
VectorType

Create State
Variable Object
Create State
VectorObject

Ducommun Incorporated: Miltec Systems & Jacobs ESSSA

Ducommun
- Miltec

JACOBS Off-Nominal GFT Development Process

ESSSA Group

Function Breakdown View

Function Breakdown
View
Create Off-Nominal

Function (Abort
Trigger) Conmect 4 et

/

19 August 2013 Ducommun Incorporated: Miltec Systems & Jacobs ESSSA

Connect Abort Condition to — Goal Breakdown View
Input State Variable(s), gefftem!fle if
Output State Variable(s), Goa':ci,sn::ml
d Abort Condition eeded
- - Create Off-Nominal
Goal (Abort Condition)
After Loop is completed once
_:5 Cosmect Goals with
m o
Elaborstion Line
Connect Abort Condition
to Nominal Goal with
Aggregation

=S\Ducommun
22@ Miltec

JACOBS

ESSSA Group

GFT Modeling Views

The Goal Breakdown View
SysML Requirements Diagram

¢ Goal Diagrams

¢ Goal to Goal Connections

¢ Goal to State Variable Connections

¢ Goal to Function Package Connections
¢ Subdivided Packages

¢ Top Level Goals

¢ Mission Success Goals

¢ Crew Safety Goals :

¢ Abort Goals =

The Functional Breakdown View
SysML Activity Diagram

¢ Function Diagram

¢ Goal to State Variable Connections

¢ State Variable to Functions

Connections

¢ Subdivided Packages

¢ One Package per Function/Diagram
¢ Functions grouped by Mission Phase

The State Vector Breakdown View
SysML Activity Diagram
¢ State Variable/Vector Object Diagram
¢ State Variable/Vector to i
Variable/Vector Connections |
¢ Consistent with Goal and
Function Diagrams
¢ Subdivided Packages
¢ One Package per
Operational Phase
¢ Multiple Sub-Packages
for each Sub-System
Component
¢ i.e. MPS, TVC, GN&C

The Model Library
SysML Class Diagram

¢ State Variable/Vector “Type” Diagram
¢ \Variable to Vector

Roll-up Connections
¢ Vector to Vector
Roll-up Connections
¢ Subdivided Packages
¢ Multiple Diagrams
per Package
¢ Packages are
grouped by
Variable/Vectors
¢ i.e. Propellant,

Structural, Thrust, Trajectory

19 August 2013

Ducommun Incorporated: Miltec Systems & Jacobs ESSSA

=)\ Ducommun
@ Miltec

JACOBS GFT Nominal System Goals

ESSSA Group

¢ All Goals in the GFT Model are SysML Requirement constructs with specific Stereotypes
e The color shown is part of the Stereotype definition
¢ In the GFT Model there are 2 types of goals used in the GFT process

e Nominal Goals
e Off Nominal Goals

¢ Nominal Goal Definition
e Achievement Goal <<Goal Nom:Achievement>>

{Stereotyped SysML Requirement}
— An Achievement Goal is a proposition that must be true in the final state of the goal.

¢ They are used to indicate the end of a phase or a set of phases.
e Maintenance Goal <<Goal Nom:Maintenance>>
{Stereotyped SysML Requirement}
— A Maintenance Goal is a proposition that must be true in every state through which the agent passes.
e These are often Safety Goals — the goal of staying way from off nominal states.
¢ One or more Maintenance Goals together make up a phase that culminates in an Achievement Goal.

e Prevention Goal <<Goal_Nom:Prevention>>

{Stereotyped SysML Requirement}
— A Prevention Goal is a proposition where the system must inhibit an event or action.
e These are used in association with Achievement Goals, and indicates the goal of “Not performing something” .

act [Package] Diagram II1.B.1 [Nominal Goals] /

Name: Nominal Goals
Package: Diagram IIl.B.1
Version: 1.0

Author: jtbrecke

Achievement Goal Prevention Goal

19 August 2013 Ducommun Incorporated: Miltec Systems & Jacobs ESSSA

SHDucaoammun
@ Miltec

JACOBS GFT Off-Nominal System Goals

ESSSA Group

¢ Redundancy Management (RM) Goal

¢ Abort Goal <<Goal OffNom:Abort>> <<Goal_OffNom:RM>>

{Stereotyped SysML Requirement} {Stereotyped SysML Requirement}
e An Abort Goal is a proposition to notify the system for e An RM Goal Is a proposition to provide either
LOM conditions passive or active management of system

capabilities in order to maintain overall functionality.

