
A Cryogenic Fluid System Simulation in

Support of Integrated Systems Health Management

John P. Barber
1
, Kyle B. Johnston

2
, and Matthew Daigle

3

1SGT, Inc., Kennedy Space Center, FL. 32899, USA

john.p.barber@nasa.gov

2ENSCO, Inc., ASE, Kennedy Space Center, FL. 32899, USA

kyle.b.johnston@nasa.gov

3NASA Ames Research Center, Moffett Field, CA. 94035, USA

matthew.j.daigle@nasa.gov

ABSTRACT

Simulations serve as important tools throughout the design

and operation of engineering systems. In the context of sys-

tems health management, simulations serve many uses. For

one, the underlying physical models can be used by model-

based health management tools to develop diagnostic and

prognostic models. These simulations should incorporate

both nominal and faulty behavior with the ability to inject

various faults into the system. Such simulations can there-

fore be used for operator training, for both nominal and

faulty situations, as well as for developing and prototyping

health management algorithms. In this paper, we describe a

methodology for building such simulations. We discuss the

design decisions and tools used to build a simulation of a

cryogenic fluid test bed, and how it serves as a core tech-

nology for systems health management development and

maturation.

1. INTRODUCTION

In modern systems engineering practices, modeling and

simulation serve as foundational elements throughout the

design process. Systems health management (SHM) tech-

nologies, which focus on monitoring system behavior, de-

tecting faults and other anomalies, isolating and identifying

faults, and predicting component failures and other signifi-

cant events, all rely on some type of system model. System

simulations capable of modeling both nominal and faulty

behavior can help in developing these models and in testing

and validating SHM algorithms, and have an additional ap-

plication for operator training with failure scenarios.

Simulations can effectively serve as virtual testbeds. For

development and validation of SHM algorithms, such simu-

lation testbeds are extremely useful since validation requires

injecting faults, which is often difficult, costly, or unsafe to

perform on real systems. In (Poll et al., 2007) an electrical

power distribution system testbed and its corresponding

simulation testbed are described. In (Balaban et al., 2013) a

simulation testbed for a planetary rover is described. In

(Goodrich et al., 2009) a simulation testbed for a cryogenic

fluid system is discussed. Each of these simulation testbeds

have the ability to inject faults and are used for development

and prototyping of health management algorithms. Other

examples of simulation-based SHM include (Agusmian,

2013) and (Biswas, 2007).

We describe in this paper the development of another simu-

lation package for a cryogenic fluid system, extending in

many respects the preliminary work presented in (Goodrich

et al., 2009). The simulation is being developed for a cryo-

genic testbed (CTB) that, through a network of pipes,

valves, pumps, and filters, transfers liquid nitrogen from a

storage tank to an external tank representing that of a space

vehicle. The purpose of the CTB is to mature SHM technol-

ogies for ground systems operations. Developing a simula-

tion for this system presents many challenges, due to the

large number of components, the large number of possible

system modes, and complex two-phase physics.

This paper focuses on the development of the CTB simula-

tion software, named CryoSim. We discuss the tools used to

build the simulation model, and how the challenges of

building such a simulation are addressed. The system archi-

tecture used for CryoSim is both model and domain agnos-

tic. It can be easily adapted for use with other system mod-

els and simulation domains, thus serving as a general archi-

tecture for designing virtual testbeds for SHM purposes.
Barber et al. This is an open-access article distributed under the terms of

the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium,

provided the original author and source are credited.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY, 2013

2

In Section 2, we present a brief overview of the SHM sys-

tem and other factors that motivated the development of

CryoSim. In Section 3, we discuss the internal architecture

of CryoSim and present the design methodology used to

develop the model. Section 4 details the external interfaces

we have developed for CryoSim to facilitate its use as a

virtual testbed. We present a number of results in Section 5

to illustrate the key features of CryoSim and its use in an

SHM context. Section 6 concludes the paper.

2. BACKGROUND

CryoSim is one element of an integrated SHM system being

developed for the CTB. The SHM system architecture con-

sists of a set of health management tools connected via a

message bus based on a publish/subscribe protocol. During

operation, the target system periodically publishes a set of

messages containing system measurement data (pressures,

temperatures, flow rates, etc.). The health management

tools receive this data, perform analysis, and then publish

messages indicating the health status of the monitored sys-

tem.

CryoSim was developed as a drop-in replacement data

source for the CTB. CryoSim uses a simulation to produce

data which accurately represents a range of system behav-

iors, including fault scenarios. This data is then published

to the message bus using the same protocols as the CTB. In

this manner, CryoSim acts as a virtual testbed, enabling the

development and testing of a suite of health management

tools without large numbers of costly test runs on the CTB.

The architecture and implementation of CryoSim described

in this paper were primarily motivated by its intended use as

a testbed for SHM systems. This application drove the de-

velopment of features such as component-level fault simula-

tion and the message bus interface, which we discuss in later

sections. The possibility of using a simulator package like

CryoSim as a data source for other systems dictated the

modular, model-agnostic design approach that we followed.

Additional considerations during development included its

potential application as an operator training environment,

and the ability to support varying levels of simulation fideli-

ty with the same model. The remainder of this paper de-

scribes the methods we used to ensure that CryoSim could

meet this set of objectives.

