

Propulsion System Elements MSFC Options and Thoughts

8/9/2013

Charts prepared by: M.K. Devine

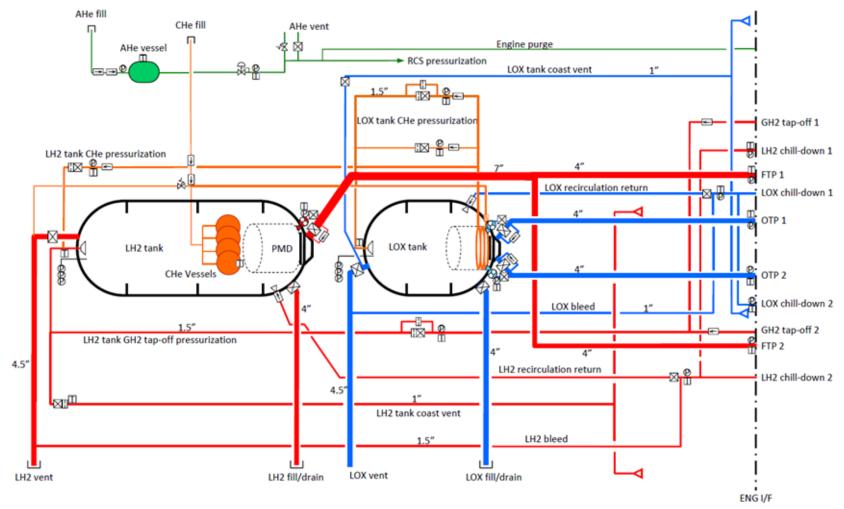
- Objective: To propose a common MPS to be designed and built by JAXA, in cooperation with NASA, for applicability to the Evolvable Upper Stage for SLS.
- Approach: to keep interfaces as simple as possible
 - Keep most interfaces to mechanical joints and simple electrical connections (such as instrumentation and solenoid actuation)
 - Electrical and command/data handling are more complex to coordinate internationally unless mutual agreements can be made to ease the potential communication issue
 - Each partner is planning to use their own avionics as a ground rule

There are four options MSFC would like JAXA to consider

- 1) A modular main propulsion system approach that includes propellant ducts, valves, RCS, and thrust structure. This excludes tanks, TVC, thermal protection, and stage load carrying members
- 2) A modular main propulsion system approach that includes the items listed above plus a LOX tank
- 3) A components approach that includes many fluid carrying components such as valves, ducts, RCS, and flexible bellows
- 4) An extension of the engine that includes prevalves, main thrust takeout with TVC attach points

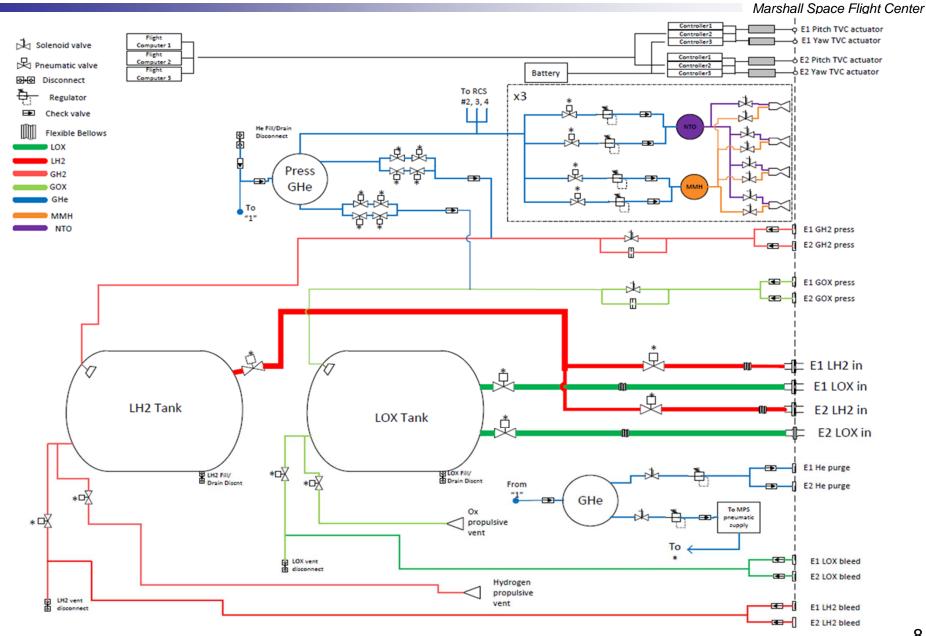
OPTION 1 Modular Main Propulsion System without a LOX tank