— It ultimately leads to the creation of a function that > velc
L . — Specifically an RM Goal will indicate where
performs the task of monitoring for the particular redundant systems will respond to a failed or
issues declared in the Abort Goal degraded state of the system

— Specifically an Abort Goal will indicate a position ¢ Safing Goal <<Goal_OffNom:Safing>>
{Stereotyped SysML Requirement}

in the tree where a goal change will be needed to A Safing Goal is a proposition that, if a critical
prevent a LOC Situation failure occurs, will change the state of the system
¢ Caution & Warning (C&W) Goal <<Goal_OffNom:C&W>> into a “Safe State” so that the higher critical goals
{Stereotyped SysML Requirement} can still be achieved with no further damage to the
e A C&W Goal is a proposition to notify the system for system.
warning alerts to crew and/or mission support
personnel.

— It ultimately leads to the creation of a function that
performs the task of monitoring for the particular
issues declared in the C&W Goal.

— Specifically a C&W Goal will indicate a position in
the tree where there is a degraded function and a
notification could/should be made.

act [Package] Diagram 111.B.2 [Off-Nominal Goals] /

Name: Off-Nominal Goals
Package: Diagram Ill.B.2
Version: 1.0

Author: jtbrecke

”Abon Goal I - ” RM Goal I ” Safing Goal

19 August 2013 Ducommun Incorporated: Miltec Systems & Jacobs ESSSA 7

SHDucaoammun
@ Miltec

JACOBS GFT Nominal and Off-Nominal Functions

ESSSA Group

¢ In the GFT Model SysML activities constructs are used to define functions, there are
2 types used in the GFT process

¢ Nominal Functions are non-stereotyped SysML activity constructs
e Off-Nominal Functions are stereotyped SysML activity constructs as shown below

¢ Nominal Function
¢ A function is an activity that transforms one or more State Variables into a different set of State Variables. All
functions are realizations of their associated goals and cannot exist independent of a goal.

¢ Off-Nominal Functions
¢ A function is an activity that transforms one or more State Variables into a different set of State Variables
¢ All functions are realizations of their associated goals and cannot exist independent of a goal.

¢ Off-Nominal Function Types

— Abort Functions (Triggers) <<Function:Abort_Triggers>>
{Stereotyped SysML Requirement}

— C&W Functions (Triggers) <<Function:C&W_Triggers>>
{Stereotyped SysML Requirement}

— RM Functions <<Function:RM>>
{Stereotyped SysML Requirement}

— Safing Functions <<Function:Safing>>
{Stereotyped SysML Requirement}

act [Package] Diagram 111.B.3 [Function] /

Name: Function
Package: Diagram I11.B.3 «Function»
Version: 1.0 Nominal Function

Author: jtbrecke

Abort Function C&W Function Safing Function RM Function

«Function:Abort_Trigger» «Function:C&W_Trigger» «Function:Safing» «Function:RM» J

19 August 2013 Ducommun Incorporated: Miltec Systems & Jacobs ESSSA

@ Ducommun

Miltec GFT State Variable/Vectors:

JACOBS .
ESSSA Group Ob|€CtS and CIaSSGS

¢ State Variables
e A State Variable is a physical attribute of a system that must be maintained within an appropriate range for the
success of the assigned goal.
¢ In the GFT Model, SysML Object and Class constructs are used to define state

variables for which there are 2 types used in the GFT process
e <<Object:State_Variable>>
{SysML Object}
— An Object State Variable is a stereotype used when calling out a specific instance of a state variable.
e <<Class:State Variable>>
{SysML Class}
— A Class State Variable is a stereotype used when creating a type of variable to be used in several places in the model
¢ State Vector
e State Vectors are used with both the Object and Class Stereotype and are a set of State Variables.

