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One of the challenging primary objectives associated with NASA’s Asteroid Redirect 

Crewed Mission (ARCM) is to demonstrate deep space Extravehicular Activity (EVA) and 

tools and to obtain asteroid samples to return to Earth for further study. Prior Shuttle and 

International Space Station (ISS) spacewalks have benefited from engineered EVA 

interfaces which have been designed and manufactured on Earth. Rigid structurally 

mounted handrails, and tools with customized interfaces and restraints optimize EVA 

performance. For ARCM, EVA complexity increases due to the uncertainty of the asteroid 

properties. The variability of rock size, shape and composition, as well as behavior of the 

asteroid capture mechanism will complicate EVA translation, tool restraint, and body 

stabilization. The unknown asteroid hardness and brittleness will complicate tool use. The 

rock surface will introduce added safety concerns for cut gloves and debris control. Feasible 

solutions to meet ARCM EVA objectives were identified using experience gained during 

Apollo, Shuttle, and ISS EVAs, terrestrial mountaineering practices, NASA Extreme 

Environment Mission Operations (NEEMO) 16 mission, and during Neutral Buoyancy 

Laboratory testing in the Modified Advanced Crew Escape Suit (MACES) suit. This paper 

will summarize the overall operational concepts for conducting EVAs for the ARCM mission 

including translation paths and body restraint methods, potential tools used to extract the 

samples, design implications for the Asteroid Redirect Vehicle (ARV) for EVA, and the 

results of early development testing of potential EVA tasks. 

Nomenclature 

ARCM = Asteroid Redirect Crewed Mission 

ARM = Asteroid Redirect Mission 

ARV = Asteroid Redirect Vehicle 

EMU = Extravehicular Mobility Unit 

EVA = Extravehicular Activity 

ISS = International Space Station 

MACES =  Modified Advanced Crew Escape Suit 

MCC = Mission Control Center 

NASA = National Aeronautics and Space Administration 

NEEMO = NASA Extreme Environment Mission Operations 

O2 =  Oxygen 

PLSS = Portable Life Support System 

RCS = Reaction Control System 

WIF = Worksite Interface 
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I. Introduction 

HE Asteroid Redirect Crewed Mission (ARCM) requires short duration Extra Vehicular Activity (EVA) 

capability for Orion. The EVAs will involve a two-person crew for approximately four hours. Currently, two 

EVAs are planned with one contingency EVA in reserve. Providing this EVA capability is very challenging due to 

system level constraints and a new and unknown environment. The goal of the EVA architecture for ARCM is one 

that builds upon previously developed operational concepts and lessons learned, while providing a stepping stone to 

future missions and destinations. The primary system level constraints are to 1) minimize system mass and volume 

and 2) minimize the interfacing impacts to the baseline Orion design. In order to minimize the interfacing impacts 

and to not perturb the baseline Orion schedule, the concept of adding “kits” to the baseline system is proposed. 

These kits consist of: an EVA kit (converts the Launch, Entry, and Ascent suit to an EVA suit), EVA Servicing and 

Recharge Kit (provides suit consumables), the EVA Tools, Translation Aids & Sample Container Kit (the tools and 

mobility aids to complete the tasks), the EVA Communications Kit (interface between the EVA radio and Orion), 

and the Cabin Repress Kit (represses the Orion between EVAs).  This paper will focus on the EVA operations of 

asteroid exploration and sample collection. Investigation of historical EVA operations provided a foundation for the 

development of the operations concept of microgravity sampling techniques of an unknown asteroid body.  

A notional EVA timeline is represented in Figure 1. 

The planned duration of the two nominal EVAs is four hours. The relatively short duration is driven by a 

compromise between different criteria. Four hours were viewed as the minimum amount of time to accomplish the 

sampling tasks and the maximum amount of time it is reasonable for the MACES to work with the PLSS as 

designed. The feasibility study selected a Portable Life Support System (PLSS) for EVA rather than an umbilical
5
. 

The PLSS enables greater flexibility in translation of the EVA crew members on the integrated vehicle stack and the 

asteroid. The proposed operational concepts utilizes expandable booms and integrated features of the asteroid 

capture mechanism to position and restrain the crew at the asteroid worksite. These methods enable the capability to 

perform both finesse, and high load tasks necessary to collect samples for scientific characterization of the asteroid. 

Two capture mechanism concepts are being pursued by the agency, in support of two differing goal. One mission 

concept captures a small asteroid in its entirety; asteroid diameter up to 10 meters. The conceptual capture 

mechanism design for this Small Boulder Capture mission consists of an inflatable bag that will cinch the asteroid to 

the Asteroid Redirect Vehicle (ARV) structure. The other mission concept will robotically capture a small boulder 

of up to 4 meters diameter sitting on a larger parent asteroid. The conceptual design for this Robotic Boulder 

Capture mission consists of robotic capture arms that will grasp the boulder. EVA accommodations will be critical 

for both designs to enable the asteroid exploration mission objectives. The EVA community will work with both 

capture mechanism teams to optimize the EVA worksites. 

II. EVA Concept of Operations 

A. Outbound Operations 

During the 10-day transit time, the crew will have an opportunity to prepare the cabin and suits for the upcoming 

EVAs. Shortly after the Earth departure burn, the Orion cabin will be depressurized to 10.2 psi to facilitate minimal 

EVA pre-breathe times. The crew will then transform the vehicle and their Modified Advanced Crew Escape Suits 

(MACES) from the launch configuration to one that supports EVA. Figure 2 shows the MACES in its launch and 

entry and EVA configurations. 