3. CRYOSIM ARCHITECTURE

This section describes the architecture of CryoSim, starting

with an overview of its modular architecture. We then dis-

cuss key elements of the approach we used to develop the

system model. Finally, we describe the operation of the

initialization and control modules, and how they interact

with the model and the external interfaces present in

CryoSim.

3.1. Overview

The CryoSim software was developed to meet the following

objectives:

 Provide a medium-fidelity, multi-domain system

model incorporating cryogenic fluid flow elements,

a pneumatic actuation system, and an I/O and con-

trol system

 Model both nominal system behavior and the ef-

fects of any of a discrete set of failure modes in-

jected at any location in the system

 Publish model input and output signal values to a

message bus interface using the same protocols as

the CTB system

 Allow user specification of input signals, model

parameters and fault injection commands

 Record all simulation data, including inputs, pa-

rameter values, outputs and status/warning mes-

sages to a file for offline analysis

 Provide an interactive graphical interface allowing

full control over the simulation environment, in-

cluding system inputs and fault injection

In order to support the various use cases and configurations

of CryoSim, the package was developed using a modular

architecture. The core consists of two required modules: the

CTB system model which is implemented as a hierarchical

Simulink® model, and an initialization and control module

consisting of a set of MATLAB® functions. If desired, the

message bus and GUI modules can also be enabled for a

simulation run or set of runs, but are not required to access

any of the core functionality of CryoSim. Figure 1 shows a

block diagram of the CryoSim architecture.

Figure 1. CryoSim block diagram

3.2. System Model

The CryoSim system model is a variable-fidelity, multi-

domain physics-based model of the CTB. The model was

developed using Simulink, without dependencies on addi-

tional toolboxes. We developed a set of component libraries

to represent the various physical domains included in the

system. Interaction between elements in different domains

is incorporated in the component designs. The current im-

plementation has libraries for cryogenic fluid flow, pneu-

matics, and electrical systems (including transducers and

system I/O). Library components are instantiated in the

model and connected to match the topology of the physical

system. Related sets of interconnected components are or-

ganized into subsystems, which are connected together to

form the complete model.

3.2.1. Component-based Design

The CryoSim system model is composed of a set of compo-

nent models which are connected to match the CTB system

topology. The component models are parameterized repre-

sentations of a component’s behavior in both nominal and

faulty operating regimes. This methodology allows a single

component model residing in a library to be used in the sys-

tem model to represent a number of similar physical com-

ponents, each having unique physical characteristics and

behavior. For example, the library component used to rep-

resent a pneumatically actuated control valve, shown in Fig-

ure 2, has parameters describing the orifice diameters and

flow coefficients of both the fluid flow path and the pneu-

matic actuator. Instances of this component are used in the

model to represent valves with different geometries, simply

by changing the parameters used for each component.

Figure 2. Control valve (CV) component model

3.2.2. Variable Model Fidelity

A core feature of CryoSim is support for different levels of

simulation fidelity without requiring a user to make changes

to the system model. We accomplish this by implementing

multiple component or subcomponent-level models, each

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY, 2013

4

providing a different level of fidelity and corresponding

computational burden. The models can range from a non-

computing element such as a constant output or signal pass-

through, to a low-order model based on empirical behavior,

to a high-fidelity model based on the underlying physics of

the component being modeled. Our approach uses the vari-

ant subsystem functionality in Simulink to implement this

behavior. When using variant subsystems, each component

or subcomponent may have one or more variant instances,

each representing a different model of the component’s be-

havior. Before a simulation is run, one of the set of possible

variants for each component is selected and made active for

the simulation, while the remaining variant instances are

disabled. This implementation allows the end user to select

the desired simulation fidelity at run time using a single

parameter, without the possibility of errors introduced by

editing the model.

Figure 3. Internal block diagram of a variant subsystem

Figure 3 shows the internal configuration of the variant sub-

system used in our model to compute fluid flow, which is

representative of the cryogenic fluid domain in our model.

The variant subsystem contains three variant instances: a

standard fluid flow model, a two-phase fluid flow model,

and a null model. The standard fluid model is based on the

Bernoulli equation for laminar, incompressible, inviscid

flow (Granger, 1995). This option provides a computation-

ally-efficient model which yields usable accuracy for our

SHM system when used to simulate the post-chilldown

phase of the CTB system’s operation, where the flowing

fluid exists primarily in the liquid phase. However, it is not

accurate for operating regimes such as system chilldown,

where the cryogenic fluid is in a mix of liquid and vapor

phases.

The two-phase fluid flow model is based on a stratified flow

approximation that assumes the gas and liquid are split into

two layers with gas on top and liquid on the bottom. The

model considers heat transfer with the walls and between

the layers, including evaporation/condensation and boiling.

The two-phase model provides a much higher level of fideli-

ty, especially in the chilldown phase where there are large

temperature variations in the system resulting in significant

quantities of liquid being converted to vapor. The tradeoff

associated with the two-phase model is increased computa-

tion time for higher model fidelity compared to the standard

flow model.

The null component variants for the cryogenic fluid library

consist of signal terminations on the input ports, and output

ports set to constant values. The null variants are effectively

empty blocks that require no computation during a simula-

tion. The use of null variants allows unneeded portions of

the system model to be disabled for a given simulation run,

resulting in significant increases in simulation speed. In

general, care must be taken when implementing the null

variants in order to provide appropriate boundary conditions

for the non-null portion of the system. For example, the

null variant for a fluid tank connected to a pipe network

should provide output signals representing a static state

(pressure, flow, temperature, etc.), rather than null or

grounded signals.