EUS Breakout

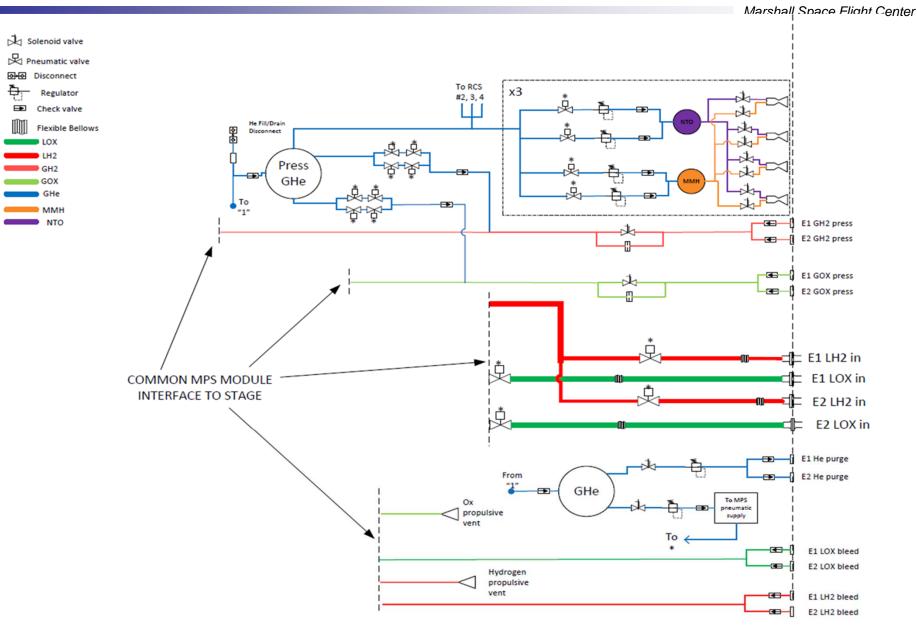


JAXA proposed stage

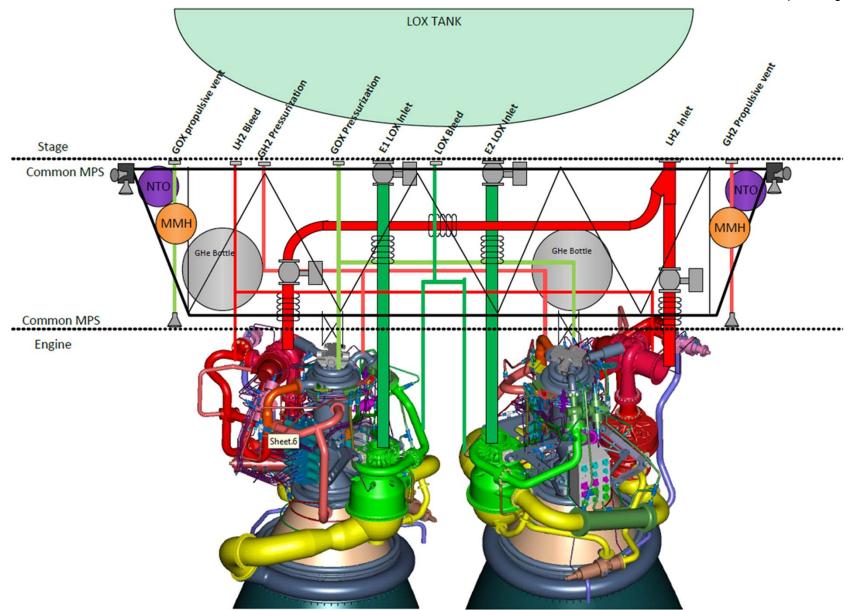
• Proposed JAXA stage from June 28, 2013 presentation



