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ABSTRACT 

The Komplast materials experiment was designed by the Khrunichev Space Center, 
together with other Russian scientific institutes, and has been carried out by Mission Control 
Moscow since 1998.  The purpose is to study the effect of the low earth orbit (LEO) environment 
on exposed samples of various spacecraft materials. The Komplast experiment began with the 
launch of the first International Space Station (ISS) module on November 20, 1998.  Two of 
eight experiment panels were retrieved during Russian extravehicular activity in February 2011 
after 12 years of LEO exposure, and were subsequently returned to Earth by Space Shuttle 
“Discovery” on the STS-133/ULF-5 mission.  The retrieved panels contained an experiment to 
detect micrometeoroid and orbital debris (MMOD) impacts, a temperature sensor, several pieces 
of electrical cable, both carbon composite and adhesive-bonded samples, fluoroplastic samples, 
and many samples made from elastomeric materials.  Our investigation is complete and a 
summary of the results obtained from this uniquely long-duration exposure experiment will be 
presented. 

1. INTRODUCTION 

The Komplast experiment has been conducted on the ISS by Khrunichev Space Center in 
collaboration with other Russian scientific centers since 1998.  In this experiment, space 
environmental effects (SEE) on exposed specimens of various materials were studied in low 
earth orbit (LEO) as part of the International Space Station (ISS) program. 

To execute this experiment, Komplast panels outfitted with specimens of materials and sensors 
were located on the outer surface of the Functional Cargo Block (or FGB; the first ISS flight 
element).  The panels were delivered on orbit together with the FGB on 20 November 1998.  In 
March 2011, two of the eight Komplast panels were returned from the ISS on the Space Shuttle 
Discovery after 12 years of LEO exposure. 

Figure 1 shows the FGB with Komplast panels Nos. 2 and 10 mounted (marked with arrows) 
immediately after launch in 1998.  Note that Panel No. 10 (left) had a cover installed prior to 
launch and during early flight.  This cover was removed during the ISS-2A mission, 
extravehicular activity (EVA) 3 on 12 December 1998.  The approximately three week period 
during which Panel No. 10 was covered had an insignificant impact on the SEE analysis. 
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The goal of this work was to determine the effects of spaceflight factors on the properties of 
FGB materials following LEO exposure for 12 years, based on analyzing the results of the in-situ 
experiment and subsequent laboratory investigations, and to contribute to ISS service life 
extension assessment activities. 

2. SPACE ENVIRONMENT FACTORS 

2.1 The “Natural” Environment 

Temperature dynamics during exposure to space were determined from sensors located on both 
panels.  On Panel 2, the maximum temperature recorded was +85С; the minimum, minus 80С. 
On Panel 10, the maximum temperature recorded was +107С; the minimum, minus 80С.  The 
most extreme temperatures recorded on panels by year of operations are presented in Table .  
The maximum values by year are on top; the minimum values, on the bottom. 

Table 1 Temperature Extremes, in °С, on Komplast panels 2 and 10 From January 1999 to 
December 2010 

Panel 1999 2000 01 02 03 04 05 06 07 08 09 2010 

2 
83 
-50 

85 
-45 

80 
-35 

85 
-40 

65 
-45 

85 
-40 

80 
-45 

75 
-40 

85 
-40 

80 
-65 

60 
-80 

55 
-40 

10 
103 
-80 

102 
-60 

107 
-55 

105 
-70 

95 
-75 

105 
-65 

101 
-75 

95 
-70 

106 
-65 

102 
-75 

80 
-80 

84 
-61 

The average temperature of panels Nos. 2 and 10 over the entire period of exposure was 
20±10°C. 

 
Total exposure to solar ultraviolet radiation was determined by analysis of the temperature 
dynamics.  The total exposure on the FGB at the locations of Panels 2 and 10 for 12 years was 
960200 kJ/cm2 or 21,100±4,400 ESH (equivalent sun hours).  Ionizing radiation dose was not 
determined. 