It should be noted that the effective use of variant subsys-

tems requires that each variant instance for a given compo-

nent have the same connectivity. We implement this by

using vector-based signals to connect component instances.

For example, two scalar signals are needed for the variables

representing cryogenic flow in the standard flow model,

while four signals are needed for the two-phase model.

Similarly, the variables needed to describe a fluid element

require either two or seven scalar signals. We combine the

groups of scalar signals into vector signals, and use

mux/demux blocks at the input and output ports of the vari-

ant instances to route the signals internally, as shown in

Figure 4. Signals that are not needed by a particular set of

variants are grounded or terminated inside of the variant

instances. To avoid problems associated with Simulink’s

ability to propagate signal data types and dimensionality, it

is good practice to explicitly specify signal properties at the

input and output ports of each component variant. When

implemented in this way, changing from one set of variants

to another does not require any changes to the model’s to-

pology. This allows an end-user to safely change the mod-

el’s variants and simulation fidelity without the risk of alter-

ing connections within the model, and without requiring the

model designer to maintain separate system models for each

set of variants.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY, 2013

5

Figure 4. Block diagram for the Standard Fluid Flow variant

The use of variant subsystems easily extends to mixed-

domain components. The component model of a pneumati-

cally-actuated control valve shown in Figure 2 includes el-

ements from both the cryogenic fluid flow and pneumatics

domains. Because the variant subsystems are implemented

as domain-specific sets of variant instances, the control

valve model contains two variant subsystems, which can be

changed independently.

Our implementation allows the user to specify desired vari-

ants via a set of control parameters. For each simulation

domain, a global variant parameter determines the particular

variant implementation for that domain. Thus, a user desir-

ing a high-fidelity simulation of the cryogenic domain that

does not require high fidelity in the pneumatics domain can

simply specify the appropriate variant control parameters

before running a simulation.

A second group of variant controls in CryoSim allows par-

ticular segments of the system to be toggled between the

usual domain-specific variant components and null compo-

nents. If a particular segment is not required for a simula-

tion, the components in that segment can be set to use the

null variant instances instead of the normal component

models, reducing the computational load required to model

the entire system. Implementing this functionality in

CryoSim approximately doubles the simulation speed in

cases where all unneeded segments are disabled.

3.2.3. Fault Modeling

In order for the simulation data to accurately represent sys-

tem faults, the desired failure mechanisms must be incorpo-

rated into the component designs. During a simulation,

when a given fault is injected onto a particular component,

the effects of the fault will automatically propagate through

to the entire system in accordance with the underlying mod-

el behavior. The fault mode, magnitude and injection time

are implemented as parameters for each component, ena-

bling fine-grained control over fault behavior in the model.

Faults can be injected or cleared either before a simulation

is run, or during the run.

In keeping with our system model’s design, the implementa-

tion of a specific fault mode will depend on the desired level

of fidelity. For many of our component models, a multiport

switch is introduced in the path of a signal of interest, allow-

ing different transformations to be applied to the signal de-

pending on the selected fault mode. An advantage of this

approach is that new fault modes can be added to a compo-

nent without requiring any rework of the model or other

library components. Similarly, a higher fidelity representa-

tion of a particular fault can be incorporated into a compo-

nent if there is a specific need.

The control valve component model, shown in Figure 2,

illustrates this approach to fault modeling. The blocks used

to implement the fault modes are shown with a hatched

background. This component model has four available fault

modes:

1. Nominal behavior: when this mode is active, the actua-

tor position calculated by the “Pneumatic Valve Actua-

tor :: Variants” block is passed without modification to

the “Flow :: Variants” block.

2. Stuck pneumatic actuator: in this fault mode, the posi-

tion of the pneumatic valve actuator is set to a fixed

value, regardless of the value of the controlling “Signal

Pressure” input. When this mode is active, the calcu-

lated actuator position is ignored. A user-determined

fault magnitude parameter is used instead, originating

from the “Fault Magnitude1” block shown in the dia-

gram.

3. Blockage: this fault mode models an obstruction in the

fluid flow path of the valve. The pneumatic actuator

position is not affected by this fault mode, so it is

passed through to the “Flow :: Variants” block. To

model the effects of the blockage, the nominal valve or-

ifice area is scaled down by multiplication with the us-

er-determined fault magnitude parameter.

4. Frozen: this fault mode represents a condition where the

pneumatic actuator does not respond to its controlling

input signal, similar to the “Stuck” fault described

above. However, in the “Frozen” mode, the actuator

position is held to its value immediately prior to the

fault mode becoming active. This can be seen in Figure

2 as the “Memory” block at the bottom of the diagram.

As noted earlier, the approach we have used for fault model-

ing allows the addition or modification of fault modes for a

given component with no impact to the normal behavior of

the component or overall system. The complexity of any

particular fault mode’s implementation is determined by the

model designer. A simple low-order approximation can be

used for faults that do not require high-fidelity modeling,

such as the “Stuck” and “Frozen” fault modes for the CV

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY, 2013

6

component. For these faults, we do not model the mechan-

ics of a failure within any particular type of pneumatic actu-

ator. Instead, we approximate the behavior of the actuator

in a manner that minimizes the computational resources

needed for the fault models. For fault modes where in-

creased fidelity is desired, the fault can be incorporated into

the physics of the affected subsystem, such as the “Block-

age” fault for the CV component and the statistical wear

model used for the filter component described in Section

5.4.