T 
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Figure 1. EVA Timeline. 
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While en-route to the ARV, the crew will perform 

an EVA dry run including checkout of the MACES and 

Exploration PLSS, and practice suit donning. The EVA 

checkout activities will include communication checks 

between suits and the ground. Verification of suit 

performance will be jointly executed with the Mission 

Control Center (MCC). The crew will review the EVA 

preparation, vehicle depress, egress, and repress 

procedures to ensure adequate reach and access prior to 

doffing the suit. The EVA tools launched on Orion will 

be removed from their launch stowage location and 

configured for EVA. The crew also will perform final 

battery charging and install support hardware for 

mounting the Orion to ARV translational boom (“Gap 

Spanner Boom”) near the EVA hatch. 

B. EVA Prep 

Prior to each EVA, the Orion RCS thrusters will be 

used to slew the stack to a +15° yaw. This attitude 

change will provide improved illumination of the EVA worksite, and the Orion thrusters will arrest any rates before 

the vehicle is mode configured to free drift for the duration of the EVA operations.  

On the morning of the first EVA, the crew will complete post-sleep activities and initiate EVA preparations with 

suit donning. The suit will be purged of cabin air and pressurized with 100% Oxygen (O2). The crew will then 

perform suit pressure integrity and system checks followed by a prescribed pre-breathe period. Based on similarity 

to Shuttle protocols, the in-suit pre-breathe duration will be approximately 40 minutes. Additional analysis is 

required to verify the time required to de-nitrogenate the MACES. 

When pre-breathe and suit leak check are complete, the cabin depressurization will be initiated by the crew. 

Once at vacuum, the crew will open the hatch and disconnect the Enhanced MACES umbilicals. The sequence of 

umbilical disconnection and Exploration PLSS activation will be determined through future integrated testing and 

verification of the Orion, Exploration PLSS, and MACES systems. 

C. EVA, Small Boulder Capture 

The first EVA commences when the Orion hatch is open and the crew is operating on the Exploration PLSS. The 

EVAs will be designed to be no longer than four hours long. The priorities for this first EVA will include sample 

retrieval, contextual and detailed photographic observations, as well as EVA tool and translation aid deployment. 

Reference Figure 1. 

With both crew members participating in the EVA, no crew member will be in the Orion to provide checklist 

narration. EVA support personnel in 

MCC will provide detailed procedure 

narration and management. This model 

has been successfully performed during 

several International Space Station (ISS) 

stage EVAs. For this mission, a three to 

four second round trip communications 

delay will require some additional crew 

autonomy and communications protocol 

adherence. However, a delay of this 

duration is not sufficient to cause 

insurmountable challenges or changes to 

operations based on previous analog 

testing. Crew aids will be used to 

minimize the impacts of communication 

delays. These could range from simple 

paper cuff checklists to more complex 

electronic versions capable of receiving 

uplink procedure deltas in real-time 

 

 
Figure 2. MACES in Launch/Entry Configuration 

(left) and EVA Configuration (right). 

 
Figure 3. EVA crew exiting Orion with Translation Boom. 
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during the EVA. In addition to 

providing EVA procedure 

narration, MCC personnel will 

monitor the vehicle and relay 

caution and warning information 

to the crew. The first hour of the 

EVA will focus on Orion egress 

and configuration of tools at the 

worksite. To avoid risking 

damage to thermal protection 

materials on the Orion structure, 

the crew will need to deploy a 

translation bridge between the 

hatch and the aft structure of the 

ARV. An EVA crew member 

positioned in the hatch opening 

will secure one end of a small 

telescoping boom to a mounting 

bracket interface inside the 

hatch. The opposite end of the boom will be guided into a soft-dock receptacle secured on the ARV. Preliminary 

design concepts are being evaluated in government fiscal year 2014. Figure 3 shows the first EVA crew member 

exiting the Orion and installing the Gap Spanner translation boom. The bridging boom will not be permanently 

installed between the Orion and the ARV as this would preclude hatch closure and undocking. 

The first EVA crewmember (EV1) will translate across the boom to the ARV structure where he/she will then 

attach the soft dock with a locking feature, if required. Each EVA crew member will configure his or her safety 

tether to minimize the need to swap from one tether to another while maximizing access to all EVA worksites along 

the mated vehicle stack. Each safety tether will be anchored near the Orion hatch and routed to avoid damage to 

delicate hardware such as sealing surfaces, solar arrays and antennas. At present, it is assumed that a 55-foot EVA 

safety tether will provide sufficient reach for this mission. A final step in crew egress will involve deployment of a 

thermal and debris cover across the hatch opening for the duration of the EVA. The cover will be simple and easily 

 
Figure 4. EVA crew on ARV translation path from Orion toward 

asteroid. 

 
Figure 5. Crew retrieving tool from ARV toolbox. 
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deployed. Figure 4 shows EVA crew members translating along EVA handrails installed on the ARV bus structure 

after departing the Gap Spanner boom between the Orion and the ARV.  