State Variables are “attributes” associated with the State Vector.

act [Package] Diagram 111.B.4 [Object and Class Variable-Vector] /

Name: Object and Class Variable-Vector

Package: Diagram I11.B.4

Verson: 1.0

Author. jtbrecke «Class:State_Variable» «Class:State_Vector»

Variable Type Vector Type
«Object:State_Variable» | «Object:State_Vector»
Variable Vector

19 August 2013 Ducommun Incorporated: Miltec Systems & Jacobs ESSSA

S)Ducommun
@ Miltec

sacoBs GFT Goal Diagram Construct Connections

ESSSA Group

¢ Goal to Goal Connection
e Goal Decomposition <<Decomposition:Goal>>
{Standard SysML Decomposition Line}

— A goal decomposition is a segmentation into a complete set of sub goals necessary to achieve the higher level goal.

— To determine when a goal decomposition is needed the State Vector must be evaluated. If the State Variables within a State
Vector can be partitioned into subset State Vectors without introducing any new State Variable(s) then a goal decomposition is
appropriate. If a new State Variable, or set of State Variables, are needed then a Functional Elaboration is needed.

e Goal Elaboration <<Elaboration:Goal>>
{Stereotyped SysML Decomposition Line}

— A goal elaboration is a transformation of the state vector and indicates a function or set of functions are needed to continue
development of the tree along the particular path.

— A goal elaboration is required when new State Variables must be introduced to achieve the higher level goal. A function is
added to transform the new State Variable(s) into the higher level existing State Variable(s).

e Goal Aggregation <<Aggregation:Goal>>
{Stereotyped SysML Aggregation Line}

— A goal aggregation is used to indicate that there is a goal to monitor the attributes of a State Vector within some predefined off-

nominal range. The goal aggregation is only used to aggregate the off-nominal goals within the lower level goals.

act [Package] Diagram 111.B.6 [Goal to Goal Connections] /

Name: Goal to Goal Connections
Package: Diagram I11.B.6

Version: 1.0

Author: jtbrecke

«Decomposition:Goal»

«Decomposition:Goal»

«Decomposition:Goal» «Decomposition:Goal»
«Decomposition:Goal» «Decomposition:Goal»

19 August 2013 Ducommun Incorporated: Miltec Systems & Jacobs ESSSA 10

«Aggregation:Goal»

«Elaboration:Goal»

IlAbon Goal .

S)Ducommun
@ Miltec

JACOBS
ESSSA Group

GFT Goal Diagram Construct Connections

¢ Goal to State Variable/VVector Connections

e <<PDefines_the Range_for>>
{Stereotyped SysML Dependency Line}

— Goals define the range of a State Variable or a set of State Variables, a State Vector
— Only the specific Object version of a State Variable/Vector is used on a Goal Diagram

act [Package] Diagram I11.B.7 [Goal to Variable-Vector Connection] /

Name: Goal to Variable-Vector Connection
Package: Diagram III.B.7

Version: 1.0

Author: jtbrecke

(from Diagram IIl.B.6)

«Decomposition:Goal» «Decomposition:Goal»

1
«Defines_the_Range_for»

v

«Object:State_Variab...
Instance of :Variable 1b

(from Diagram II.B.6)

(from Diagram IIl.B.6)

«State_Variable»
::Variable 1b
- Variable 1b

(from Diagram lll.B.5)

«Defines the_Range_for»~ | ::Variable 2b

«Object:State_Vecto
Instance of :Vector
«State_Variable»
- Variable 2b
::Variable 1b
- Variable 1b

(from Diagram lI.B.5)

1
«Defines_the_Range_for»

