

Geospace Overview Space Weather Camp 2012 Huntsville, Alabama

Dr. James Spann NASA Marshall Space Flight Center

Space Weather

NASA

the Sun

Sun Releases X-class Solar Flare

This movie shows the July 6, 2012 X1.1 flare in the 171 Angstrom wavelength as captured by NASA's Solar Dynamics Observatory (SDO).

Solar minimum and maximum comparison

October 31, 2013

ASA

The aurora from ISS

Aurora From Orbit Sept. 17, 2011

This gorgeous view of the aurora was taken from the International Space October 31, 20 Itation as it crossed over the southern Indian Ocean on September 17, 2011. 10 The sped-up movie spans the time period from 12:22 to 12:45 PM ET.

Bastille Day Event July 14, 2000 . . .

2000/07/14 08:36:10

. . . a very active region on the Sun produces a flare the brightest this solar cycle

2000/07/14 09:00:10

within minutes, arrival of energetic proton storm affects s/c detectors

View of Earth from Polar VIS Earth Camera VIS Earth Camera 2000/196 10:00 UT

... during the same hour, a CME is observed traveling toward Earth

... the next day, spacecraft contend with arrival of CME cloud

System	Name of System	Type of Impacts
Commercial Satellites	geo-synchronous*	Lost transponder - due to proton event
	geo-synchronous*	Orientation problems - due to magneto-pause crossing
	geo-synchronous*	Orientation problems - due to proton event
Operations Satellites	GOES 8, 10 and 11	"Salt and Pepper" effect on visible channel 1 and
		channel 2 of infrared sensor, 2MeV electron
		saturation due to proton event; infrared sensor
		problems effects fire detection users
Research Satellites	Japan's Orbiting X-	Went into "safe mode" and lost a lot of altitude
	ray Observatory	drained back-up batteries and unable to regain
	(ASCA)	control of craft (as of 7-22). Orientation probs.
		Unable to orient towards sun for recharge of
	SOHO	Permanent solar panel degradation equivalent to 1
		vear of normal degradation
	Wind Spacecraft	~25% permanent loss of transmitter power
	QuickSCAT	s/c busses went down, lost 17 hours science data
		(earth science)
October 31, 2013	NEAR	XGS instrument auto-shut down for 2 days 15
	ACE	plasma detectors lost output for days

... on July 16th a large magnetic storm occurs ...

the aurora is reported as far south as:
St Louis, MO
Manassas, VA
Bakersville, CA
Bendigo, Victoria (Australia)

Space Weather Effects

IMAGE, seeing the invisible₂₂

IMAGE, seeing the invisible₂₃

IMAGE, seeing the invisible₂₄

IMAGE, seeing the invisible

October 31, 2013

NASA

Marcel Proust

IMAGE, seeing the invisible₂₆

October 31, 2013

NASA

What does it take to understand space?

- design software resources
 - mass, volume, thermal, mechanical, optical, circuits
- firmware/flight software
- cpu/memory/components
- radiation tolerant
- low power
- Reliability it must work there are no second chances

Theory and modeling

- must have physics for understanding
- must have useful output for application
- forward modeling simulated instrument response
- integration of data into modeling
- coupling models system view
- availability to community of users