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Motivation: Sensitivity, Size, Bandwidth

 (Conventional semiconductor electric field detection limited at
about kT=1022 J

« Existing communication and direction finding techniques
require multiple antennas with sizes that are a significant
fraction of the incident wavelength, and that are separated by a
distance comparable to the incident wavelength. For
frequencies of 3 MHz and 300 MHz the wavelengths are 100
and 1 meter respectively.

* Goals:
 Decreasing antenna size
* Increasing bandwidth
* Increasing sensitivity
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Use Magnetic Antenna

 Use magnetic instead of ] Ideal Receiver Noise
electric field detection to take  1-10°
advantage of highly sensitive
Superconducting Quantum
Interference Device (SQUID)
arrays.
* Proven and being used in

medical and physics research,
geology, etc.

« SQUIDs have a typical
energy sensitivity per unit
bandwidth of about 10°h or w

~10-28 J. L
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SQUID — magnetic field sensor

Superconducting Quantum Interference Device (SQUID) invented in 1964 (50 years

ago), R.Jaklevic, J.Lambe,
x J.Mercereau, A.Silver (US)
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Array of SQUIDs

* In a current-biased series array the voltage signal increases
with the number of connected SQUIDs in the array (N), but
the noise only increases as N'2. Therefore as N becomes
larger the signal-to-noise ratio increases as N2

 In series-parallel SQIFs,
* (i) increase output voltage and dynamic range;
* (ii) control response linearity and output impedance;
* (iii) improve sensitivity to weak signals;
 (iv) make response robust to variation in junction critical
currents.
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Non-uniform SQUID Array - SQIF

SQIF : Superconducting Quantum Interference Filter - quantum
interferometer with non-equal loop geometry
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Why SQUID Array

An analogy to explain SQIF operation (in terms
Igias of sensitivity):

The SNR output of a discrete Fourier transform, which
@ X X @ basically integrates a time series, scales as the square
@ £ @( root of N, where N is the number of points processed in
the FFT, i.e., the signal magnitude scales as N but the
@< X X @ noise standard deviation scales as the square root of N,
hence SNR is proportional to the square root of N) -
@ £ @( processing gain.

The SQIF processes N signals in parallel via N SQUID
loops. For an ergodic process (statistics averaged over
time are equivalent to statistics averaged over space),
the result is the same: SNR scales as the square root of N.
This leads to the SQIF’s ability to theoretically achieve a
noise floor that approaches zero.
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SQIF-based Receive Antenna

Readout SQUID Array Flux
Electronics | (SQIF Receiver) [¢ Concentrator e
(antenna)
V 0 B

SV/b¢p 5@/5B
Can be cryogenic Cryogenic Cryogenic or
superconducting superconducting room-
circuits or room- circuits temperature
temperature depending on
conventional applications
electronics or both
(hybrid)
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Objectives:

- Preserve linearity

- Maximize area efficiency

- Ensure uniform dc current bias
distribution

Diamond-shaped double bi-SQUID cell
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Bi-SQUD 2D Array: Degree of SQIF

Flux/voltage characteristic

Voltage

qu Current blaS T . D B corie epmgire e e ]

15 x 80 cell dual bi-SQUID SQIF 15 x 40 dual bi-SQUID array
array g ~ 70% of inductance with 0 ~ 30%.
Spread

2 mV/div, 0.5 mA/div
(max voltage =18 mV, AV/AI (flux bias)

=170 V/A)

5 mV/div, 10 mA/div
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Bi-SQUD 2D Array Samples
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two serially connected 2D arrays _
(2x43x 8y5) arrays with 7310 Zells a single 7820-cell (92 x 85) 2D array

Fabricated 5 mm x 5 mm chips using HYPRES Nb-AIOx-Nb Josephson junction
process. Diamond-double bi-SQUID arrays.
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Array Noise Improvement

20, 200 and 1000 Serial BiSQUID Arrays (Chip#1-M352-1)
10° -T!'=!| T '!"f!§10-2

—C— 1000 BiSQUID Serial Array - - - - :_10-3
=—0==200 BiSQUID Serial Array - -
—0O== 20 BiSQUID Serial Array

IR EE R

B
2
3
=5

Frequency (Hz)

Comparison of the measured flux noise spectral densities for the 20-, 200- and
1000-cell arrays. It is evident that noise is getting reduced for 1000-cell array
compared to 20-cell array as ~ N2 or ~7 times as theoretically expected
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Array Linearity Improvement
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Measured Amplification