- Based on the information from the JAXA proposal dated June 28, the following assumptions were made
 - Both tank recirculation pumps were removed.
 - Removed cryo helium bottles since tank pressurization is done via autogenous repress
 - LH2 and LOX chill will only be active during ground operations. During flight, MARC-60 will chill the engine in idle mode and run propellant through the main chamber and overboard
 - Assume that JAXA agrees to using pneumatic and solenoid actuated valves for the MPS. EMAs would likely complicate avionics and controller integration
- Note: the following schematics are not to infer redundancy or NASA EUS schematics. They are to be used as a starting point of discussion with JAXA


MSFC Proposed Stage Schematic

Option 1 Schematic



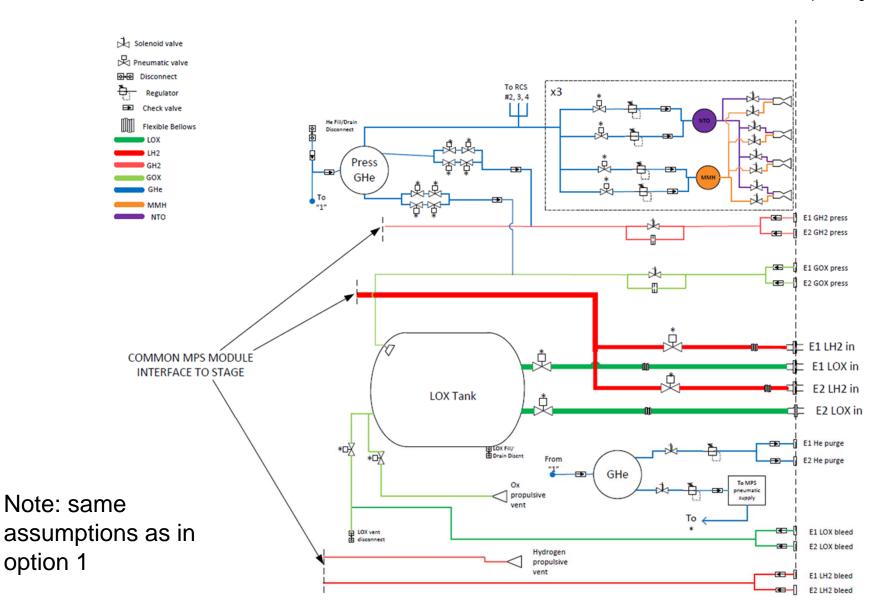
Option 1 Cartoon of Applicable Hardware

Marshall Space Flight Center

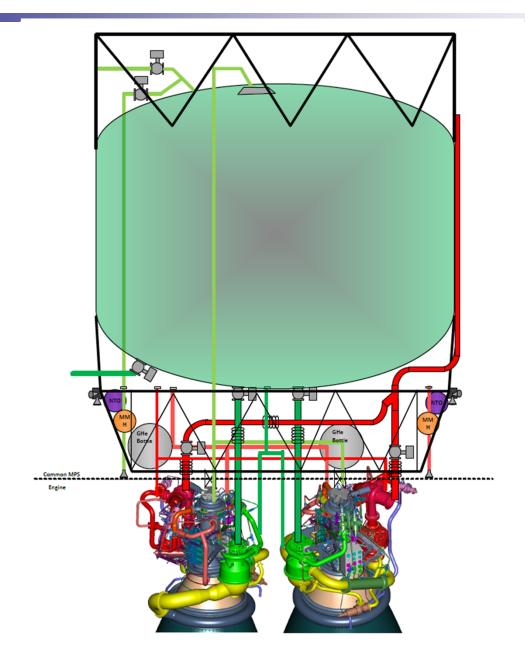
- JAXA would provide a majority of the structure, feedlines, prevalves, helium tanks, and RCS.
- NASA would provide appropriate LOX/LH2 tanks, avionics, power, and TVC systems for the EUS
- Pros:
 - ICD can be maintained between MPS to engine and another for MPS to stage
 - Interfaces are kept clean and simple
- Cons:
 - Module is only applicable for dual engine use