Atomic oxygen (AO) fluence was determined.  An analysis of the condition of several specimens 
which have been utilized on previous SEE experiments enabled the atomic oxygen fluence to be 
evaluated, estimated at approximately 1.51021 atoms/cm2.  This fluence was evaluated for the 
entire 12-year period of panel exposure on the FGB and accounts for both the initial (differently 
oriented) period of flight and the modern flight period, during which the FGB end cone (on 
which removed Komplast Panels 2 and 10 were mounted) was not directly exposed to the ram 
atomic oxygen. 

The micrometeoroid and orbital debris (MMOD) environment was also evaluated, using a test 
device specifically for this purpose on Panel 2.  The distribution of craters and low-velocity 
particles so obtained in the range of 5-50 µm per m2 of surface area was ~2-3 orders of 
magnitude high as compared to NASA model expectations. 
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3.2 Adhesive Specimens 

Specimens of adhesive bonded joints were in the form of fiberglass and aluminum alloy plates 
bonded with epoxy adhesives.  Sixteen specimens using three types of adhesives and the two 
types of plates in various combinations were attached to Komplast Panel 10.  Adhesive 
specimens were placed perpendicular to the bottom of the panel so that one edge surface faced 
space and was exposed to all spaceflight factors: solar ultraviolet radiation, atomic oxygen, 
radiation, temperature differences, and micrometeoroid flows.  Some specimens after exposure in 
space underwent additional (post-exposure) irradiation with a beam of electrons at a dose 
equivalent to a total duration of 30 years in LEO similar to the orbit of the ISS.  

The investigations conducted on adhesive specimens demonstrated that all three types of epoxy 
adhesives retain functionality in FGB structures for 30 years.  This conclusion is based on the 
results of studying fracture resistance parameters, the surface and volume properties of the 
adhesive layers in the adhesive specimens after 12 years of exposure in space, and their 
additional irradiation with electrons at a dose equivalent to 30 years of exposure in space.  In this 
context, the failure of all the adhesives studied was "adhesional" (Figure ); i.e., at the interface 
with the substrate material, while the polymer base of all the adhesive layers (hardened epoxy 
polymer) was resistant to the effect of spaceflight factors, and in adhesive bonded joints on the 
FGB this polymer base is protected against direct spaceflight factors by the bonded elements. 

 

Figure 5. Example of "adhesional" failure of an exposed adhesive bonded joint specimen 
during laboratory testing. 

3.3 Cable and Cable Network Material Specimens 

Specimens of cables and onboard cable network materials were exposed on Komplast Panel 2.  
Twelve cable and material specimens were exposed.  Figure  shows a photograph of these 
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Strength measurements in response to three-point bending permit the conclusion that no critical 
changes that might result in a change in strength properties occurred in the studied materials over 
12 years of exposure. 

A study was also done of the mass lost by carbon composite specimens after 12 years of 
exposure.  The losses identified in shielded and unshielded carbon composite specimens in this 
experiment coincided with the theoretical models employed.  It was demonstrated that over  
30 years of exposure, the mass loss in КМУ-4лс carbon composite does not exceed 2%, which 
proves the stability of this material's properties as part of bonded joints over the stated period. 

In connection with КМУ-4лс carbon composite, it was determined that shielding of its surface 
completely prevents microstructure changes.  After 12 years of exposure, specimens exhibited no 
significant microstructure changes. 

The assessments of the impact of spaceflight factors on structure, on the composition and 
properties of КМУ-4лс carbon composite, and on КМУ-4лс-based joints bonded using [ВК-9] 
adhesive allowed the prediction that the stability of these indicators will be retained over a 30-
year period of exposure aboard the FGB. 

4. CONCLUSIONS 

In practical terms, the in-situ Komplast experiment enabled an understanding of the processes 
occurring in materials under SEE, and made it possible to confirm the feasibility of establishing 
an overall expected operating life of FGB materials of at least 30 years. 
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