The crew will translate on rigid EVA handrails mounted along the ARV bus and proceed to retrieve tools from 

the ARV toolbox, located along the translation path (Figure 5). Two telescoping Stabilization Booms will be 

mounted to the ARV exterior with launch restraint fittings. A series of boom sockets will be pre-integrated around 

the circumference of the ARV flange near the interface to the bag. These sockets could be similar to the Worksite 

Interface (WIF) sockets used on ISS. 

Crew safety and operational simplicity dictate that sample retrieval worksites be chosen where the rock is within 

easy reach from the bag surface. The crew will select a socket for Stabilization Boom operations based on ease and 

value of sample collection. Rotational joints will be incorporated into the boom interfaces to allow access to 

multiple asteroid sample retrieval worksites from a single bus mounting point. Figure 6 shows the EVA crew setting 

up for boom operations, and figure 7 illustrates the crew collecting samples while stabilized in a boom-mounted foot 

restraint. Initial EVA concepts utilize the high tension winch cables in the ARV capture design as well as a network 

of fabric tether points on the bag to aid in crew and tool translation and restraint at worksites. Each of these concepts 

will be tested in ground simulations to further refine requirements and demonstrate the associated techniques. 

Defining a method of ‘cutting’ through the bag to access the asteroid requires further study. Material choices and 

specific bag or capture mechanism design will heavily influence methods of gaining access to the asteroid. Initial 

bag material selections of vectran with kapton layers seem to be relatively easy for crew to cut during testing. 

As the crew ventures onto the bag to explore the asteroid and collect rock samples, EVA complexity increases 

due to the uncertainty of the asteroid properties. Plans for EVA translation, tool restraint and body stabilization must 

accommodate the variability of rock size, shape and composition, as well as the unknown characteristics of the 

capture mechanism. EVA tool design must accommodate the hardness and brittleness of the asteroid. The rock 

surface will introduce safety concerns for cuts to gloves and space suit soft goods, visor abrasion and debris control. 

Mission feasibility is based on experience with ISS EMU gloves. Assessment of durability of the EMU glove 

against the rock surface is forward work; possible risk mitigation may include the use of a sacrificial over-glove, 

which has precedence in ISS flight operations. It is not reasonable to assume that rock fragments will be perfectly 

contained; opening the bag and breaking off rock samples will release material into the area. The key concerns are 

ensuring that rock fragments do not impact the suit or vehicle with high kinetic energy and that the interior of the 

Orion be kept clean. The helmet visor design will include abrasion-resistant coatings to protect from dust damage 

and suit outer layer material will be designed to prevent propagation of dust into the Orion interior. Tools and 

operational techniques will have to be designed to minimize debris liberation and associated energy. Based upon the 

 
Figure 6. EVA crew setting up for stabilization boom operations. 
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properties of the lunar Distant Retrograde Orbit (DRO), high energy recontact of liberated material with the vehicle 

is not likely to pose a risk.  

EVA objectives on the asteroid will be varied. Geological samples may include hammer chips, core samples, 

soil, float collection, and others. 

Tasks may include deployment 

of a sensor array on the asteroid 

for acoustic testing or long term 

monitoring, or demonstration of 

anchoring techniques to the rock 

surface. As possible, imagery 

will provide MCC situational 

awareness, geological context, 

and provide an avenue for 

public engagement. EVA task 

definitions will evolve as the 

mission matures. Definition of 

the specific objectives is 

forward work to be coordinated 

with the scientific, commercial, 

and international spaceflight 

communities. Initial mass 

available to the ARCM may 

limit asteroid utilization on this first mission. Extending the ARV platform for follow-on missions will provide more 

utilization options and allow for more detailed studies based on the results of the preliminary data captured by the 

ARCM 

Collection of asteroid samples for return to Earth will be a high priority mission objective. Preserving sample 

purity will impose requirements on collection techniques and hardware design features of the sample containment 

system. The conclusion of the EVA will focus on cleanup and ingress. At the end of the first EVA, the crew may 

pre-deploy tools and translation aids as get-aheads for the second EVA. On both EVAs, the boom used to bridge the 

gap between the Orion and the ARV will be retracted into the Orion to allow hatch closure and to clear the undock 

corridor. Collected samples will be stowed in the containment kit and secured inside the Orion. The crew will then 

connect their umbilicals and transfer to vehicle life support. The choreography of the second EVA will mirror the 

first, without the burden of initial set-up tasks. 

D. EVA, Robotic Boulder Capture 

At the time of this paper, the agency is considering both the Small Boulder Capture Concept and a Robotic 

Boulder Capture Concept for the design of the robotic capture mechanism. The Robotic Boulder Capture Concept 

capture mechanism is designed to capture a small boulder of up to 4 meters diameter sitting on a larger parent 

asteroid. EVA operations differ from the description in the preceding section in the methods that the EVA 

crewmembers access the asteroid. The Robotic 

Boulder Capture Concept does not include a capture 

bag (reference Figure 8); therefore, the sample sites 

are accessible without the need to cut and open a 

bag. Further, the exposed boulder allows for timeline 

planning and contextual observations prior to EVA 

for boulders sized approximately 2 meters to 4 

meters in diameter 

Since the EVA crew member will require 

translation aids to assist in their body positioning and 

stabilization, it is desirable for the capture 

mechanism structure to be used as an EVA 

translation aid. Continued maturation of the Robotic 

Boulder Capture Concept design is needed to 

accommodate EVA induced loads into the capture 

mechanism structures without shifting the boulder 

within the capture mechanism and thus creating a 

 
Figure 7. Sample collection from stabilization boom. 

