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Agenda

* Motivation and background
* Description of peak-seeking algorithm
* Implementation on F/A-18

* Performance data flight
e Simulation results
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Introduction

e US domestic flights in 2011:

— 12.1 billion gallons of fuel
— 114.6 million metric tons of CO, equivalent

 NASA’s Environmentally Responsible Aviation project

— Mitigate the impact of aviation on environment
— Reduce fuel consumption, emissions, and noise

* Concept presented here:

— Reduce drag in cruise by altering the trim configuration,
applicable to many types of aircraft

August 13, 2013



Background

e Existing Trim Methods
— Often scheduled with flight condition
— Based on a priori information (analytic, wind tunnel, flight data)

— Differences between models and reality may degrade performance

e Off nominal flight conditions, lifetime variations, manufacturing
differences, external modifications or stores, etc...

* Real-time optimization methods
— Adaptive Performance Optimization
* Drag reduction on L-1011 by use of symmetric aileron, (Gilyard et al.)
— Formation flight
* Position optimization (Ryan and Speyer)
e Spanwise lift distribution optimization (Hanson and Ryan)
— Trim optimization

* Drag reduction by use of single trailing edge surface group on X-48, in
simulation (Griffin et al)



Approach

* Real-time optimization of trim configuration to reduce
drag

e Use any number of control effectors

e Utilize onboard measurements of performance, which
may be noisy
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Peak-seeking Scheme (simplified for 1 effector) g

A

Estimated Gradient

Initial Excitation

Command (K*gradient)

Command (K*gradient)

And so on...

Performance Measurement, f

Effector Position, x

(Commanded by Peak-Seeking Controller)
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Peak-seeking algorithm

PE,

J}. (fuel flow)

T}, (surf pos)

2—1
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Technical Formulation: Performance Function

Performance Function (Taylor series):
f(&) ~ f(Xr—1) + b (X, — Tpeq) + O (X, — Xpe—y)

Assuming the performance function can be treated as linear at any control surface
position and expanding to include any number of control effectors, n, gives:

_ _T
bip 1 [Fir—1 = X1i]
— _ bg xzk—l T Izk
fCa—1) — f(x) = ;k :
—b’ﬂk— _xnk_l o xnk_

F and x are measureable, b, is unknown and to be estimated, and since F and x are
noisy and F varies with x, a time-varying Kalman Filter is an appropriate choice for
an estimator. The states of the Kalman filter are define as the gradient vector:

gk: :k
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Technical Formulation: Kalman Filter

Measurement equations are expanded to include multiple previous measurements, M:

() — f(®) T KXig—1 T X1 X2 T X2 Xng—1 — *ny
AE., = f(Xx—2) — f(X3) H. = p—2 = *1p X2p—2 — X2k Xng_o ~ Xny
k= : k — : : " :
| f(X_y) — f (%) R 1 " a3 T Yng—m ~ *np!
Kalman filter measurement equation: Kalman filter process equation:
_ 7Ty T _
ﬂFk = (k Hk + (R 'Zk — 'Zk—l + Wi,

where v,, w, are Gaussian white-noise with covariance matrices R, and Q, respectively

A standard linear time varying Kalman filter is K = ﬁkHI{(Hkﬁng + Rk)_l
then implemented as follows:

0o = (o + K(&FR — ka.!.:)
P = (I - KHk)ﬁk
‘?k+1 = (x

Py, = P+ 0y
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Persistent Excitation and Initial Excitation

* Persistent Excitation
— Addition to commanded A e
surface positions that is Tk
helical about the trajectory | . &
e |nitial Excitation D
061 ¢ 5
— M points around a ol
circle/sphere centered at - oY . 0
the initial condition o4
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~ F/A-18 : NASA 853

* Modified F/A-18 Aircraft - Research flight control computers
* Nonlinear Dynamic Inversion inner loop control laws

* Autopilots:
* Altitude Hold
* Airspeed Hold Fuel flow rate
. |l Peak-Seeking Trim deflections
* Wing Leveler SMLIC UGN Algorithm

e Algorithm adds biases to:
e Symmetric aileron
* Trailing-edge flaps Norlinear

* Leading-edge flaps Dynamic @ Aircraft
Inversion

Pilot inputs

-

Autopilot

Alrcraft states

Inboard/outboard leading
/\edge flaps (ganged together)

Ailerons

Trailing edge flaps

Research Fuel Flow Meters 1 1



Performance Data Flight

* Early in development an opportunity was
presented to collect performance data during
another research activity’s flight.

* Commanded 80 test points with combinations of
leading edge flaps, trailing edge flaps, and
symmetric ailerons and recorded resulting fuel
flow over >30sec per pt.

e Evaluated at a single flight condition of 25,000ft,
240 KCAS



Performance Model

 Developed a new plant model for simulation testing.
* Polynomial fit to flight data across 3 axes
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Performance Model

 More detailed data set collected for trailing edge
flaps vs symmetric ailerons, leading edge at 5 deg

— Spanwise lift distribution control
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Noise Model

 Generated a noise model for simulation, added
onto output from new performance plant model
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~New plant model for simulation

* Using new plant model in simulation, peak
seeking controller was evaluated and tuned

* Tuning variables:
— Gain applied to gradient, “controller gain”

— M, number of previous measurements used by
Kalman Filter

— R and fuel flow filter time constant, tuned for
signal noise

— Q, Kalman filter process covariance



Gain Tuning
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Q, R, Fuel flow filter

* Filter on fuel flow time constant and R matrix

— filter to reduce noise on signal going into Kalman
filter, adjust R accordingly

* Q matrix, process covariance, tuned through
Monte Carlo type simulation
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Final Tuned Parameters

Parameter Value

Gain -105

5 for 2 effectors
7 for 3 effectors
Fuel flow filter

] 20 s
time average

1.85% |

1.98% |



Simulation Results — 2 effector

e Starting from 4 different positions, algorithm
converges around -2%
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Simulation Results — 2 effector, case B
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Simulation Results — 3 effector

e 3 effector test, converges to -2.5%
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Conclusions

* Peak-seeking algorithm has potential to reduce
fuel consumption on wide variety of aircraft types

* Can easily be implemented into existing control
structure (assuming ability to actuate multiple
effectors, and digital control)

e Algorithm was subsequently flown on 5 flights
accumulating about 5 hours worth of test data

— Results will be presented tomorrow at 5:30pm (Salon J)
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