1000 and 200 Serial BiSQUID Arrays (Chip#1-M350-1) 1000 Serial BiSQUID Array (Chip#1-M352-1)
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Measured output power level of a 1000-cell serial bi-SQUID arrays at three dc
bias levels placing the array operation point at 1 — near the tip of the anti-peak,

2 — a midpoint of the anti-peak slope (optimum), 3 — outside of the anti-peak
(saturation region)
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Superconductor Circuit Fabrication

e Two types of Superconductor Materials

* Low Temperature Superconductors (LTS)
« for 4K operation

 Industrial-grade Nb-AlOx-Nb Josephson junctions

* Available commercially (HYPRES, AIST (Japan), IPHT
(Germany))

* High Temperature Superconductors (HTS)
 For~70 K operation
* Research grade YBCO Josephson junctions

* Available from research labs (UCSD (San Diego),
CSIRO (Australia), etc.)
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LTS Fabrication Process
Nb-AlOx-Nb junctions for 4 K operation

HYPRES Fabrication Process

~6 mask releases per
year (current number
is 350)

~400 chips per wafer

150 mmdia.

ey el —

- 5xo mmedie

High J. (20 kA/cm?) with MoN resistors — under development
» RSFQ (Digital & Mixed-signal)

Medium J, (1 kA/cm? and 4.5 kA/cm?) with Mo resistors
» RSFQ (Digital & Mixed-signal)

Low J, (30 A/cm?) with Al, Mo, or Ti/PdAu resistors

» SQUID applications

» 1V and 10V Voltage Standard

» QC circuits for mK operation
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All-Digital Receiver (ADR) — 12,000 JJs
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LTS Fab: Process Cross section

Copper JJ resistor HYPRES fab process

SUBSTRATE 1 wiring
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Cryocooling for 4 K operation

» Weight: 7.2 kg (for coldhead only)
* Input Voltage: 18-28 VDC

 Maximum Input Power: 1.5 kW
(compressor power)

« Cooldown Time (300 to 4K): 150 min
(unloaded).

» Cooling Capacity: 0.2W @4.2K and 3-
SW@45K

4"x9"x18" 13"x18.4"x18.4"

| -~
b Integrate radome onto
Coldhead Compressor S a cryocooler

Commercially available from multiple sources
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Platforms for LTS-based systems

4K stage

SQUID
array [N

SQUID

%
% array

SQUID
Flux /2 array \
Concentrators \ \

SQIF Digital-RF
Sensor/LNA Receiver

Digital-RF
Rx

., DSP

NV Y

Room-temperature module

Fixed or Shipboard deployment

superstructure surface * <_} ~10 cm

] I \l/
~50 cm

SQUID array chip-size u
(1-cm scale) antenna =8
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SQIF-based Receiver

4 K
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Tapered Slot Flux
Concentrators

Primary Flux
Concentrator
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Successful
operation with X-
band satellites

using
X-band conventional dish
Transmitter antennas

X-band Digital-

COTS RF Receiver

Digital Modem
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Today’s Digital RF Receiver System

Based on superconducting RSFQ digital technology

RSFQ chip: 1 cm?, 11K JJs, 30 GHz clock
Band-pass ADC integrated with digital
signal processor

ieiviiwjieiivileile)
& A & A4A8a&

30 Gs/s. Wicllceband ;lﬁgital ADR-7 — Complete cryogenic Digital-RF
recelverior s?.te ite satellite communication receiver system
communications (takes input from conventional dish antenna)
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HTS Fabrication Process
YBCO junctions for ~70 K operation

Univ. California San Diego (UCSD) fabrication process

Based on lon

Damage
Josephson
Junction (IDJJ)
fabrication
technique
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Cryocooling for 70-77 K operation

* Weight: 715 g
* Input Voltage: 18-28 VDC

» Steady State Input Power (1000mW @77K): 20W
Typ. @23°C

 Maximum Input Power: 45W

* Ambient Temperature Range

« Operational: -40°C...+71°C

* Non-Operational: -56°C...+85°C

» Cooldown Time (500J @23°C): 4 min. Typ.
‘  Cooling Capacity: 1\W @77/K @71°C

o « MTTF > 15,000 Hours (Goal)

Integral Stirling 1W Micro * Meets Environmental Conditions per MIL-STD-810
Cooler RICOR K543

Commercially available from multiple sources

WEFB: Frequency agile antennas and sensors using advanced control materials IMS2014, Tampa, 1-6 June, 2014 27



Platforms for HTS-based systems

Flux 9;?‘;'[) » Rx channels |—_
I
Concentrator = ﬂ y
— SQUID »| Rx channels > DSP
array
SQIF % sQuID o] Rx channels |1
Sensor/LNA — o Laray N
Digital-RF