 
Figure 8. EVA crew member accessing asteroid on 

Robotic Boulder Capture Concept capture 

mechanism. 
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potential pinch or entrapment hazard for the EVA crew member. 

The last difference to note for the Robotic Boulder Capture Concept is the integrated stack attitude during EVA. 

As described in section B, the integrated stack is slewed to +15° yaw attitude prior to the start of EVA to provide the 

necessary light and thermal conditions for the EVA operations. If the boulder is smaller in diameter than the Orion-

ARV stack, shadowing from the vehicle may require a larger attitude change. Future work is needed to analyze the 

thermal performance of Orion in this attitude.  

E. Post EVA 

Once the hatch has been closed and latched, the crew will initiate the repress of the cabin by opening the repress 

kit tank valve. The feasibility assessment assumes the crew will control the repress by cycling a manual valve as 

needed for crew comfort and planned holds. The repress will be paused to perform a cabin leak check to verify the 

integrity of the hatch seals. Assuming a successful leak check, the crew will open the valve and complete the repress 

to 10.2 psi. The regulator will slowly close, reducing the flow rate as the cabin pressure approaches the regulator set 

point. This allows the crew freedom to continue other activities without monitoring the cabin pressure. Operation for 

the first and second repress would be identical. 

Following repress, the crew will assist each other with suit doffing. Prior to depressurizing the suits, the crew 

should inspect the gloves for areas of possible damage and follow up with photos after suit doffing. Most suit 

refurbishment tasks can be left for the next day, but charging of the suit and tool batteries will likely need to start 

that evening to ensure they are fully charged to support EVA 2. A space-to-ground conference should occur to 

discuss any suit fit issues and unexpected challenges during EVA 1 that could impact the planned tasks for EVA 2, 

including asteroid sampling objectives. 

Asteroid dust introduces contaminates to the habitable environment that are potentially hazardous to crew 

respiration and vision. During repress and post-EVA operations, the crew will remove asteroid dust from the suits 

with a combination of brushing, wipes, and the Orion vacuum. The EVA gloves will likely carry the most amount of 

dust contaminate, thus mission-specific handling and post-EVA stowage will be planned to minimize the 

contaminate risk. Due to the high likelihood the EVA glove handling protocol will require containment, a second set 

of gloves will be included in the EVA Suit Kit to support the second EVA. 

F. Non-EVA Days 

On the day between EVA 1 and 2, the crew will focus on suit refurbishment and reviewing changes to the EVA 

2 plan. After the suit consumables have been refreshed, the crew can make any necessary suit sizing adjustments and 

perform a fit verification if needed. The crew will then reconfigure tools and tethers for EVA 2.  

It may be necessary to leave some Orion-launched EVA tools in the ARV toolbox to avoid down mass 

limitations and maximize capability to return samples. This would have the added benefit of making these tools 

available should subsequent missions be able to utilize them. There will be a minimum complement of EVA tools 

required for return in the Orion. These tools are required to protect for a potential manual docking mechanism 

release contingency during undock. 

G. EVA Abort 

The EVA abort philosophy will be similar to that of ISS-based EVAs in that the Secondary Oxygen Pack will be 

sized to protect the crew in the event of a suit leak while they retreat to the Orion and repress the cabin. Further 

testing will refine the time required for the crew to reach the safety of the Orion from the farthest point on the 

asteroid; initial estimates suggest 30 minutes should be sufficient. 

There are some unique risks associated with this mission. Unlike ISS and Shuttle EVAs, the ARCM will not 

have the up mass capability to provide redundant spares for all EVA suit hardware. Many failures could cause a loss 

of EVA capability. In the event of some Exploration PLSS failures, it may be prudent to proceed with a single 

person EVA while the second crew member remains on umbilical life support. This is a shift from recent mission 

risk acceptance in that the umbilical-based crew would be unable to conduct a rescue should the crew member on 

the asteroid become incapacitated. Based upon the mission cost and potential benefit of EVA objectives, this risk 

trade may be appropriate. The risk due to high energy micrometeoroid debris will be lower than EVAs in Low Earth 

Orbit (LEO). The asteroid sampling tasks will include inherent exposure to sharp rocks which increase the risk of 

glove or soft goods cuts. Therefore, follow-on trade studies will determine if there is any high priority EVA spare 

hardware which should be flown to protect the second EVA if damage is incurred during the first spacewalk. 

Additionally, LEO EVA crew members have had the capability to return to Earth in the event of a severe case of 

decompression sickness. Because of the inability to rapidly return to Earth, all decompression risk will need to be 

accepted or managed in-situ. Procedures developed for ISS EVA decompression sickness recovery will provide 
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foundation for procedures to manage this risk in the ARCM. The issue of contingency accommodations for survival 

of multiple days suited in the event of a cabin depressurization is common to missions beyond LEO and must be 

considered for ARCM and either deemed “accepted risk” or mitigated with appropriate hardware. 

