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AN EARTH-MOON SYSTEM
TRAJECTORY DESIGN REFERENCE CATALOG

David C. Folta∗, Natasha Bosanac†, Davide Guzzetti†, and Kathleen C. Howell‡

As demonstrated by ongoing concept designs and the recent ARTEMIS mission,
there is, currently, significant interest in exploiting three-body dynamics in the de-
sign of trajectories for both robotic and human missions within the Earth-Moon
system. The concept of an interactive and ‘dynamic’ catalog of potential solu-
tions in the Earth-Moon system is explored within this paper and analyzed as a
framework to guide trajectory design. Characterizing and compiling periodic and
quasi-periodic solutions that exist in the circular restricted three-body problem
may offer faster and more efficient strategies for orbit design, while also deliver-
ing innovative mission design parameters for further examination.

INTRODUCTION

Recently-released NASA concepts for both crewed and robotic missions reveal significant inter-

est in exploiting the Earth-Moon libration points. In fact, the dynamical structure associated with

the Earth-Moon libration points may be used for a variety of applications, such as the testing and

design of habitats in long-duration space missions, staging and infrastructure options for interplan-

etary exploration, enhancing the options for reaching lunar orbit and supporting the exploration and

development of facilities on the lunar surface.1,2,3 Additional concepts for future Mars missions,

asteroid rendezvous, and exploration of other solar system destinations, as published in the 2013

Global Exploration Roadmap, have also leveraged the dynamics associated with the Earth-Moon

libration point orbits.4 Together, these mission concepts suggest that broader knowledge of the

dynamical accessibility within the entire Earth-Moon system is warranted.

As demonstrated by ongoing concept designs and the recent Acceleration, Reconnection, Turbu-

lence and Electrodynamics of the Moon’s Interaction with the Sun (ARTEMIS) mission, there is

significant interest in exploiting additional three-body dynamical structures in the design of trajec-

tories within the Earth-Moon environment.5 Many software packages, for example, Satellite Tool

Kit (STK) and NASA’s General Mission Analysis Tool (GMAT), offer a graphical environment

for trajectory design incorporating gravitational fields at various levels of fidelity.6,7 However, the

focus of these packages is generally directed towards the delivery of trajectory designs and other

actual mission support capabilities. Thus, they offer limited guidance and insight into the available

dynamical structures. In recent years, the understanding of three-body dynamics within the astrody-

namics community has improved tremendously, due in part to the increased utilization of techniques

∗Senior Fellow, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA.
†Graduate Student, School of Aeronautics and Astronautics, Purdue University, 701 W. Stadium Ave., West Lafayette, IN,

47906, USA.
‡Hsu Lo Distinguished Professor of Aeronautics and Astronautics, School of Aeronautics and Astronautics, Purdue Uni-

versity, 701 W. Stadium Ave., West Lafayette, IN, 47906, USA.

1



from dynamical systems theory. As a result, there exists a wide array of known orbits with signif-

icant potential for parking, staging and transfers within the Earth-Moon system. These solutions

remain the subject of much investigation to further understand the evolution of a set of orbits along

any family; software such as AUTO can supply both this capability, as well as some insight into

the local dynamics.8 However, no basic ‘roadmap’ currently exists to facilitate rapid, efficient and

well-informed decisions regarding the use of these known periodic orbits for any mission prior to

an end-to-end trajectory design.

In this investigation, the concept of an interactive and ‘dynamic’ catalog of known solutions in

the Earth-Moon system is explored and analyzed as a framework to guide the design of trajecto-

ries within this dynamically sensitive environment. Specifically, such a catalog should encompass

representative periodic and quasi-periodic orbits that exist in a circular restricted three-body model

of the Earth-Moon system, closely approximating the true dynamical structure. Beyond low Earth

orbit (LEO), the two-dimensional and three-dimensional orbit families that are currently incorpo-

rated in a ‘dynamic’ catalog include: libration point orbits, direct retrograde orbits about the Moon

(DROs), direct prograde orbits about the Moon (DPOs), and resonant orbits. Other known families

can easily be added. In fact, the capability to compute ‘on-demand’ by using a ‘dynamic’ reference,

as opposed to a static database, allows for new periodic orbit families to be easily incorporated as

they are discovered and better understood. In addition, a static representation of periodic solutions

in the circular restricted three-body problem would be difficult to construct since the infinite or-

bits along each family cannot be represented analytically. Accordingly, an interactive catalog may

overcome some of the challenges associated with constructing a trade space to analyze the various

characteristics of a large set of solutions and their neighboring dynamics.

