Growing Plants for Supplemental Food Production on a Mars Fly-By Mission

Raymond M. Wheeler Surface Systems Office Kennedy Space Center, FL

UND Space Studies Colloquium Series April 14, 2014

Mars Mission Distances and Durations Moon **Earth** 250,000 miles 👈 50,000,000 miles Earth Launch 2/1/2014 Nominal Earth Return 6/29/2016 **MISSION TIMES** Departure 3/11/2016 **OUTBOUND** 150 days **STAY** 619 days **RETURN** 110 days

TOTAL MISSION

879 days

Arrive Mars

7/1/2014

Human Life Support Requirements:

Inputs

	Daily Rqmt.	(% total mass)				
Oxygen Food	0.83 kg 0.62 kg	2.7% 2.0%				
Water (drink and food pre	3.56 kg	11.4%				
Water 26.0 kg 83.9% (hygiene, flush laundry, dishes)						
TOTAL 31.0 kg						

Outputs

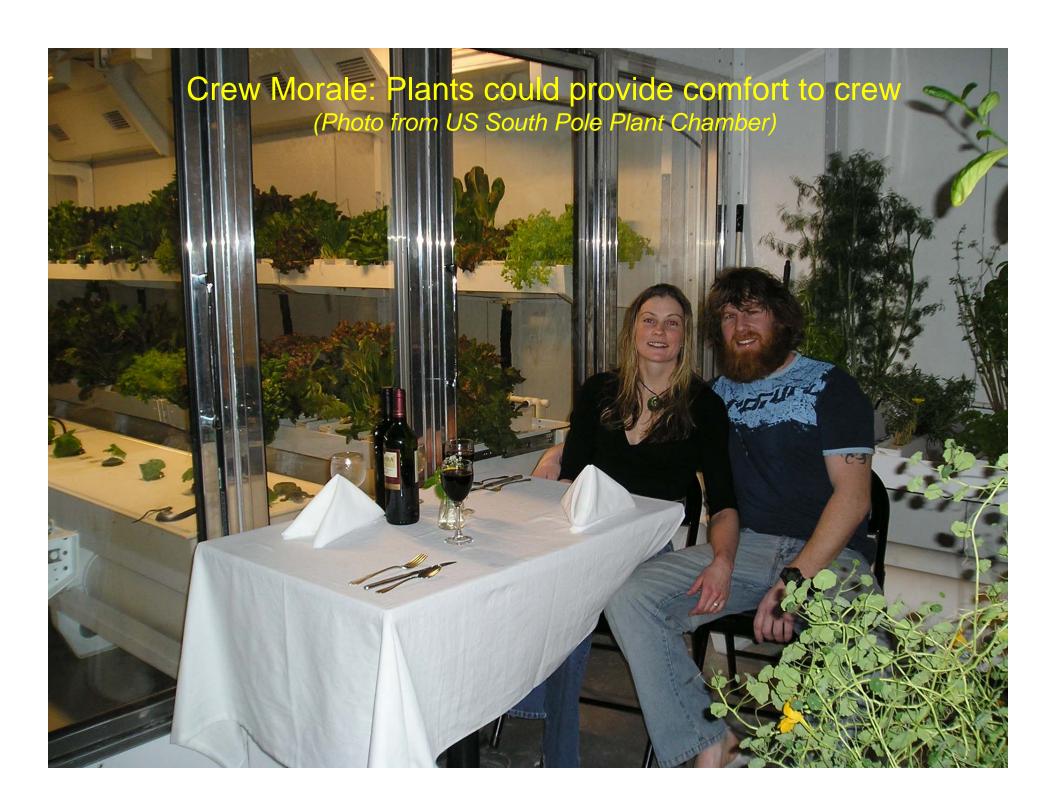
	Daily	(% total mass)			
Carbon dioxide	1.00 kg	3.2%			
Metabolio solids	0.11 kg	0.35%			
Water	29.95 kg	96.5%			
(metabolic / urine		12.3%)			
(hygiene / flush		24.7%)			
(laundry / dish		55.7%)			
(latent		3.6%)			
TOTAL 31.0 kg					

Source: NASA SPP 30262 Space Station ECLSS Architectural Control Document Food assumed to be dry except for chemically-bound water.

