Human Factors Problems Of Flying Wingless Lifting Body Vehicles

Peter W. Merlin JACOBS NASA Armstrong Flight Research Center

Disclosure Information

85th Annual Scientific and Human Performance Meeting

Peter W. Merlin

I have no financial relationships to disclose.

I will not discuss off-label use and/or investigational use in my presentation

Lifting Body Configurations

Ballistic Capsules

Lifting Reentry

Advantages of Lifting Bodies

Increased mission flexibility and versatility Greater reentry cross-range than capsule Reduced *g*-loading and reentry heating Conventional seating arrangement Capable of precision runway landing

Human Factors Challenges

Pilot workload – Vehicle was prone to longitudinal and lateral oscillations Pilot-induced oscillation – Simulation predicted potential for PIO Simulation fidelity – Early simulator design was poor Need for increased attention to Human Factors Engineering

Case Study 1: Milt Thompson, M2-F2, 12 July 1966

Pilot-Induced Oscillation

Habit Pattern Transfer

Lack of Simulation Fidelity

Case Study 2: Bruce Peterson, M2-F2, 10 May 1967

Habit Pattern Transfer

Spatial Disorientation

Distraction

Task Saturation

Lifting Body HFE Lessons

Accurate Simulation

Practice in the simulator reinforces cognitive habit patterns

Human-Machine Interface Logical placement of cockpit displays and controls

Automated Flight Management Systems Appropriate use of automation

Learning from past experience is fundamental to the development of safe and efficient new systems and to improving existing systems.

Future mishaps might be avoided through the collection, archiving, and study of data on past accidents and incidents to learn valuable lessons.

Resources

Books and eBooks available http://www.nasa.gov/

Questions?

NASA Armstrong Flight Research Center Edwards, California