H. Return Operations 

On Flight Day 15, after five days at the asteroid, the crew will undock the Orion and depart. Prior to a successful 

separation, EVA suits and tools will remain configured to protect for a possible contingency EVA to manually 

separate the vehicles. If such an EVA were required, the duration would be approximately one hour. Orion Service 

Module gas is budgeted to protect for a contingency EVA of this type. Furthermore, it is likely that one of the EVA 

crew members would remain on umbilical life support throughout such an EVA as they would also be required to 

pilot the vehicle to a safe distance after separation. When undocking and separation are complete, the Orion 

commences the nine day transit back to Earth. The crew will stow EVA hardware and reconfigure the MACES to 

the entry configuration. On the day prior to re-entry, the crew will repress the cabin back to 14.7 psi using Service 

Module gas. On re-entry day, the crew will configure the cabin for entry before donning the Enhanced MACES.  

III. EVA Functionality Kits 

The EM-2 Orion does not support EVA. Reducing the crew complement from four to two provides additional 

internal stowage and mass capability. This recovered mass and volume allows for the addition of ARCM mission 

kits which will extend the capability of the Orion to support the ARCM flight. The fundamental design guideline for 

the kits is to provide the necessary functions self-contained within the kits with minimal changes to the baseline 

Orion EM-2 configuration and ground support equipment.  

A. EVA Suit Kit 

ARCM EVAs will use the Orion Baseline Modified Advanced Crew Escape Suit (MACES) enhanced to support 

4-hour EVA operations. Some of the enhancements to the MACES will improve mobility and reduce fatigue to 

allow 4-hour EVAs. Figure 9 shows the differences between the launch & entry configuration and the EVA 

configuration of the MACES. Testing of the MACES has been conducted in the Neutral Buoyancy Laboratory 

(NBL) during 2013. These runs accomplished integration of a new suit into the underwater facility. Continued 

testing in 2014 is focusing on the feasibility of the MACES system to provide the necessary mobility for EVA 

operations. Included in this assessment are potential design modifications to improve the suit fit and mobility as well 

 
Figure 9. Side-by-side comparison of MACES configurations. 
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as prototype EVA Tools and Equipment enabling micro-gravity 

Geology Tasks. Reference AIAA-2014-TBD
5
, “Asteroid 

Redirect Crewed Mission Space Suit and EVA System 

Architecture Trade Study” paper for further discussion of the 

EVA life support, pressure garment, and EVA Tools and 

Equipment. Initial NBL testing results suggest that the MACES 

suit is capable of performing representative tasks for asteroid 

missions for four hour duration EVAs (Figure 10). 

B. EVA Servicing Kit 

EVA operations require servicing equipment and 

consumables to support two planned EVAs. The servicing and 

checkout equipment will include the hardware required to 

recharge the suit and tool batteries, clean the suit interior, replace biomed sensors, and checkout Exploration PLSS 

components. 

C. EVA Tool Kit 

EVA tools will be launched on both the Orion and the ARV. The ARV will launch with as many EVA tools as 

feasible in the ARV EVA toolbox in order to preserve up-mass on the Orion. The EVA tools needed for contingency 

Orion EVAs, egress from Orion, translation from the 

Orion to ARV, and tools with thermal constraints 

that preclude long durations in the ARV EVA 

toolbox will be launched in the Orion. Specific EVA 

objectives defined after the science community has 

evaluated the data from the ARV capture survey will 

likely require unique geological tools that will be 

added to the Orion EVA Tool Kit. 

The anticipated EVA Tools list is captured in 

Table 1; these tools are launched in the MPCV. The 

EVA Tools Kit mass is additional mass to the Orion 

baseline. ISS EVA Tools are the basis of estimate for 

the tethers, bags and thermal cover. Tools developed 

in support of Near Earth Asteroid analog testing 

provide the basis for estimates of the geological tools 

and the boom.  

D. EVA Communication Kit 

The EVA Communications Kit consists of a suit radio and a deployable antenna. The antenna may be standalone 

hardware or integrated into the translation boom launched in Orion. If the antenna is a standalone, deployable 

design, it will be placed outside the Orion hatch by the EVA crew members at the start of each EVA. The purpose of 

either antenna type is to relay the biometric, suit health & status, and voice & video data from the Exploration PLSS 

radio to the ground via the Orion S-Band system. The communication kit will include a bi-directional serial data 

connection to Orion and this study assumes a single relay antenna will be sufficient for EVA communication.  

E. Sample Container Kit 

The Sample Container Kit will provide stowage of the asteroid samples during the EVA, and both stowage and 

containment of samples for transport to the Earth-based curation site. The Sample Container Kit will be sized by the 

mass constraints on the Orion parachutes for abort/landing and the volume of samples the EVA crew is likely to 

collect in the time available.  

The current approach is to provide the EVA crew the ability to collect surface samples using multiple small 

sample bags and core samples using core sample tubes. The sample bags and tubes will be collected in a single 

stowage bag during the EVA, and then the contents of the stowage bag will be transferred into the sample container 

box upon return to the Orion cabin. The sample container box will remain in the Orion cabin for return, maintaining 

segregation and containment of samples and protection against contamination of the samples by the IVA 

atmospheric environment both during landing and post-landing processing. Current assessments do not include 

Table 1. MPCV stowed EVA Tools. 

Suit-Worn EVA Tools (per crew member)

85-foot Safety Tether

2 Waist Tethers

2 Adjustable Equipment Tethers

4 Retractable Equipment Tethers

Mission EVA Tools (MPCV-Stowed)

Boom mounting bracket

Boom  

Geological Tools Allocation

ORU Bags

EVA Hatch thermal cover

EVA Digital Camera (repurposed MPCV camera)
 

 
Figure 10. NBL test of MACES feasibility. 
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temperature (cryogenic) accommodations for volatile management; contamination control would be addressed by 

sealed-vessel only and contain gasses as they evolve while the samples warm up.   

