
System Testing of Ground Cooling System Components
Tyler Ensey

Kennedy Space Center
Major: Electrical Engineering

KSC FO Spring Session
Date: 02 04 2014



NASA�USRP�–�Internship�Final�Report�

Kennedy�Space�Center� 2� 07/29/2013�

System Testing of Ground Cooling System Components 
Tyler S. Ensey1

University of Central Florida, Orlando, FL, 32828 

This internship focused primarily upon software unit testing of Ground Cooling System 
(GCS) components, one of the three types of tests (unit, integrated, and COTS/regression) 
utilized in software verification. Unit tests are used to test the software of necessary 
components before it is implemented into the hardware. A unit test determines that the 
control data, usage procedures, and operating procedures of a particular component are 
tested to determine if the program is fit for use. Three different files are used to make and 
complete an efficient unit test. These files include the following: Model Test file (.mdl), 
Simulink SystemTest (.test), and autotest (.m). The Model Test file includes the component 
that is being tested with the appropriate Discrete Physical Interface (DPI) for testing. The 
Simulink SystemTest is a program used to test all of the requirements of the component. The 
autotest tests that the component passes Model Advisor and System Testing, and puts the 
results into proper files. Once unit testing is completed on the GCS components they can 
then be implemented into the GCS Schematic and the software of the GCS model as a whole 
can be tested using integrated testing. Unit testing is a critical part of software verification; it 
allows for the testing of more basic components before a model of higher fidelity is tested, 
making the process of testing flow in an orderly manner.

Nomenclature 
COTS =   Commercial off the Shelve
DPI = Default Physical Interface
GCS =   Ground Cooling System
GIS =   Ground Integrated Schematic 
GSE =   Ground Support Equipment 
GUI = Graphical User Interface 
SCCS = Spaceport Command and Control System 
MTR =   Model Test Report 
MRDD = Model Requirements and Design Document 
PRSD = Power Reactant Supply and Distribution 
SMS = System Mechanical Schematic 
UCTS = Universal Coolant Transporter System 

I. Introduction 
HE testing of software before it is implemented into the hardware is crucial. Since the software cannot be tested 
on the hardware immediately, because of possible issues that could arise, such as, in extreme cases, the 

possibility of breaking the hardware in question or other hardware as a result of the effects the software has on the 
hardware. Instead, a model of the hardware is made in an environment, so that the effectiveness of the software can 
be tested in a safe and feasible environment.  
 Each model is first made independently and tested, before it is incorporated into either another model, or into the 
larger scale model, known as the Ground Integrated Schematic (GIS). This takes much cooperation and 
coordination, something I learned a great deal about during my internship. This is because sometimes a different 
modeler will create the system test for a model that was developed by a separate modeler. Therefore, the modeler 
who created the model needs to put in adequate requirements, to make it easier for the system test to be made. Also, 
the modeler designing the system test needs to be sure to coordinate with the original modeler, to be sure that any 
changes made to the original model will not change the desired outcome of the component. Another consideration 
that needs to be taken into account is the effect on the schematic. The modeler needs to be certain of the 

�����������������������������������������������������������������
1�KSC�FO�Intern,�NE�C1,�Kennedy�Space�Center,�University�of�Central�Florida.�

T



NASA�USRP�–�Internship�Final�Report�

Kennedy�Space�Center� 3� 07/29/2013�

requirements of their model and what should and should not be included as the inputs, outputs, subsystems, 
parameters, etc. 

II. Description 
On my first day at NASA Kennedy Space Center, I was informed that I would be working towards testing fluid 

and electrical components for GCS. I worked with components that ranged from more simple components like a 
dead head to components that required more thought and time like a diode relay module. It was very important to 
test the requirements of the component and not what the modeler developed the component to do. This was 
important because the modeler could be informed of differences between requirements and model.  