Periodic orbits, sampled along each family in the reference catalog, can be characterized by

parameters that may aid in trajectory design and selection. Such quantities may include size, period,

energy, and stability. Additional parameters of interest include station-keeping costs as well as

representative maneuvers and flight times for transfers from LEO. By characterizing known periodic

orbits in the Earth-Moon system and compiling this information in an interactive environment, the

orbits can be filtered and compared to identify candidate solutions to potentially satisfy a given

set of mission requirements. Furthermore, such a capability may offer faster and more efficient

strategies for orbit design and operation, while also delivering innovative mission design parameters

for further examination in tools such as the Adaptive Trajectory Design (ATD) software created at

Purdue University.9 To demonstrate these capabilities, the use of a reference catalog is introduced

and subsequently explored within the context of a trajectory design application for the Earth-Moon

system: selection of a storage orbit for space-based infrastructure that could support lunar activities

and/or enable solar system exploration.

DYNAMICAL MODEL

To facilitate rapid and intuitive exploration of the dynamical structure in the Earth-Moon system,

the circular restricted three-body problem (CR3BP) is employed. This dynamical model, which

serves as a reasonable approximation to the actual gravitational field, reflects the motion of a mass-

less spacecraft under the influence of the point-mass gravitational attractions of the Earth and Moon.

These two primary bodies are assumed to follow circular orbits about their mutual barycenter. The

configuration of this system is depicted in Figure 1 using a coordinate frame, x̂ŷẑ, that rotates with

the motion of the Earth and Moon. In this frame, the spacecraft is located by the nondimensional

coordinates (x, y, z). By convention, quantities in the CR3BP are nondimensionalized such that the
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Figure 1. Definition of the rotating coordinate frame with a constant angular velocity
relative to the inertial frame at a nondimensional rate of unity about the Ẑ-axis.

Earth-Moon distance is equal to a constant value of unity and their mean motion is also equal to one.

In addition, the Earth and Moon have nondimensional masses equal to 1− μ and μ, respectively. In

the rotating frame depicted in Figure 1, the equations of motion for the spacecraft can be written as:

ẍ− 2ẏ =
∂U

∂x
, ÿ + 2ẋ =

∂U

∂y
, z̈ =

∂U

∂z
(1)

where the pseudo-potential function, U = 1
2(x

2+y2)+ 1−μ
d + μ

r , where d =
√

(x+ μ)2 + y2 + z2

and r =
√

(x− 1 + μ)2 + y2 + z2. This gravitational field admits five equilibrium points: the

collinear points L1, L2 and L3, located along the Earth-Moon line; and two equilateral points, L4

and L5, forming equilateral triangles with the two primaries. Since the CR3BP is autonomous, a

constant energy integral exists in the rotating frame and is equal to the Jacobi Constant, JC:

JC = 2U − ẋ2 − ẏ2 − ż2 (2)

At any specific value of the Jacobi constant, there are infinite possible trajectories exhibiting a

wide array of behaviors. However, any trajectory may be generally classified as one of four types

of solutions: equilibrium point, periodic orbit, quasi-periodic orbit, and chaotic motion. Each of

these solutions can be identified using numerical techniques and subsequently characterized using

concepts and quantities from dynamical systems theory.

CHARACTERIZATION OF PERIODIC ORBITS

To construct a simple catalog to efficiently guide trajectory design, particular solutions in the

form of periodic orbits are exploited. Within the framework of the CR3BP, periodic orbits exist in

families and form an underlying dynamical structure. In fact, stable orbits attract trajectories in their

vicinity and unstable orbits repel the nearby flow. The values of characteristic parameters, which

vary continuously along the families of periodic orbits, can be analyzed to identify orbits and arcs

that may be incorporated along trajectories intended to satisfy a given set of mission requirements.