IV. ARV design accommodations for EVA 

The Asteroid Redirect Vehicle (ARV) will be outfitted to enable EVA. Features are necessary on the ARV to 

allow the Orion crew to access the ARV from Orion, to translate along the ARV toward the capture system, to store 

EVA tools, to translate from the ARV to the capture system and to access the asteroid within the capture 

mechanism. EVA translation and handling aids will be incorporated into the hardware prior to launch. EVA tools 

associated with asteroid sample retrieval will be pre-installed on the ARV. 

Stowing EVA Tools on the ARV reduces the mass impact to Orion, and 

locating the EVA tools in close proximity to the asteroid EVA worksites 

creates efficiencies in the EVA timeline. 

A. Booms and Attach Points 

EVA crew members are assumed to access the ARV via a “Gap 

Spanner” translation boom launched on Orion. The ARV will host a 

mechanism to attach the telescoping boom carried on the Orion. The crew 

will place the boom out of the Orion hatch and guide the boom into the 

attach mechanism. A notional example of an EVA translation boom is 

shown in Figure 11. The EVA crew member will then attach the boom to 

the Orion. Once in place, the EVA crew member will translate across the 

boom and secure it to a locking mount device. 

Two telescoping booms will be stowed on the ARV prior to launch. The 

booms will enable the EVA crew member to reach desired asteroid sample 

retrieval worksites without translating directly on the capture mechanism or 

the asteroid. The booms will be designed to be used independently or 

joined together in series. The end interface of the booms will be structurally 

compatible with each other, the ARV bus mounting location, and the EVA 

foot restraint. Rotational joints will be incorporated into the boom 

interfaces to allow access to multiple asteroid sample retrieval worksites 

from a single bus mounting point. Multiple boom mounting points will be 

attached to the ARV bus structure around the interface plane to the capture 

mechanism enabling access to multiple locations around the asteroid. 

Representative EVA worksites are shown in Figures 7 and 8. 

B. Handrails 

EVA equipment enables translation, handling, and EVA worksite 

access. Handrails will be mounted on the ARV to create a translation path 

beginning at the Orion access point, along the ARV bus toward the asteroid 

capture bag and EVA toolbox. The handrails could either be 24 inches long 

and spaced 24 inches apart, or continuous along a given translation path. 

Another set of handrails will be placed around the circumference of the 

ARV bus at the closest point to the capture system. Several boom attach 

points will be 

mounted near 

this ring of 

handrails, like 

the one shown 

in Figure 12. The two ARV launched booms will be 

installed to these attach points to allow crew accessibility 

to the asteroid.  

C. Tool Stowage  

Several items will be pre-positioned on the ARV in 

order to offload Orion mass. The pre-positioned items 

 
Figure 11. Notional EVA 

transfer boom. 

 

 
Figure 12. EVA handrail and boom attach point. 
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consist of two telescoping booms and a toolbox containing 

several EVA tools as detailed in Table 2. 

The Telescoping booms are mounted on the outside of the 

ARV near the EVA Toolbox and proposed EVA worksites. An 

EVA Toolbox mounted on the ARV bus will be used as a 

stowage location for the EVA tools. Mounting the EVA toolbox 

along the primary translation path also serves to streamline the 

EVA timeline, shown in Figure 1. The Toolbox will have 

sufficient handling aids to allow the crew member access, and 

sufficient volume to allow independent retrieval and stowage of 

each tool independently from the others. Asteroid tools may 

include a hammer, core sampler or other sample retrieval devices. 

Other EVA tools may include equipment tethers used to restrain 

the asteroid tools and worksite restraint aids such as local tethers 

and foot restraints.  

IV. Conclusion 

Initial assessments, as well as NBL MACES testing, 

demonstrate that an Orion vehicle, MACES suit, Exploration PLSS, and functionality kits are feasible for 

conducting EVA objectives on a captured asteroid.   

As the Asteroid Redirect Mission (ARM) program continues in development, EVA operations will evolve. The 

potential addition of a habitable module with airlock capability will enable longer docked crewed missions (30-90 

days) with more frequent, longer duration EVAs (i.e. multiple EVAs/week). An Exploration EVA suit could be 

worn by the crew, replacing the MACES worn for the first ARCM EVAs. Additional EVA worksites on the asteroid 

are anticipated to provide a diversity of samples to the scientific community. There is the potential that EV1 and 

EV2 will work simultaneously at separate worksites. 

The ARM is sequenced as a strategic stepping stone within the NASA Capability Driven Framework. The 

Exploration EVA systems implemented for this mission will be designed to function for any other deep space, 

microgravity destinations, such as other Near Earth Asteroids and the moons of Mars. Asteroid EVA sampling and 

exploration techniques developed for ARM will benefit these same microgravity destinations. 
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Table 2. EVA Tools Stowed on the ARV. 

Geological Tools

Asteroid Sample Caddy

Gap Spanner

Boom

ORU Bags

Adjustable Equipment Tethers

Fish Stringer tether

Retractable Equipment Tethers

Boot Plate

Ascenders

Carabiners 

Tent Flaps
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Asteroid Redirect Crewed Mission 

 The Asteroid Redirect Crewed Mission (ARCM) is the human portion 
of the Asteroid Redirect Mission (ARM). 