OPTION 2 Modular Main Propulsion System with a LOX tank

EUS Breakout



Option 2 Schematic


Marshall Space Flight Center

Option 2 cartoon drawing

Marshall Space Flight Center

Option 2 Summary

- JAXA would provide a majority of the structure, feedlines, prevalves, helium tanks, RCS, and structurally hung LOX tank.
- NASA would provide appropriate LH2 tank, avionics, power, and TVC systems for the EUS
- Pros:
 - ICD can be maintained between MPS to engine and another for MPS to LH2 tank
 - Interfaces are kept clean and simple
- Cons:
 - Module is only applicable for dual engine use
 - Structural interfaces will be more difficult and the design will need to be for worst case and likely carry more mass than needed

OPTION 3 Main Propulsion System Component Design and Development

JAXA provided information

- Marshall Space Flight Center
- JAXA provided initial proposal on June 28, 2013 that included a Common Propulsion Components for use by NASA's EUS and JAXA's H-X.

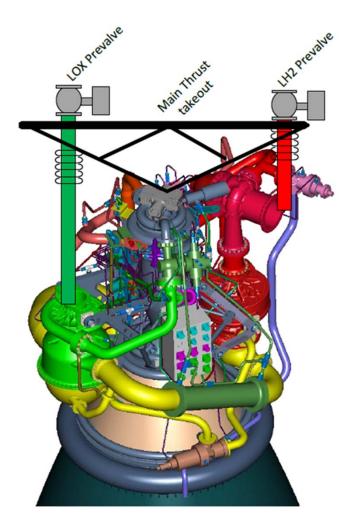
5.4.9 CPC Definition

CPC candidates are marked X in the following table.

Category	ltem		CPC	Note	
Structure	PAF				
	PSS				
	LH2 tank fwd. skirt				
	LH2 tank				
	LH2 tank aft. skirt				
	Inter tank truss				
	LOX tank			(X)	Depends on safety factor, MEOP, load condition, etc. Some modification such as change of cylinder length might be required.
	Engine structure				modification such as change of cylinder length might be required.
	Separation deices (pyrotechnic, spring)				
	Tank vent, tank relieve			x	
Propulsion	Valves	Pressurization		x	
		Fill, drain, pre-valve		x	
		CHK, relieve		x	
		Regulator		x	
		Purge		x	
	Sensors (pressure, temperat		ture liquid level camera)	X	Electrical I/F to be checked
	CHe vessels (in the LH2 tank)			(X)	Depends on the volume
	Alle vessel			(X)	Depends on the volume
				X	
	EM actuator			X	
	CHe HEX (in the LOX tank)				
	Tank internal devices (diffuser, baffles, seals)		LH2		
			LOX	(X)	Used partially for DUUS
	QD, bellows		X		
	Umbilical			(X)	Mechanical I/F to be checked
	PMD			L Ó	
	Recirculation chill-down system				
	Tubing			(X)	Used partially for DUUS
Avionics	Ĭ				

- JAXA would act as vendor to NASA for most fluid carrying components such as valves, bellows, ducts, and possibly RCS
 - Partnership with upper stage prime contractor would be needed
- Each component will have its own specification and be developed and qualification tested by JAXA
- Pros:
 - Reduces NASA cost of major MPS components
 - Keeps interfaces relatively clean
- Cons:
 - Create new management structure from the proposed engine approach. JAXA would serve more as a subcontractor and possible complexities with using CSOC
 - Multiple parts and specs to control and manage

OPTION 4 Extension of MARC-60 to include thrust structure and prevalves



- JAXA would include the main thrust takeout structure of the engine with TVC attach points
 - Similar to RS-68 approach
- This option would be a modification to the MARC-60 definition to include these components
- Pros:
 - Reduces some NASA cost of a few MPS components
 - Keeps interfaces relatively clean
 - Engine is still modular and can fit either 1 or 2 engine configuration
- Cons:
 - Not a large cost savings on the MPS side
 - Added weight of the thrust takeout may be sub-optimal for both EUS and H-X application

Interfaces would essentially be brought up a few feet

Prevalves, structure, and common TVC attach points are the only items that would be relief from the MPS

Proposed Schedule

Marshall Space Flight Center

- Provide JAXA with MSFC options
- Obtain feedback at face to face meeting
- Formulate JAXA/NASA options
- Negotiate and assess benefits of options
- Draft requirements as needed
- Final Proposal

Aug 12 Aug 27-29 Aug 30-Sept 13 Oct 14 –Nov 15 Nov 25-Dec 13 End of Dec