Y

«Object:State_Variab...
Instance of :Variable 2b

«State_Variable»
::Variable 2b
- Variable 2b

(from Diagram lll.B.5)

19 August 2013

Ducommun Incorporated: Miltec Systems & Jacobs ESSSA

11

S)Ducommun
@ Miltec

sacoes GFT Goal Diagram Construct Connections @

ESSSA Group

¢ Goal to Function Package Connections
e <<Defines_Elaboration_of>>
{Stereotyped SysML Dependency Line}

— When the Goal Elaboration <<Elaboration:Goal>> is used, and new State
Variable/Vector(s) must be created, a package must be created to explicitly define
that transformation

— The link connects the Goal being Elaborated to a Function Package

¢ The activity diagram that is created alongside the package is where the description of the
transformation process is shown, this is also known as the Function Diagram

act [Package] Diagram I11.B.8 [Goal to Function Connection] /

Name: Goal to Function Connection

Package: Diagramitsg _~JMIMaintenance Goalta - _ _ _ _ _ _ _ _ __
Version: 1.0 «Aggregation:Goal» «Defines _Elaboration_of » I
Author. jtbrecke (from Diagram lIl.B.6) !

” Function Package ||
Abort Goal .
(from Diagram I.B.6) «Elaboration:Goal»

(from Diagram lil.B.6)

(from Diagramlll.B.9)

19 August 2013 Ducommun Incorporated: Miltec Systems & Jacobs ESSSA 12

=)Ducommun

Miltec GFT Function Diagram Construct

JACOBS .
ESSSA Group Connections

¢ Function Diagrams show the connection between ‘y’ and ‘x’ to ‘f’ in the equation
y=f(x)

e <<Input>> {Standard SysML Object Flow Line}

— Construct Connections linking the input State Variable ‘x’ to the Function ‘f’
e <<Qutput>>{Standard SysML Object Flow Line}

— Construct Connection linking the Function ‘f’ to the output State Variable 'y’

¢ Functions can not exist with out a goal
e <<Realizes>> {Standard SysML Realization Line}
— Construct Connection linking a nominal or Off-Nominal Function to show that there exists a function that gives
the goal its State Variable/Vector(s)

act [Package] Diagram 111.B.9 [Function Package]

Name: Function Package
Package: Diagram IIl.B.9

Version: 1.0

Author: jtbrecke «Object:State_Variable»
Instance of :Variable 1a

_ «Defines_the_Range_for» = «state_variables

. ::Variable 1a
(from Diagram Ill.B.6) - variable 1a

(from Diagram lI.B.5)

(from Diagram IIl.B.6) A
«Function:Abort_Trigg...
Abort Function

«Realizes»

«Input»

I
I
I
I
I
I
: | Abort Goal
I
I
I
I
I
|

«Realizes» «Output»

(from Diagram ll.B.3)

«Function»
Nominal Function

(from Diagram II.B.3)

«Input»
|
«Object:State_Vector»
Instance of :Vector C

«State_Variable»
«Defines the. Range. for» > SVemEkle Ze
- \Variable 2¢c

(from Diagram lI.LB.6) ::Variable 1c
- \Variable 1c

(from Diagram lI.B.5)

19 August 2013 Ducommun Incorporated: Miltec Systems & Jacobs ESSSA 13

= Ducommun
@ Miltec

JACOBS
ESSSA Group

GFT State Vector Object Construct
Connections

¢ In concert with Goal Diagram
Elaboration and Decomposition
Construct Connections, links
connect State Variable and
Vector objects within the State
Vector Breakdown View of the

model.
¢ In addition to the State Vector
Breakdown View being the library for
State Vector Objects used on Goal
Diagrams it also shows the connections
of the State Vectors to each other

act [Package] Diagram III.B.5 [Variabl ' ion-D /

«Object:State_Vector»
Instance of :Vector A

Name bl 1 -De
Package: Diagram IIl.B.5

Version: 1.0

Author: jtbrecke

«State_Variable»
Variable 1a

- Variable la
::Variable 2b

- Variable 2b
::Variable 1b

- Variable 1b

«Decomposition:State_Vector» «Decomposition:State_Vector»