3.2.4. Extensibility

It is anticipated that CryoSim will be required to provide

simulation data representing different configurations of the

CTB system. For example, a valve replacement or re-

routing of pipes in some segment of the system would con-

stitute a modified configuration that would require corre-

sponding changes to the model. The component-based de-

sign is well-suited to this requirement, as changes to a par-

ticular subsystem can be made by adding or removing that

subsystem’s components and connecting them to match the

new system topology.

Additionally, the component libraries allow the rapid crea-

tion of models of other systems that utilize the same com-

ponent types. The modular nature of the CryoSim system

architecture, which separates the model from the initializa-

tion, control and external interfaces, allows virtually all of

the supporting code to be reused for a new system model

without modification.

3.3. Initialization Module

The initialization module is responsible for setting up the

simulation environment and external interfaces before a

simulation is run. To support the multiple interfaces and

use cases for CryoSim, the initialization module must pro-

vide a number of entry points while enforcing consistent

behavior throughout the simulation process. That is, a

simulation controlled through the GUI must accept the same

inputs and provide the same outputs as a standalone simula-

tion run or one controlled via the message bus. Additional-

ly, the initialization module must validate user-supplied

input signals and parameters, and ensure that the set of pa-

rameters and signals presented to the simulation module is

complete and well-defined. CryoSim uses the base

MATLAB workspace to store and process initialization and

simulation data, allowing both the initialization and control

modules to interact with the system model (via internal

MATLAB/Simulink system calls), and the external interfac-

es (via MATLAB/Java interaction, described later).

3.3.1. Input Data

To ensure that all signals and parameters are defined prior to

a simulation run, the initialization module loads a default

configuration file, which contains all of the required values.

If desired, a user-defined input file can be loaded after the

default data file. The initialization module first validates the

user-specified data for type, range and dimensionality. The

validated data is then merged into the default configuration,

with user-specified values always taking precedence over

the default values. To avoid unexpected simulation results,

the user is notified if the data in their input file is either in-

complete or contains invalid entries.

3.3.2. Batch Mode

One important use-case of the CryoSim package is running

sets of simulations to generate data for parametric and Mon-

te Carlo analysis. To spare a user from the effort needed to

generate unique input files for each set of desired parameter

values, the initialization module includes an interface to

allow a user-supplied calling function to execute the full

initialization procedure once and then run a set of simula-

tions. For each simulation run within the set, the calling

function passes an arbitrary set of parameter and signal val-

ues which are used to override the default values for that

run. This enables a simple user-supplied script to run a

batch of simulations with a unique combination of parame-

ter and signal values for each run.

3.4. Control Module

The control module is implemented as an “Interpreted

MATLAB function” block inside of the Simulink system

model. This function is executed at a predetermined rate as

part of the simulation process, and has access to the model’s

input and output signal values during the simulation. Addi-

tionally, because it executes as a MATLAB function, the

control function has access to both the base MATLAB

workspace and the external GUI and message bus Java in-

terfaces.

During each iteration of the control function, new values for

the model’s control signals and fault status are read from

tables in the base MATLAB workspace. The module then

queries the GUI and message bus interfaces (if present) for

any user-generated control signals or fault commands,

which are merged into the default tables. Values received

from these interfaces always take precedence over the de-

fault values generated by the initialization module using the

input file. The updated control signals and faults are then

sent to the model, and the model’s current input and output

values are published to the GUI and message bus interfaces.

Another important function of the control module is the

ability to control the real-world execution speed of the simu-

lation by comparing the simulation clock to a system clock,

and introducing appropriate delays if necessary. This func-

tionality allows the CryoSim module to act as a substitute

data source for the actual CTB system, which publishes

measurements and system input values at one second inter-

vals. Correct behavior in this mode requires that the host

computer can execute the simulation at a rate of at least one

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY, 2013

7

simulation time step per real-world time step. For simula-

tion runs used for offline data generation and model devel-

opment, the execution speed control can be disabled, allow-

ing the simulation to run as fast as possible in a given com-

puting environment.

Upon termination of the model’s execution, a cleanup func-

tion is executed. This function creates an output file which

can be used for offline analysis and to meet data retention

requirements. The output file contains all of the data needed

to reproduce the simulation run (model parameters, input

signals and injected faults), as well as the simulation outputs

and message log generated by the CryoSim module. With

the exception of the simulation outputs and message log, the

data structure of the output file is identical to the input file.

Thus, a particular simulation can be re-run simply by strip-

ping these tables from an output file, then using it as the

input file for a new simulation.

4. EXTERNAL INTERFACES

4.1. Overview

We have developed two external interfaces to integrate

CryoSim into our SHM system architecture. First, we cre-

ated an interactive GUI that enables full control of the simu-

lation, from starting and stopping a simulation, to injecting

faults and changing model parameters and signals. The

second interface consists of an adapter used to connect to

the message bus interface used by the SHM system. This

adapter allows CryoSim to publish simulation data onto the

bus in a manner identical to the physical system it models,

functioning as a virtual test bed for the SHM system.