Why Plants for a Mars Mission?

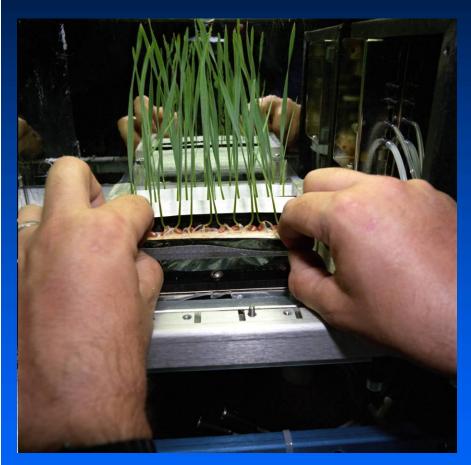
- Currently, food consumed by astronauts is all preserved or thermo-stabilized, package food
- Plants could supply of fresh foods to supplement the packaged food diet
 - Improve nutrition for the crew through bio-available nutrients and antioxidants as radiation countermeasure
 - Improve the acceptability of the meals
 - Add textures, flavors, and colors of fresh vegetables
 - Improve crew morale through the presence of plants
 - Depending on size of the plant growth system, help supply O₂ production and remove CO₂

Fresh Foods for Long Space Missions


Red and Green Leaf Lettuce

> Dwarf Pepper

Antioxidants and Supplemental Nutrients


Anthocyanin induced by blue and UV light in red-leaf lettuce; Others might include lycopene, lutein, Vit. K, Ca and phenolics.

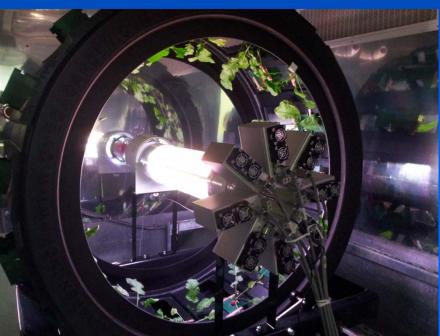
Challenges for Growing Plants for a Mars Mission?

- Microgravity
 - Watering, thermal mixing, plant physiological responses
- Lighting
 - Power for electric lighting; interference with crew ops
- Atmospheric Closure
 - Trace contaminants, e.g., ethylene
 - Super-elevated CO₂ (e.g., > 5000 ppm)
- Radiation Exposure
- Food Safety Issues

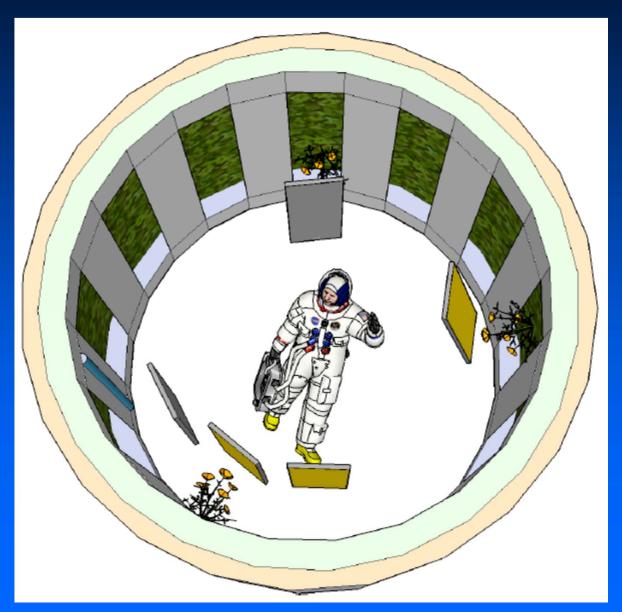
Watering Systems for Weightlessness

Porous ceramic or steel tubes to contain the water which then moves by capillary forces to the roots

Wright et al. 1988. Trans. ASAE 31:440-446; Dreschel and Sager. 1989. HortScience 24:944-947.