A. Simulink
Every component is modeled in the Simulink environment. Simulink is a Commercial off the Shelve (COTS) 

simulation tool, created by the company MathWorks. Simulink is used for multi-domain simulation and developing 
model based designs. Simulink provides the user with an environment that is both one that provides the user with 
both a visual and interactive experience. Customizable block libraries are another feature that Simulink graces to the 
modeler. These libraries are used to design, simulate, and test multiple time-varying systems within the Simulink 
environment. These systems include communications, controls, signal processing, video processing, and image 
processing. Many different industries utilize Simulink for the development of mathematical models of physical 
dynamic systems. In specific, my coworkers and I, used/are using Simulink and multiple libraries, libraries provided 
within Simulink by MathWorks and also a set of KSC developed custom libraries, to construct models of Ground 
Support Equipment (GSE). 1,2

There are many ways of doing mathematical calculations. In this case, there are five recognizable ways 
designated by the Simulation Product Group: Simulink blocks, embedded MATLAB functions, stateflow diagrams, 
Simulink look-up tables, and truth tables. There are certain requirements for each of these. Simulink blocks should 
contain equations that are broken up into logical, contained units, and the equation should be presented in a readable 
way. This is often achieved using the Simulink “Subsystem” block. Simulink “Integrator” blocks are typically used 
within the developing community to represent physical quantities, such as pressure, temperature, etc. Also, the 
parameters “Upper Saturation Limit” and “Lower Saturation Limit,” of the “Integrator” block, should be populated 
with acceptable limits of the physical quantity. For example, most negative quantities would not be expected in a 
real world situation, so most “Integrator” blocks would have a “Lower Saturation Limit” of “0.” Lookup tables can 
be helpful, but the developer should not import data into lookup tables using Excel files. Instead, the file should be 
converted into a .csv file and then “csvread” should be used in the callback section of the model to import data. 
Truth tables are useful as decoders and controllers, especially when used in multiple places.1,3



NASA�USRP�–�Internship�Final�Report�

Kennedy�Space�Center� 4� 07/29/2013�

B. GSE Library Component Lifecycle 
Model Development for a GSE model is broken into three phases: Design, Implementation, and Approval. A 

visual representation of this process is shown in Fig. 1. 
The Design phase is focused on establishing structure and external interfaces. These models represent 

components of the GSE Subsystem and they, without exception, must coincide with the Simulation Computer 
Software Configuration Item (CSCI) Modeling Standard. Design is begun once the necessity for a GSE component 
is recognized, and a schedule for the development has been created. Source documents must first be identified in the 
Design phase. These documents may include: GIS/System Mechanical Schematic (SMS), which identifies the 
manufacturer and model of a component and its functional parameters; Design Dictionary, which includes cutsheets 
of the specific component type and function parameters; and/or, ConOps, which describes the function of the 
component. Component scope is then identified, which includes layout and unique feature identification. For layout, 
the user must identify internal structures the will help in easily showing the complexity of certain interactions. Some 
great things to consider are grouping blocks, within Subsystems, based on their function, and also the reusability of 
the component, as simplicity is the key if it will be used in multiple other components. For unique feature 
identification, the user must identify what internal functions are unique, meaning the component cannot be 
developed by using readily available library blocks or components. Requirements must be developed within the 
Design phase. There are three types of requirements that should be concluded before moving to next phase: Test 
Scenario Requirements, which establishes points of verification, to ensure that the component being testes functions 

�
Approval

Peer Review 

Prepare Approval 
Package 

Product Group Lead 
Approval

Implementation

Implement Library Component 

Develop Test Scripts 

Functional 
Model

Test Scripts 

Model Requirements and 
Design Document (MRDD) 

Test Results 

Run Test Scripts 

Design

Identify Source 
Documents or Data 

Identify Component Scope 

Develop Component 
Requirements

Update Schedule 

Figure 1. GSE Library Component Lifecycle. This figure represents all of the planning and execution during the lifecycle of a 
GSE Library Component.



NASA�USRP�–�Internship�Final�Report�

Kennedy�Space�Center� 5� 07/29/2013�

Figure 2. The Universal Coolant Transporter System. This is the model for the 
operating system of the UCTS.

as desired; Training Scenario Requirements, which establishes fail-safe requirements; and, finally, Functional 
Requirements, which are the requirements that the component must meet in order to be of use to the GSE Subsystem 
Model. The schedule is then updated, as needed, and the modeler moves on to the next stage, known as 
Implementation. 

The Implementation stage, the stage that I worked primarily with during my internship, is focused on developing 
the component and the test scripts. Common-use components, subsystem-specific components, and Simulink 
Primitive blocks should be arranged into Simulink approximations. Test Scripts must then be developed. Draft steps 
are created to verify the software is behaving accurately. Draft steps must also be produced to test the interface 
function, given that there are explicit interfaces with another block. The Test Script is then run, and the test data is 
recorded in a Model Test Report (MTR). A Model Advisor check will verify that Simulation Standards are met. 
Finally, a Model Requirements and Design Document (MRDD) will show the requirements, structure, parameters, 
and referenced libraries within a single document, and the user may now move on to the Approval phase. 