Both interfaces were implemented in Java®, making use of

MATLAB’s ability to directly access Java objects and

methods. The use of Java provides two key advantages.

First, by developing Java classes to handle the computations

needed for the GUI and message bus, we reduce the compu-

tational burden on MATLAB, enabling faster simulation

speeds. This improvement in performance is primarily due

to the greater control over threading available in Java. The

second advantage is the availability of commercial GUI

toolkits for industrial controls and systems. We used the

GLG Toolkit (www.genlogic.com) for CryoSim, which

minimized the effort needed to produce the GUI.

4.2. Graphical User Interface

The CryoSim GUI was designed to meet the following ob-

jectives:

 The GUI can control simulation execution, including

start/stop/pause commands and control of execution

speed.

 The GUI displays the current values of the simulation’s

output signals, and also includes the ability to produce

time-series plots of past values of these signals.

 The GUI allows the user to specify input values (con-

trol signals), inject faults and modify other simulation

parameters, both before a simulation run and during its

execution.

 The GUI has two operational modes: an interactive

mode which runs a simulation and generates new output

data, and a playback mode which replays data recorded

from a prior simulation run, and thus does not require

the use of the MATLAB/Simulink software.

4.2.1. Java-MATLAB Interface

As shown in Figure 1, the interface between CryoSim and

the GUI includes a change from the MATLAB environment

used in CryoSim to a Java-based GUI. To enable full inter-

activity, user inputs to the GUI must be passed to the

CryoSim initialization and control modules, and model out-

puts must be sent from the control module to the GUI, all

without stalling or otherwise interrupting the simulation. As

noted above, the use of Java for the GUI’s internal computa-

tions provides significantly more control over the threading

and scheduling of these computations, compared to the sin-

gle-threaded Simulink environment of the simulation. This

is important because the CryoSim control module is part of

the Simulink model, and any blocking or delay due to inter-

action with the GUI has the potential to significantly reduce

simulation speed.

Communication between MATLAB and Java can be im-

plemented in MATLAB via the built-in javaMethod() func-

tionality, and in Java using the third-party matlabcontrol

API (http://code.google.com/p/matlabcontrol). MATLAB

access to Java objects and methods is well-documented and

supported by Mathworks, Inc., and serves as the basis of

most of our interface. On the other hand, Java access to the

MATLAB environment via matlabcontrol makes use of an

undocumented interface, although some information is

available through third parties (Altman, 2013 and Altman,

2011). Additionally, the matlabcontrol API provides only a

limited feature set compared to the use of javaMethod(),

providing further weight to our decision to use

javaMethod() calls whenever possible.

As shown in Figure 5, the data flow between the GUI and

CryoSim can be classified into initialization procedures,

which take place before a simulation run, and interactive

control during the simulation run. The data exchanged be-

tween the GUI and CryoSim during initialization includes

model parameters and input signals as well as a table con-

taining faults to be injected during the simulation. During

the initialization stage, CryoSim loads a user-specified input

file which provides the parameters and signals used for a

simulation run. CryoSim then pushes this data to the GUI,

where it is used to initialize the information presented to the

user. The user can then modify signals, parameter values,

and the fault injection table. When the user has created the

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY, 2013

8

desired simulation scenario, the simulation can be started

via the simulation controls available in the GUI.

Figure 5. CryoSim-GUI interface

During a simulation, the interaction between CryoSim and

the GUI is handled through the use of javaMethod() calls in

CryoSim’s control module. The control module pushes a

vector containing the current output signal values to the

GUI, where they are used to update the GUI’s display of the

model’s state. The control module then queries the GUI for

any updated input signals or faults that the user might have

supplied, and provides them to the model. In this imple-

mentation, all user inputs to the GUI are applied to the mod-

el at the next time step after the GUI has made them availa-

ble. This mode of interaction, when coupled with the flexi-

ble threading available in Java, allows the simulation to run

independently and without risk of blocking from the GUI.

The only direct control the GUI has over CryoSim is the set

of simulation commands (start, stop and close simulation),

which use the matlabcontrol API and can thus execute as

soon as activated by the user.

4.2.2. CryoSim-GUI Interaction

The GUI provides full interactive control of CryoSim using

the controls shown in Figure 6. This diagram shows the

main GUI window, which consists of a number of panels

and controls, numbered here for reference in the text. The

system shown has been simplified from the full CryoSim

model in order to reduce its visual complexity for illustra-

tion purposes.

As discussed earlier, CryoSim makes use of an input file to

provide parameters, input signals and faults for a particular

simulation run. The GUI menu bar (#1) allows the user to

select an input file, which is shown in the configuration

panel (#2). This panel also allows the user to specify the

simulation length (#3), inject faults (#4) and modify input

signals (#5). The Simulation Status panel (#6) displays sta-

tus messages, simulation progress and the simulation clock.

The Simulation Controls panel allows the user to start, stop

or pause the simulation (#7) and control the simulation

speed (#8).

The System Schematic Panel (#9) contains a graphical rep-

resentation of the system model’s components and topology.