Biomass Production System (BPS)

Porous steel tubes surrounded by arcillite rooting media with time-release fertilizer



Rotating Plant Growth System for Artificial Gravity?

Perhaps even and a larger rotating system within a space module?

Concept drawing By Morgan Simpson NASA Kennedy Space Center

The Importance of Lighting

--Electric Lamp Options

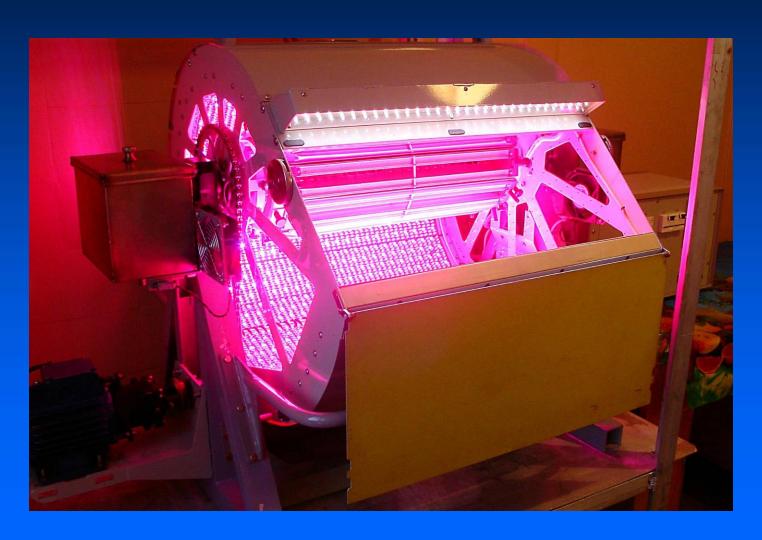
	Lamp Type	Conversion* Efficiency	Lamp Life* (hrs)	Spectrum
•	Incandescent/Tungsten**	5-10%	2000	Intermd.
•	Xenon	5-10%	2000	Broad
•	Fluorescent***	20%	5,000-20,000	Broad
•	Metal Halide	25%	20,000	Broad
•	High Pressure Sodium	30%	25,000	Intermd.
•	Low Pressure Sodium	35%	25,000	Narrow
•	Microwave Sulfur	35-40%+	?	Broad
•	LEDs (red and blue)****	>40%	100,000 ?	Narrow

^{*} Approximate values.

^{**} Tungsten halogen lamps have broader spectrum.

^{***} For VHO lamps; lower power lamps with electronic ballasts last up to ~20,000 hrs.

^{****} State-of-Art Blue and Red LEDs most efficient.


LED for Plants in Spaceflight Chambers

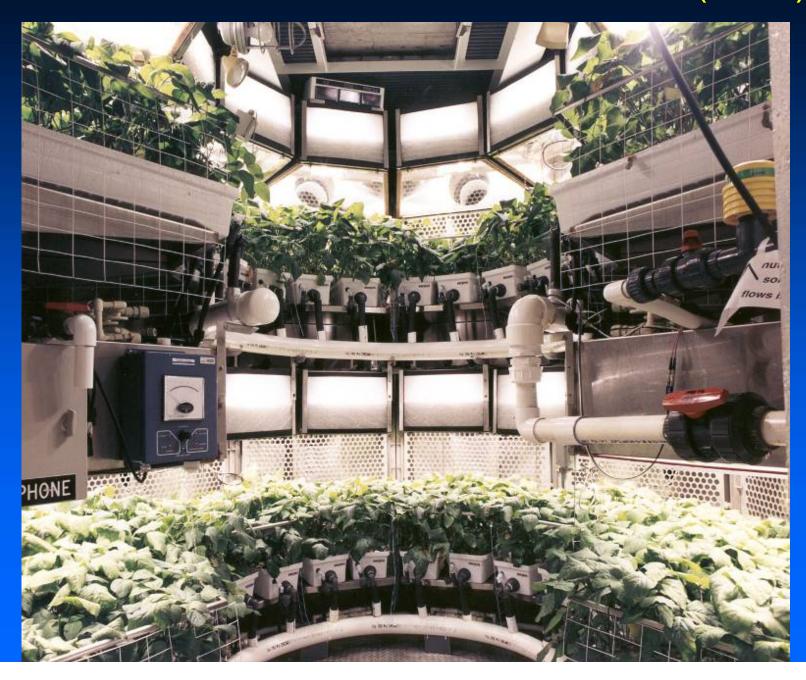
Red...photosynthesis
Blue...photomorphogenesis
Green...human vision