«Object:State_Variable»
Instance of :Variable 1a

«Object:State_Vector»
Instance of :Vector B

«State_Variable»
“Variable 1a
- Variable la

«State_Variable»
Variable 2b

- Variable 2b
:Variable 1b

- Variable 1b

e State Vector Decomposition
<<Decomposition:StateVector>>

«Elaboration:State_Vector»

«Decomposition:State_Vector «Decomposition:State_Vector»

19 August 2013

- A State Vector Decomposition shows the

partitioning of one state vector into its sub
state vectors

If taken to the lowest level possible a state
vector can be eventually decomposed to its
individual state variables

State Vector Elaboration
<<Elaboration:StateVector>>

A State Vector Elaboration shows the
connection between two state vectors that
have been elaborated by a function

A State Vector Elaboration is used when one
or more new State Variables are introduced
that did not exist in the higher level State
Vector

«Object:State_Vector»
Instance of :Vector C

«State_Variable»
“Variable 2c

- Variable 2¢
Variable 1c

- \Variable 1c

«Decomposition:State_Vector

«Object:State_Variable»
Instance of :Variable 1c

«State_Variable»
Variable 1c
- Variable 1c

«Object:State_Variable»
Instance of :Variable 1b

«State_Variable»
Variable 1b
- Variable 1b

«Decomposition:State_Vector»

«State_Variable»
Variable 2¢
- Variable 2c

«Object:State_Variable»
Instance of :Variable 2c

«Object:State_Variable»
Instance of :Variable 2b

«State_Variable»
Variable 2b
- Variable 2b

Ducommun Incorporated: Miltec Systems & Jacobs ESSSA

14

@ Ducommun

Miltec GFT State Vector Type Construct

JACOBS .
ESSSA Group Connections

¢ A set of State Variable/Vector Types are created before the State Variable/Vector Objects can be

created,
e By creating types of State Variables/Vectors, the same kind of variables and vectors can be reused in multiple places in the model
by utilizing the Instant Classifier option in EA

¢ The State Vector Types are contained within the State Vector Library
e The <<Class:State_Variable>> are created, and an attribute assigned representing the variable itself.
e <<Inherit>> is used once all of the variables are created
{Stereotyped SysML Generalization line}
¢ The connection is created going from the vector, <<Class:State _Vector>>, to the variables

act [Package] Diagram I11.B.10 [Variable Type Connections] /

Name: Vgnable Type Connections «Class:State_Variable» «Class:State_Vector»
Package: Diagram I11.B.10 .
: Variable 1a Vector A
Version: 1.0
Author. jtbrecke «State_Variable» «Inherit» «State_Variable»
- Variable 1a ::Variable 1a
- Variable 1a
::Variable 2b
«Class:State_Variable» - - Variable 2b
Variable 1b «Inherit» “Variable 1b
- Variable 1b
«State_Variable» «Class:State_Vector»
- Variable 1b
Vector B
«State_Variable»
«Class:State_Variable» «Inherit» ::Variable 2b
Variable 2b - \Variable 2b
:Variable 1b

«State_Variable» - Variable 1b

- Variable 2b

«Class:State_Variable»

Variable 1c
«State_Variable»
- Variable 1c «Class:State_Vector»
Vector C
«State_Variable»
«Class:State_Variable» «Inherit» ::Variable 2¢
Variable 2c - Variable 2¢
:Variable 1c
«State_Variable» - Variable 1c
- Variable 2c

19 August 2013 Ducommun Incorporated: Miltec Systems & Jacobs ESSSA 15

=S\Ducommun
@ Miltec

JACOBS GFT Conclusions

ESSSA Group

¢ The GFT gives systems engineers a representation and process to define a system
functionally in a top down perspective that links the physical design to the
functional design.
e It allows for incorporation of nominal and off nominal design during the functional expression of the
system.
o Ityestablishes a mathematical and logical structure for creating requirements for the system that
allows for systematic verification and validation
¢ However, with the current version of the SysML language it becomes difficult to

reliably perform the steps described in a repeatable manner.

e SysML relies heavy on the physical components of a system and less so with the functional
components and system requirements.

e SysML is not optimized to model the inherent tree structure required by GFT implementation.

e Due to the inherency of cross branching in a GFT model, SysML adds an additional layer of
complexity.