Sensor components are included in the model in locations

corresponding to CTB sensor locations. Their outputs are

shown using text boxes in the GUI (#10) and are updated

during each iteration of the control module. Additional ‘vir-

tual sensor’ outputs in the model provide simulation data for

locations in which there is no corresponding sensor in the

actual system. The GUI makes use of these additional sig-

nals to provide more data to the user for exploratory data

analysis, allowing for more detailed understanding of the

system’s behavior.

As mentioned earlier, the GUI graphics were developed

using the GLG Toolkit, which provides an interface where-

by the visual appearance of an element can dynamically

change based on a state variable’s value. We use this func-

tionality to display valve positions (indicated by the color of

the valve’s body, #11), pipe flow rates and system tempera-

tures.

In addition to serving as a visual representation of the mod-

el’s state, the GUI allows interactive control of the model’s

inputs and fault injection status. The user can click on the

text label for any component and bring up a component de-

tail window. The contents of this window vary depending

on the nature of the component, but can include a time-

series plot of the component’s input and output signals, con-

trols to allow the user to override the default input signals

with a user-determined value, and the ability to inject a fault

into the component, either immediately or at some future

time during the simulation. Additionally, clicking on a

valve body in the main GUI window will toggle the valve’s

position between fully open and fully closed. All user-

supplied input signals are implemented as overrides to the

signal values contained in the input file. Thus, if a user sets

a valve position using either the toggle functionality or the

component detail window, the valve will remain under user

control for the remainder of the simulation run, rather than

respond to any pre-scheduled changes in the input file.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY, 2013

9

Figure 6. CryoSim GUI

4.3. Message Bus Interface

The primary objective of the CryoSim package is to act as a

data source substitute for the CTB system. This architecture

makes use of a publish/subscribe message bus based on the

Internet Communications Engine (Ice), a suite of communi-

cations middleware developed by ZeroC (www.zeroc.com).

Using Ice, a message bus based on the publish/subscribe

paradigm was developed as the core of the integrated health

system. In this configuration, a system being monitored

will publish sensor readings indicating its current state to

the message bus. Health management modules then sub-

scribe to this published data, perform analysis, and publish

messages based on this analysis. The same framework was

used in (Poll et al., 2007) and (Balaban et al., 2013).

During a simulation run, CryoSim publishes the values of

the model’s output signals, which represent all of the avail-

able sensors and test points of the CTB system. By control-

ling the simulation’s execution speed to match real-world

time, the data published by CryoSim matches the real-world

CTB data in timing and format. This enables developers of

health management modules to use CryoSim as a virtual

testbed without modification. Additionally, the pub-

lish/subscribe message bus architecture allows remote con-

trol over the CryoSim system through the same interface.

Within CryoSim, the message bus interface is implemented

as a hybrid MATLAB/Java construct. The Ice software

generates a Java class interface containing the user-defined

message formats. The message classes are then combined

with Java code that implements the necessary publish and

subscribe functionality. The CryoSim initialization module

then instantiates the Java classes, establishing communica-

tions with the message bus via calls to their methods.

5. RESULTS

In this section we present the results of several simulation

runs to demonstrate key aspects of CryoSim. We first pro-

vide some information on simulation accuracy and speed,

followed by an example of component-level fault injection,

followed by demonstration of the use of variant subsystems

to trade simulation fidelity for speed. Finally, we show an

example of a prognostic health management algorithm in-

teracting with the simulation to produce an analysis.

5.1. Simulation Accuracy and Speed

CryoSim uses the Simulink environment for determining the

time-varying solution to the set of ordinary differential

equations (ODE) that constitute the system model. The

choice of solver algorithm and error tolerances affects both

simulation speed and accuracy. For our model, the variable

step size ode45 solver works well with the “Standard” fluid

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY, 2013

10

variants, while the increased stiffness of the two-phase

model requires the use of the ode23s solver, also a variable-

step algorithm. For the standard model, a typical simulation

runs at approximately 3x speed on a 3.3 GHz workstation,

although the time required for a given simulation can vary

significantly depending on the dynamics of the model in-

puts. We have obtained acceptable results using the default

relative error tolerance of 1e-3, although some integration

noise can be seen in the fluid flow rates. This noise can be

reduced by lowering the error tolerance at the cost of de-

creased simulation speed. The two-phase model is still un-

der development, but is expected to run more slowly than

the standard model due to the increased complexity of the

underlying physics.

We have validated the model against data recorded from the

CTB in the post-chilldown state. In this scenario, the simu-

lated pressures matched the measured data with a maximum

error of 0.23%, while the fluid flow rate matched the meas-

ured rate to better than 0.1%, considerably less than the

measurement noise. Actuation times of the pneumatically-

controlled valves had lower fidelity, with a mean 10-90%

rise-time error of 0.58 seconds in absolute terms, and 17.7%

error relative to the observed actuation times. However, the

accuracy of the pneumatics domain components is adequate

for most of the intended uses of CryoSim, which focus on

system behavior in the cryogenic fluid domain.

5.2. Fault Injection

To demonstrate the fault injection capability of CryoSim,

we ran a basic simulation with a single fault injected during

the run. This example used the standard flow variant rather

than the two-phase flow. The model was initialized in a

post-chilldown state, where virtually all of the cryogenic

fluid is in the liquid phase. Figure 7(a) shows a schematic

representation of a part of the system, including the control

valve CV201. This valve starts in the fully open position,

and at t=30 seconds, a “Stuck” fault is injected with a mag-

nitude of 50%.