 Two crew will launch on the Orion to the Lunar Distant Retrograde 
Orbit (DRO). 

 The Orion with rendezvous and dock with the Asteroid Retrieval 
Vehicle (ARV) that has captured the asteroid. 

 During the docked phase, two 4-hour EVAs will be conducted from 
the Orion capsule. 

 EVA capability is added via kits designed with minimal mass and 
volume impacts for the Orion.  

• an EVA kit (converts the Launch, Entry, and Ascent suit to an EVA 
suit),  

• EVA Servicing and Recharge Kit (provides suit consumables),  

• the EVA Tools, Translation Aids & Sample Container Kit (the tools 
and mobility aids to complete the tasks),  

• the EVA Communications Kit (interface between the EVA radio 
and Orion), and  

• the Cabin Repress Kit (represses the Orion between EVAs). 
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ARCM EVA challenges 

 A primary ARCM mission objective is to demonstrate deep space 
Extravehicular Activity (EVA) and tools and to obtain asteroid 
samples to return to Earth for further study. 

 First microgravity EVA to collect geology samples 

• The unknown asteroid hardness and brittleness will complicate 
tool use. 

 First microgravity EVA on a non-engineering surface 

• Unknown asteroid properties will complicate EVA translation, 
tool restraint, and body stabilization.  

• The rock surface will introduce added safety concerns for cut 
gloves and debris control.  
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Mission Timeline 

 ARM NASA video: 
http://www.youtube.com/watch?feature=player_detailpage&v=jXvs
i7DRyPI (credit: NASA – JSC, AMA JSC Advanced Concept Lab)  

 

 Flight Day 1: Launch and Trans Lunar Insertion 

 Day 2-5: Outbound Lunar Cruise 

 Includes depress to 10.2 psi, suit checkout and EVA dry run 

 Day 8:  Rendezvous and Dock Orion to  

 Asteroid Redirect Vehicle (ARV) 

 Day 9:  EVA 1 

 Day 10: EVA refurb, prep for EVA2 

 Day 11: EVA 2 

 Day 12: Contingency margin, departure prep 

 Day 13: Undock, begin transit to Earth 

 Day 26:  Entry, crew recovery 
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Outbound Operations 

 Crew health, cabin reduced to 10.2psi to facilitate minimal pre-
breathe times. 

 Reconfigure the MACES suit from its launch, entry, ascent 
configuration to an EVA configuration 

 EVA dry run and checkouts  

 MACES suit and portable life support system (PLSS) 

 Suit donning 

 Communication checks 

 Procedure reviews  

 Suit doffing 

 Tool set-up 

 Battery charging, tools and suits 

 

MACES Configuration For 
Launch & Entry 
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MACES Configuration 
For EVA 



Docked Stack 

6 

 Orion Asteroid & Capture Mechanism ARV bus 



EVA Timeline 

 EVA ARCM animation (PLAY) 

 

 Slew stack for favorable illumination & thermal 

 Don suits 

 Depress Orion cabin 

 Open Hatch 

 Egress 

 

 

 

 

 

 

 

 

 http://www.youtube.com/watch?v=1OwmZYrTsGY (credit: NASA – 
JSC, AMA JSC Advanced Concept Lab) 

0:30 0:45 1:00 1:15 1:30 1:45 2:00 2:15 2:30 2:45 3:00 3:15 3:30 3:45 4:000:150:00

Hatch egress 
ops

Tool and worksite boom 
preparation

Worksite prep 
and imaging

Sample 
Capture

Worksite safing, tool stowage and return 
to Orion
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 Open Hatch 

 Mount EVA antenna on pre-selected area on hatch 

 Install gap-spanner translation boom from Orion across to the ARV 

 First crewmember (EV1) translates across from hatch to Asteroid 
Redirect Vehicle (ARV) carrying sample container and geologic tools 

 EV1 continues to tool stowage area on ARV while EV2 egresses from 
Orion and places thermal cover over hatchway 

EVA Con Ops – Hatch Egress Ops 
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EVA Orion egress 
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 Communication antenna install 

 Gap-Spanner translation boom install 

 Orion hatch thermal cover and seal 
protective cover install 

Orion hatch and 
seal cover not 
shown 



Egress Orion via boom 
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EVA translation on ARV 
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Figure 4. EVA crew on ARV translation path 

from Orion toward asteroid. 



 

 

 

 

 EV1 unstows tools while EV2 unstows worksite stability boom with 
foot restraint from ARV.   

 EV2 installs worksite boom over selected area of asteroid 

 EV1 translates up boom and ingresses foot restraint 

 EV2 steadies boom while EV1 assesses worksite 

 EV1 ready for worksite operations 

 Note: EV1 may be able to access worksite using cables and handles 
on bag rather than using worksite boom 

EVA Con Ops – Tool and Boom Prep 
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Tool Box access on ARV 
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 The EVA Toolbox is located on the ARV, asteroid-
end of the vehicle bus structure. 