) Room-temperature module
Receiver

SQUID 2D array for
Superconducting
Quantum Antennas

Sensitive compact RF system based on
Superconductor Quantum Antennas

CryoTel MT
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Semiconductor Receiver versus
SQIF Receiver (E vs. B)

SQUIDs can detect magnetic fields lower than one flux quantum
h/(2e) = 10-1° Wb, 10-'® Wb reported in the literature

Conventional Receiver SQIF Superconducting Receiver
Mars link at 64 MBPS Mars link at 64 MBPS
*EIRP = 84 dBW (=2.5 X 108 W) *EIRP = 84 dBW (=2.5 X 108 W)
Assumes 100 W TWT, 12 m aperture Assumes 100 W TWT, 12 m aperture
Range=3.7X108 km Range=3.7X108 km
« Power density at receiver = 2.8X10-1° W/m? - Power density at receiver = 2.8X10-16 W/m?

Electric Field = 4.6 X 107 V/m Electric Field = 4.6 X 107 V/m

Displacement flux density = 10-1® C/m? Displacement flux density = 10-18 C/m?

- Receive Antenna Aperture Magnetic Field =~ 109 é/m P 2
QPSK, Block Turbo Code, 3 dB margin Magnetic flux density = 10-"> Wb/m

Required E,/N,=4.6 dB - Receive Antenna Aperture

Flux Concentrator
Mechanical refrigerator at 4K

Aperture size 72 meters Aperture Size ~ 277
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State-of-the-Art LNA Technology
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Conclusions

e SQUID arrays have the potential to detect extremely
weak magnetic fields to enable a new type of signal
detection processing

e Can potentially lead to the development of antenna
with quantum-limited sensitivity

e Electrically small broadband communication or
direction finding system with high sensitivity,
dynamic range, linearity, dynamic programmability,
high angular accuracy
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Backup
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Measured Noise

20, 200 and 1000 Serial BiSQUID Arrays (Chip#1-M352-1) 20, 200 and 1000 Serial BiSQUID Arrays (Chip#1-M352-1)
10-2§ i SRS FERE I L L 4 SR LA B L H H ""rf§10-2 ".'"| ¥ H "?f"—l S 5 ?'73'1_103
: T e e s - PR ' SRR T
: : et —_ —o—1000 BISQUID Serial Aray
o 200 BLSaUID Sera Aney. EEEEEF 10 < — —0—200 BISQUID Serial Aray ———F 10’
—o0— 20 BISQUID Serial Array ot ‘_z . =0=20 BiSQUII_D S_erial Array r 10°
— 10* . oA 10* & —QO=— Quantum Limit St
- E TE - e T
IN -E :
T ©
o 10"+ =
X 3
=]
< 1074 -
n : =
2
=T o
107 S
10°
10

Frequency (Hz) Frequency (Hz)

g(f) = Sg(f)/2L, where fis frequency, L — inductance of bi-SQUID calculated from the
measured separately, 4/, modulation of IV curve defined as L = @,/24/.. Noise
temperature is defined as T, = 7 f &(f)/kg, where kg is Boltzmann’s constant.
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RF Coupling to SQIF array

B(?) = B,

+B

RF-signals modulate magnetlc fux threading loop areas

\U \\\\J/Q\[/,‘n'!

=>» copy of signal transferred into beat pattern of
high frequency Josephson voltage output V(t)

1000 1020

Electrically small multi-loop antenna based on direct reception of magnetic field by individual loops
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Josephson Junction

Active component (switch) in superconductor electronics

Below critical current “Ic”

Superconductor I < Ic _______ r_l:l_ll_w _____
A Current flows through JJ at V l i
‘ ‘ _ Thin =0 Ic# D, hlc
Insulator . | E— i
N [=1_ sin(¢) O
Superconductor
> 1, A
Il I V #0, and JJ passes magnetic .
flux through at rate ¢ |
=X @,
— @0 /VC
1 I
b
Typical Critical Current:
Josephson Junction I, ~0.1 mA

Time constant :
T~ 1 ps (3-um process)
T~ 0.1 ps (0.2-um process)
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Matured Nb-based D

1st Gen

10 mm

10 mm

-
»
-
D
-
-
-
-
-
D
.
»
-
-
-
-
(1]
-
-

2nd Gen
ADR-3/4

5 mm

ital Rx

3 Gen
ADR-5/6/7

10 mm

threshold AX
Desernializer

10 mm

liter
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