Figure 7(b) shows the outputs of four pressure sensors in the

model. In the schematic PT134 is shown immediately up-

stream of the faulty valve, and PT147 is located at the end

of the section shown in the schematic. PT112 is not shown,

but is located further upstream from the valve, while PT193

is further downstream. When the fault is injected at t=30,

the upstream pressures increase slightly, while the down-

stream pressures experience a more significant decrease due

to the increased drop at the valve.

Figure 7. Fault injection example

5.3. Variable Simulation Fidelity

To show the use of variant subsystems to selectively control

model fidelity in a specified domain, we simulated the actu-

ation speed of a pneumatically-actuated control valve com-

ponent, using the “Standard” pneumatics variant which

computes gas pressures and flows and uses these values to

determine the actuator’s position, and compared this run

with the “Basic” pneumatics variant, which replaces the

pneumatics-domain components with simple behavioral

models. For the pneumatically-actuated control valve, the

“Basic” variant replaces two nonlinear pressure-computing

elements with simple first-order lowpass filters. The behav-

ior of these two variants compared to experimental data is

shown in Figure 8. Note that the “Standard” variant more

accurately represents the observed data than the “Basic”

variant.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY, 2013

11

Figure 8. Behavior of pneumatic valve actuator models

The use of domain-specific variants to select appropriate

levels of fidelity can significantly reduce simulation time.

In this example, the use of the reduced-fidelity “Basic” vari-

ant for the pneumatics domain resulted in small differences

in valve actuation speed that did not significantly affect the

signals of interest in the cryogenic fluid domain. The dif-

ference in simulation speed for a run with 1000 seconds of

simulation time was dramatic, with the “Standard” variant

requiring 676 seconds (1.48x) and the “Basic” variant re-

quiring 354 seconds (2.82x).

5.4. Prognosis Example

To demonstrate how the simulation interacts with a health

management algorithm over the message bus, we select a

prognosis example demonstrating prognostics of a cryogen-

ic filter. Filters are often periodically replaced on a time-

based maintenance schedule. Moving to a condition-based

maintenance paradigm can prevent a healthy filter from be-

ing replaced and a damaged filter from being used.

The purpose of the filter is to prevent particles contaminat-

ing the fluid from moving through to other parts of the sys-

tem. As fluid passes through a filter, particle matter will

collect at the filter and decrease its effective area, thus in-

creasing the pressure drop across the filter for the same flow

rate. This behavior is captured in the following equations.

 (1)

 (2)

Here, is the volumetric flow, is the fluid density, is

the flow coefficient, is the effective filter area, is the

pressure drop across the filter, and is a wear parameter

representing the percentage contamination per unit length of

fluid (which is, in general, stochastic). The effective filter

area decreases as a function of the contamination and the

flow rate through the filter.

In this model, the pressure difference is an input and the

flow is an output. A model-based prognosis algorithm is

used in which the health state of the filter (and) is esti-

mated, and this estimate is then used as the initial state in

predicting end of life (EOL) and remaining useful life

(RUL) of the component (Daigle & Goebel, 2013). For the

filter, EOL is defined as the time point at which the effec-

tive filter area drops below some specified limit, in this

case, 50% of its nominal area.

The prognostics module receives over the message bus the

measured values of the differential pressure and the flow,

and these serve as inputs to the estimation algorithm (an

unscented Kalman filter, see (Julier & Uhlmann, 2004) and

(Daigle et al., 2012) for details). The module makes periodic

predictions for filter EOL and RUL, and publishes these

back to the message bus.

As a demonstration we consider a wear parameter value of

 . Figure 9 shows the estimated filter area, wear

parameter, predicted EOL, and predicted RUL. By 200 s the

estimates and predictions begin to converge.

(a)

(b)

0 50 100 150 200 250 300

7

7.2

7.4

7.6

7.8

8

x 10
-3

Time (s)

E
ff

ec
ti

v
e

F
il

te
r

A
re

a
(m

2
)

0 50 100 150 200 250 300

0

1

2

3

x 10
-8

Time (s)

W
ea

r
R

at
e

(d
im

en
si

o
n
le

ss
)

0 50 100 150 200 250 300

1000

1200

1400

1600

1800

2000

2200

2400

E
O

L
 (

s)

Time (s)

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY, 2013

12

(c)

(d)

Figure 9. Filter prognostics results.

6. CONCLUSION

In this paper, we have discussed the design and application

of CryoSim, a simulation-based virtual testbed for SHM

applications. The core of CryoSim is a component-based

multi-domain system model created in Simulink. Our de-

sign includes component-level fault modeling and per-

simulation adjustment of model fidelity through the use of

variant subsystems. To facilitate the use of CryoSim, we

created a Java-based GUI which allows full interactive con-

trol of the simulation. Additionally, we have integrated an

interface to an external publish/subscribe message bus, ena-

bling CryoSim to function as a drop-in replacement for the

CTB system.