 



Tool Kits 

 ARV-launched tools  

 Geological Sampling Tools 

 Sample Container Caddy 

 Booms, worksite access 

 Boot plate 

 Tethers and bags 

 

 Orion-launched tools 

 Safety tethers 

 Equipment tethers 

 Boom, gap spanner boom 

 Geological Sampling Tools 

 Sample Container Caddy 

 Orion hatch seal and thermal cover 

 Digital camera 
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Worksite Booms 
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Worksite Access boom set-up 
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Foot Restraints 

 Bag opening, Sample 
collection, and 
instrumentation deploy will 
be difficult EVA tasks, 
requiring two-handed 
operations.  

 A foot restraint can be 
installed on the end of the 
worksite access boom. 

 Crew use of the foot restraint 
allows for two-handed 
operations. 
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Worksite access via boom and foot restraint 
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Comparison of Capture Mechanisms 
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Sample collection from stabilization boom. 

EVA crew member accessing 

asteroid on Alternate Concept 

capture mechanism. 



EVA Con Ops – Worksite Prep and Imaging 

 

 

 

 EV1 begins worksite preparation 

 Bag capture device ops 

 Cut bag open with standoff cutting device 

 Pull bag open and secure with clips 

 Assess condition of the asteroid 

 Image using multi-spectral imaging device 

 Begin sample capture 

 Hard structure device ops 

 Image surface of rock  

 Assess structural condition of hard structure. Hard structure may 
be used for worksite stability if safe and available near area of 
interest 

 Find safe area to access 

 Begin sample capture 
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Asteroid Access 

 Bag opening 
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Asteroid Sampling Worksite 
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EVA Con Ops – Sample Capture 

 

 

 

 

 First sample – Contingency sample; first available item placed in 
sample bag and stowed  

 Second sample – Cut a swath of capture bag for control  

 Third sample – Contact pad sample from surface of rock 

 Remaining samples are  

 Float samples (loose rock) 

 Chip samples (smaller parts broken from larger rocks) 

 Subsurface samples (drilled from large rocks) 
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EVA Con Ops – Sample Capture 

 Concept sample capture tools 
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Chip Samples Float Samples Subsurface Samples 

Bell and Chisel 

Hammer 

Scoop 

Core Tube Assy 

Reverse Bag 

0:30 0:45 1:00 1:15 1:30 1:45 2:00 2:15 2:30 2:45 3:00 3:15 3:30 3:45 4:00 0:15 0:00 



Asteroid Sampling 

 S:\Exploration EVA Architecture Management\7_Asteroid 
Mission\c_MACES-ARCM\2014-04-15 MACES EVAL #3  
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Asteroid Sampling 
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EVA Con Ops – Return to Orion 

 

 

 

 All samples are stored in separate sample bags which are placed in 
an airtight sample container 

 After samples are collected, a cover is placed over the worksite 
using clips 

 Tools and worksite booms are stowed on ARV 

 Crew translates to Orion 

 EV2 removes hatchway thermal cover and stows it 

 EV1 follows EV2 into hatch, uninstalls translation boom and 
uninstalls EVA Comm antenna 

 Hatch is closed 
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Sample collection containers 
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Return to Orion 
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 Samples are stored in separate 
sample bags which are placed in 
an airtight sample container 

 Sample containment protects the 
crew, the Earth and the sample. 



Post-EVA  

 

 Pressurization begins using repress kit 

 Leak check performed at pre-selected pressure 

 Visors opened at safe pressure 

 Suits and ancillaries doffed 

 Gloves inspected 

 PLSS powered down and connected to battery charger 

 PLSS oxygen resupplied 

 Thermal feedwater bags replaced 
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EVA Abort 

 The EVA abort philosophy will be similar to that of ISS-based EVAs in 
that the Secondary Oxygen Pack will be sized to protect the crew in the 
event of a suit leak while they retreat to the Orion and repress the 
cabin.  

 Risks for ARCM EVAs are different than ISS and Shuttle EVAs.  

 The ARCM will not have the up mass capability to provide redundant 
spares for all EVA suit hardware.  

 Many failures could cause a loss of EVA capability. In the event of 
some Exploration PLSS failures, it may be prudent to proceed with a 
single person EVA while the second crew member remains on 
umbilical life support.  

 This is a shift from recent mission risk acceptance in that the 
umbilical-based crew would be unable to conduct a rescue should 
the crew member on the asteroid become incapacitated.  

 The risk due to high energy micrometeoroid debris will be lower than 
EVAs in Low Earth Orbit (LEO).  

 The asteroid sampling tasks will include inherent exposure to sharp 
rocks which increase the risk of glove or soft goods cuts.  

 LEO EVA crew members have had the capability to return to Earth in the 
event of a severe case of decompression sickness.  
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Looking forward 

 Initial assessments demonstrate that an Orion vehicle, MACES suit, 
Exploration PLSS, and functionality kits are feasible for conducting 
EVA objectives on a captured asteroid.   

 As the Asteroid Redirect Mission (ARM) program continues in 
development, EVA operations will evolve.  

 The potential addition of a habitable module with airlock 
capability will enable longer docked crewed missions (30-90 
days) with more frequent, longer duration EVAs (i.e. multiple 
EVAs/week).  

 An Exploration EVA suit could be worn by the crew, replacing the 
MACES worn for the first ARCM EVAs.  

 Additional EVA worksites on the asteroid are anticipated to 
provide a diversity of samples to the scientific community.  

 There is the potential that EV1 and EV2 will work simultaneously 
at separate worksites 

 Further maturation of the science objectives for sample collection, 
and development of the sample collection tools will refine the EVA 
timelines. 
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