The Approval phase is focused on reviewing the GSE Component model and approving it for use within the 
schematic. In the Approval phase, peer review will commence. The MRDD, MTR, and Test reports are distributed 
to the Simulation team, through a Graphical User Interface (GUI), known as AccuRev, so that peer review can 
begin. Comments are gathered pertaining to the validity of the requirements, implementing logic, and test results. 
Once a response from two SIM Team members and a Subject Matter Expert, appropriate changes are made to the 
component, and the MRDD, MTR, and Model Advisor Report are regenerated. The final step is to prepare and 
submit the Approval Package. This package is objective evidence of the successful completion of the Library 
Component Peer Review. Once the SIM Product Group Lead approves the model, the development of that 
component is officially complete, and can now be used in the GSE Subsystem model.4

C. Universal Coolant Transporter System (UCTS) 

Many of the components that I supported in testing were a part of the Universal Coolant Transporter System 

(UCTS) (part of GCS), which 
is a Space Shuttle Orbiter 
support system. The UCTS is 
used for two main services, 
coolant servicing and Power 
Reactant Supply and 
Distribution (PRSD) servicing. 
Coolant servicing is used once 
the Orbiter lands; the Ammonia 
Boiler, which cools the 
avionics and payloads on board 
the orbiter, is shut off upon 
landing, so the Orbiter is 
connected to the UCTS in order 
to keep the avionics and 
payloads from getting damaged 
by overheating. PRSD 
servicing allows for the 
deservicing of propellants.UCTS 

Description 1 The operating system 
of the UCTS is shown in Fig. 2. 
The four main parts of the 
system, the primary loop, the secondary loop, the refrigeration subsystem, and the pump/reservoir operation are 
described below: 

PRIMARY LOOP   
R-124 in the primary loop 
can exit the Orbiter at 30 to 



NASA�USRP�–�Internship�Final�Report�

Kennedy�Space�Center� 6� 07/29/2013�

100 degrees F with a maximum heat load of 128,000 Btu/h. Experience in operations has shown that the Orbiter 
return temperature is maintained at 60 OF. The R-124 return fluid first encounters the systems’ primary 
circulation pump, located on the reservoir / pump subsystem.  After which the flow is split into two paths. A 
portion of the primary loop fluid is routed to the temperature controlled mixing valves, located on the circulation 
control subsystem. This path is the source of the warm fluid that is mixed with the cold fluid which is conditioned 
by the secondary loop. The remaining portion of the primary loop is routed to the secondary loop heat exchangers 
where it is conditioned to 10 OF. From the heat exchangers the fluid proceeds direct to the temperature controlled 
mixing valves. At the temperature controlled mixing valves all or none of the fluid can be directed to flow 
through the secondary loop heat exchangers. 
SECONDARY LOOP   
The secondary loop is simple. The PLC monitors only one variable (temperature) and adjusts it through a single 
device, the heater, into a constant. Flow in the secondary loop is preset and fixed. Empirical data taken at OPF-3 
has proven the criticality of flow rate in order to make the system work. The secondary loop eliminates all 
variables ensuring the greatest reliability and ease in troubleshooting. (…) As a result of the temperature 
controlled mixing valves, all or part of the primary loop flow can be directed to the secondary loop heat 
exchangers. The portion of primary loop return fluid directed to the secondary heat exchangers, flow varies, 
causing changes in the heat load and secondary fluid temperature; however, the thermostatically controlled 
heaters in the secondary loop maintain the fluid going to the refrigeration subsystems at a constant design 
temperature. 
REFRIGERATION SUBSYSTEM  
The UCTS has two identical refrigeration subsystems, piped in series into the primary loop, via the secondary 
loops. Each refrigeration subsystem is sized to handle 87,000 Btu/h at 110 degrees F desert conditions. 
Experience has shown that the maximum Orbiter heat load generated during post landing operations is 60,000 
Btu/h, and averages 40,000 Btu/h. The refrigeration subsystem is basic and consists of a positive displacement 
discus compressor; refrigerant receiver, air-cooled condenser; suction heat exchanger / accumulator; an 
expansion valve and chiller barrel. 
PUMP / RESERVOIR OPERATION   
The primary pumps are configured in series. One pump is required for normal operation, and the second is 
provided for back up. Series configuration was chosen to meet any future pressure increase requirement. The 
pump operation is locked out by software preventing undesired operation of two pumps simultaneously. The 
secondary pumps are also configured in series to accommodate space allocation. (…) The reservoir maintains 
both the primary and secondary loops. This decision was made to accommodate space allocations. The reservoir 
was piped as an accumulator (out of the flow path) vs. in line to allow for system temperature stabilization of the 
secondary loops.5