We are currently in the process of converting the Simulink

model to a standalone version written in C/C++, making use

of the Simulink Coder™ software package. This will ena-

ble users of CryoSim to run simulations without the need for

a license for MATLAB and Simulink. The two-phase cry-

ogenic fluid flow model is under development. When com-

plete, it will be incorporated into CryoSim, taking advantage

of the capability to update library components and domain-

specific variant subcomponents without impact to previous-

ly-available functionality. Because of the model-agnostic

design of the CryoSim framework, we anticipate that this

architecture will be used for future SHM applications with

other multi-domain system models.

ACKNOWLEDGEMENT

This work was funded in part by the NASA Automated

Cryogenic Loading Operations (ACLO) project under the

Office of the Chief Technologist (OCT), the Advanced

Ground Systems Maintenance (AGSM) Project under the

Ground Systems Development and Operations program and

the Integrated Ground Operations Demonstration Unit

(IGODU) Project under the Advanced Exploration Systems

(AES) program.

REFERENCES

Agusmian P.O., Sas, P. and Van Brussel, H. (2013). Model-

ing and simulation of the engagement dynamics of a

wet friction clutch system subjected to degradation: An

application to condition monitoring and prognostics.

Mechatronics, vol. 23, no. 6, pp. 700-712.

Altman, Y. (2013). Undocumented MATLAB,

http://undocumentedmatlab.com/

Altman, Y., (2011). Undocumented Secrets of MATLAB-

Java Programming, Chapman and Hall/CRC

Balaban, E., Narasimhan, S., Daigle, M., Roychoudhury, I.,

Sweet, A., Bond, C., & Gorospe, G. (2013, May). De-

velopment of a Mobile Robot Test Platform and Meth-

ods for Validation of Prognostics-Enabled Decision

Making Algorithms, International Journal of Prognos-

tics and Health Management, 4(1).

Biswas, G., Mahadevan, S. (2007, March) A Hierarchical

Model-based approach to Systems Health Management.

Proceedings of the 2007 IEEE Aerospace Conference.

Daigle, M., & Goebel, K. Model-based Prognostics with

Concurrent Damage Progression Processes. (2013,

May). IEEE Transactions on Systems, Man, and Cyber-

netics: Systems, 43(4), 535-546.

Daigle, M., Saha, B., & Goebel, K. (2012, March). A Com-

parison of Filter-based Approaches for Model-based

Prognostics. In Proc. of the 2012 IEEE Aerospace Con-

ference.

Goodrich, C., Narasimhan, S., Daigle, M., Hatfield, W.,

Johnson, R., & Brown, B. (2009, June). Applying Mod-

el-based Diagnosis to a Rapid Propellant Loading Sys-

tem. In Proc. of the 20th International Workshop on

Principles of Diagnosis, 147-154.

Granger, R. A. (1995). Fluid Mechanics. New York, NY:

Dover.

Julier, S. J., & Uhlmann, J. K. (2004, March). Unscented

filtering and nonlinear estimation. In Proc. of the IEEE,

92(3), 401–422.

Poll, S., Patterson-Hine, A., Camisa, J., Garcia, D., Hall, D.,

Lee, C., Mengshoel, O., Neukom, C., Nishikawa, D.,

Ossenfort, J., Sweet, A., Yentus, S., Roychoudhury, I.,

Daigle, M., Biswas, G., & Koutsoukos, X. (2007, May).

Advanced Diagnostics and Prognostics Testbed. In

Proc. of the 18th International Workshop on Principles

of Diagnosis, 178-185.

BIOGRAPHIES

John P. Barber received the B.S. and Ph.D. degrees in

Electrical Engineering in 2001 and 2006 from Brigham

Young University, Provo, UT, USA. His research and pro-

fessional activities have focused on process development

and control, as well as modeling and simulation in a number

of domains. He is currently an employee of Stinger

Ghaffarian Technologies, supporting NASA via the ESC

contract at Kennedy Space Center. He is a member of the

IEEE.

0 50 100 150 200 250 300

800

1000

1200

1400

1600

1800

2000

2200

R
U

L
 (

s)

Time (s)

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY, 2013

13

Kyle B. Johnston received the B.S. degrees in Physics and

Astrophysics in 2004 and the M.S. degree in Space Science

in 2006 from the Florida Institute of Technology. He has

been a primary and co-author on a number of astrophysics

journals while working in the academic space. Since 2007

he has worked in the private sector, specializing in the de-

velopment of scientific simulations, analytical analysis of

large datasets, and intelligent passive sensor development.

He is currently an employee of ENSCO, Inc. Aerospace

Engineering division. Professional society memberships

include the American Statistical Association and the Ameri-

can Astronomical Society.

Matthew Daigle received the B.S. degree in Computer Sci-

ence and Computer and Systems Engineering from Rensse-

laer Polytechnic Institute, Troy, NY, in 2004, and the M.S.

and Ph.D. degrees in Computer Science from Vanderbilt

University, Nashville, TN, in 2006 and 2008, respectively.

From September 2004 to May 2008, he was a Graduate Re-

search Assistant with the Institute for Software Integrated

Systems and Department of Electrical Engineering and

Computer Science, Vanderbilt University, Nashville, TN.

From June 2008 to December 2011, he was an Associate

Scientist with the University of California, Santa Cruz, at

NASA Ames Research Center. Since January 2012, he has

been with NASA Ames Research Center as a Research

Computer Scientist. His current research interests include

physics-based modeling, model-based diagnosis and prog-

nosis, simulation, and hybrid systems. He is a member of

the IEEE.