John Sager, KSC, Testing Prototype Flight Plant Chambers with LEDs

Russian Phytoconveyor (IMBP)—Proposed for Vegetable Production for the ISS and Mars Transit

Chief Engineer: Yuliy Berkovich, IMBP, Moscow

Can Direct Solar Lighting Be Used for Mars Missions?


2 m² of collectors on solar tracking drive -roof of Space Life Sciences Lab, KSC Up to 400 W of solar light delivered to a plant chamber (40-50% of incident light)

Cuello et al. 1998. Life Sup Biosphere Sci. Drysdale et al., 2008 . Adv. Space Res.

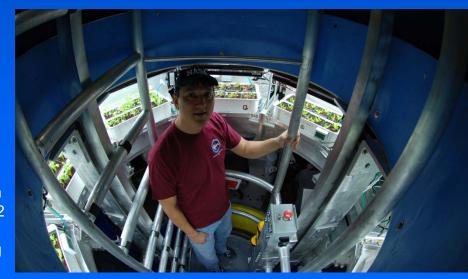
How would plant growth systems fit within human habitats or spacecraft?

NASA's Biomass Production Chamber (BPC)

Smaller Scale Lab Testing

Habitat Demonstration Unit, Near Flagstaff Arizona

Testing of Plants in NASA's Habitat Demonstration Unit



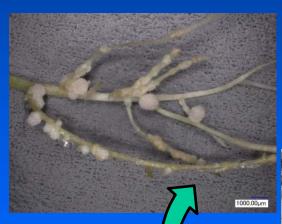
Plant Atrium In HDU 2011 with Red/Blue LED lighting

Plant Atrium In HDU 2012 With White LED lighting

Plant Growth Testing in Space

(mostly with seedlings or small plants)

- Early Russian and US Testing (60s through 80s)
 - Wheat, peppers, duckweed, carrot
- NASA Sky Lab
 - Rice
- Shuttle
 - Sunflower, potato, brassica, mung bean, oat, soybean, others
- Russian Mir Space Station
 - Wheat, mizuna, Chinese cabbage, brassica, others
- International Space Station
 - Wheat, mizuna, pea, barley, soybean, others


Plant Chambers for Space Shuttle and ISS

Life Science Space Flight Experiments

Potato Tubers in Space (STS 73)

Plant / Bacterial Nitrogen Fixation In Space (STS 135)

Photosynthesis in μ -gravity (STS 110 / 8A)

23

Russian "Lada" Plant Chamber on ISS

Mizuna Plants (Japanese Mustard)

Plants in Tightly Closed Atmospheres:

Ethylene Effects

Epinastic (rolled)
Wheat Leaves
Ethylene at ~120 ppb

Epinastic
Potato Leaves
Ethylene at ~40 ppb

Food Safety Considerations

- Plants have to meet microbiological safety (e.g., coliform bacteria)
- Levels of biocides from water might be a concern (e.g., iodine and silver)

Top, Cosmonaut harvesting Mizuna on the ISS

Bottom, sanitizing lettuce leaves
In NASA HDU study in 2010

Constraints for Crop Production for Mars Flyby or any Space Mission:

- Energy Requirements
- System Mass
- System Volume
- Crew Time
- System Reliability

These apply for all life support technologies, including the use of plants

Plants for Future Space Missions

2005

2010

2015

2020

2025

2030

2035

2040

2045

Shuttle (plant experiments)

Crew Expl. Vehicle (supplemental crops Mars transit / flyby)

Intnl. Space Station (plant experiments—possible salad crops)

Lunar Lander (probably no plants)


Lunar Outpost (supplemental foods)

Martian Outpost

(supplemental foods

life support)

Thanks to my colleagues at NASA's Kennedy Space Center