— An example of this is that to maintain structural integrity of a launch vehicle one must maintain control, but it is
also true that to maintain control one must maintain structural integrity.

¢ Additional work would be needed to:
e Create a tool that would inherently utilize the concepts described above, or;
e Utilize the particular aspects of SysML that do work and expand on the language to incorporate
GFT concepts into the core SysML architecture

19 August 2013 Ducommun Incorporated: Miltec Systems & Jacobs ESSSA 16

=S\Ducommun
@ Miltec

JACOBS

ESSSA Group

BACKUP

19 August 2013 Ducommun Incorporated: Miltec Systems & Jacobs ESSSA 17

S)Ducommun
@ Miltec

JACOBS GFT Toolbox

ESSSA Group

¢ Although SysML is not the perfect tool to use to create and represent a GFT, it was

the tool available during the development of the concepts presented
e To properly define all of the stereotypes that were needed, an Enterprise Architecture Toolbox was
created on top of the SysML standard toolboxes

eeeeeeeeeee

«E:
s>

nnnnnnnn

«Extend: «Extends> o
inherit [Defines_the_Range_for [Defines_Elaboration_of [[Trace:state_variable [

19 August 2013 Ducommun Incorporated: Miltec Systems & Jacobs ESSSA 18

=)Ducommun
/ Miltec

JACOBS
ESSSA Group

GFT Stereotype List

19 August 2013

GFET Stereotype SysML Metaclass Description
<<Goal Nom:Achievemnt>> Requirement Nominal Goals used within the GFT
<<Goal Nom:Maintenance>> Requirement
<<Goal Nom:Precention>> Requirement
<<Goal OffNom:Abort>> Requirement Off Nominal Goals used within the GFT
<<Goal OffNom:C&W>> Requirement
<<Goal OffNom:RM>> Requirement
<<Goal OffNom:Safing>> Requirement
<<Input>> ObjectFlow Object Flows used to show how and what State Variables/Vectors are
<<Output>> ObjectFlow used by Nominal and Off Nominal Functions
<<Aggregation:Goal>> Aggregation Used to connect Off Nominal Goals to Nominal Goals
<<Decomposition:Goal>> Composition Used to connect Nominal Goals to Nominal Goals
<<Elaboration:Goal>> Composition
<<Decomposition:State_Vector>> Composition Used to connect State Vectors to State Vectors consistently with Goal
Diagrams
<<Elaboration:State_Vector>> Composition
<<Class:State_Vector>> Class Used to create “Types” of State Variables/Vectors to be specifically
<<Class:State Variable>> Class classified elsewhere in the model
<<Object:State Vector>> Object Used to create specific State Variables/Vectors out of State
<<Object:State Variable>> Object Variable/Vector “Types”
<<Function>> Activity Nominal and Off Nominal Functions used within the GFT
<<Function:Abort Trigger>> Activity
<<Function:C&W_Trigger>> Activity
<<Function:RM>> Activity
<<Function:Safing>> Activity
<<Realizes>> Realization Used to link Functions to Goals
Generalization Used to pass State Variables to Vectors and lower level State Vectors
<<Inherit>> to higher level State Vectors
<<Defines the Range for>> Dependency Connects State Variables/Vectors to Goals
: : Dependency Connects Function Packages to Goals in the Goal Diagram
<<Defines_Elaboration_of>>

Ducommun Incorporated: Miltec Systems & Jacobs ESSSA

19