III. Component Testing 
A. The Test 

The requirements of the component are studied in depth until the system test creator has adequate information 
about the components functionality. A MATLAB script is written within the test harness, in order to test if the 
desired outputs are indeed being calculated. The test is then run, and the expected output values are compared to the 
actual output values, and a pass or fail prompt is returned to the user. A portion of a written test script is shown in 
Fig. 5. Once the test script passes on every iteration (the number of iterations is based on the number of user 
designated expressions for the length of each input, and the program determines the calculated number of possible 
iterations), an autotest is run. The autotest will run Model Advisor and the system test, and then produce the MTR, 
MRDD, System Test, and Model Advisor documents. These documents (only small portions, per their large sizes) 
are represented in the Appendix, Fig. 6. After these documents have been produced, the library component, the test 
model, the test script, and the documents are uploaded to AccuRev, and when ready, will be peer reviewed for 
acceptation.

Figure 5. MATLAB Test Script. This is a representation of a small portion of the Test Script that is used to test the functionality
of the Discrete Pressure Switch. 



NASA�USRP�–�Internship�Final�Report�

Kennedy�Space�Center� 7� 07/29/2013�
Figure 6. Documents for Discrete Pressure Switch. These are the MTR, MRDD, Test Script, and Model Advisor Documents for 
the component that represent all desirable aspects of the component.

Appendix 

d) The MTR Document 

a) b) 

c) 

d) 



NASA�USRP�–�Internship�Final�Report�

Kennedy�Space�Center� 8� 07/29/2013�

�
Acknowledgments 

I would like to thank a few people who were crucial to my success during my internship at KSC. First, I owe 
Cheryle Mako my greatest gratitude for giving me this opportunity, and giving me a chance to succeed, while being 
able to see what my future has in store. Next, I would like to thank Lien Moore for all her hard work and diligence 

c) The Test Script Document 

a) The Model Advisor Document 

b) The MRDD Document 



NASA�USRP�–�Internship�Final�Report�

Kennedy�Space�Center� 9� 07/29/2013�

towards everything she does. She undoubtedly gave me the feeling that she genuinely was concerned with my well-
being, something that I cherish deeply. Finally, I would like to thank Camiren Stewart; Cam was perhaps one of, if 
not the, most helpful member of NE-C1. I felt that he could relate to me in a way that no one else could, because he 
was fairly recently an intern at KSC, but at the same time he is intelligent far beyond his years. 

References 
1MATLAB, Ver. 7.9.0 (R2009b), The MathWorks Inc., Natick, MA, 2009. 
2Grant, K., “Simulation CSCI Software Design Description,” Document Number: K0000111998-GEN, Archive URL: 

https://sp.ksc.nasa.gov/ne/simulation/Shared Documents, NASA Kennedy Space Center, Merritt Island, FL, 2013. 
3“Simulation Computer Software Configuration Item (CSCI) Modeling Standard,” Document Number: K00000141065-GEN, 

Archive URL: https://sp.ksc.nasa.gov/ne/simulation/Shared Documents, NASA Kennedy Space Center, Merritt Island, FL, 2013. 
4Moore, L., “E2E CC SDP Volume 4,” Document Number: K0000143174-PLN, Archive URL: 

https://sp.ksc.nasa.gov/ne/simulation/Shared Documents, NASA Kennedy Space Center, Merritt Island, FL, 2013. 
5Katz, M., “Universal Coolant Transporter System Technical Manual & Operating Criteria,” URL: https://usa2.usa-

spaceops.com/fl/ucts/a80k59593_index.htm, NASA Kennedy Space Center, Merritt Island, FL, 2013. 