This concept forms the basis for the catalog that is explored within this preliminary investigation.
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Orbital Parameters

Useful characteristic quantities that represent a periodic orbit include its size, period and Jacobi

constant value. To quantify the size of a periodic orbit, sample amplitudes in each of the x̂, ŷ, and

ẑ directions, Ax, Ay, Az , may supply a characterization of the size of the periodic orbit in config-

uration space, when viewed in a rotating frame. These amplitudes are straightforwardly calculated

numerically as the absolute value of the maximum excursion of the orbit in each of the x̂, ŷ, and

ẑ directions. One advantage of evaluating the ‘size’ of a periodic orbit is evident in the search for

parking orbits that do not violate certain mission constraints. Consider, for example, line-of-sight re-

quirements on the motion of a spacecraft with respect to either the Earth or Moon. Such a constraint

on a vehicle moving along a parking orbit may be derived from limitations on the communications

infrastructure.10 For a planar family of orbits, comparison of the y-amplitudes to the dimensions of

a bounding cone may allow for preliminary identification of members that might not violate a line-

of-sight constraint, prior to more computationally intensive explorations. Next, the orbital period is

defined as the minimal time for the motion of a spacecraft to repeat in all the specified state vari-

ables. This parameter may be useful in the planning of maneuvers or communications operations.

Finally, the Jacobi constant corresponding to each periodic orbit may be considered analogous to

an energy quantity: by inspection of Eq. (2), the lower the value JC, the more energetic the orbit.

Accordingly, comparison of the Jacobi constants along two families may provide a rough estimate

of the minimum cost required to transfer between a member in each family. Such an observation

is evident by maneuvers along a transfer that achieve two simultaneous results: a) a change in the

velocity magnitude and, therefore, energy of the trajectory, and b) a change in the velocity direc-

tion. Thus, the transfer cost between two periodic orbits must, at the minimum, allow for the energy

change, i.e., the adjustment of the Jacobi constant value. Together, these characteristic parameters

may be employed to guide the design of trajectories within the Earth-Moon system.

Given that motion near a periodic orbit is influenced by the stability of the orbit, the concept

of orbital stability can be used to qualitatively characterize the behavior of the nearby flow. A

convenient method for evaluating stability is to analyze the eigenvalues of the state transition matrix

propagated for one orbital period, i.e., the monodromy matrix.11 In the CR3BP, six eigenvalues are

associated with each periodic orbit: two trivial eigenvalues equal to unity that indicate periodicity,

and two reciprocal pairs of eigenvalues.12 Although computed from a local linear approximation for

behavior relative to the periodic orbit, the two pairs of nontrivial eigenvalues reflect the stability of

the nonlinear periodic solution. Depending on the value of each eigenvalue, in the form λ = a± bi,
three specific cases emerge: real, complex and imaginary. Stable periodic orbits possess complex or

imaginary eigenvalues on the unit circle. For each pair of complex eigenvalues, a family of quasi-

periodic orbits emerges in the vicinity of the periodic orbit. Although quasi-periodic motion does

not repeat over time, it traces out the surface of a torus. In combination with small maintenance

maneuvers, such boundedness might be approximately retained when the quasi-periodic orbit is

transitioned into a higher-fidelity gravitational environment. This behavior may be desirable for

infrastructure storage or during periods of scientific observation. A pair of reciprocal eigenvalues

in the form |λ1| = a > 1 and |λ2| = 1/a < 1, however, are associated with unstable periodic

orbits. Such orbits possess stable and unstable manifolds which may suggest low-cost transfers to

or from the orbit. Employing manifolds during trajectory design may increase the accessibility of

various regions of the Earth-Moon space, or even reduce transfer costs. To simplify visualization

of the eigenvalues corresponding to a periodic orbit, a stability index, s, is defined. This quantity

is set equal to the average of the two reciprocal eigenvalues in each pair, s = 1
2(λ + 1

λ). Stable
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orbits possess a stability index with absolute magnitude less than or equal to one, while the stability

index reflecting unstable orbits is greater than one. The orbital stability index may, therefore, serve

as a useful parameter for quickly and intuitively selecting periodic orbits for consideration during

subsequent stages of trajectory design.

Strategy to Estimate Station-Keeping Costs

To assess and compare the maneuver costs to maintain selected periodic orbits, a long-term

station-keeping strategy is employed.10 A variety of options for station-keeping are possible; one

specific approach is currently implemented. First, a reference solution is defined, one that is com-

prised of twelve revolutions of a periodic orbit. For each orbit, station-keeping maneuver locations

are also identified. As an example, for the DRO family, a maneuver location is selected as the x-

axis crossing. Next, a random error is applied to the initial state along the reference solution. In this

investigation, position errors are assumed with a gaussian distribution described by a mean of 0 km

and a standard deviation of 1 km in each direction, while velocity errors have a distribution centered

around 0 cm/s and a standard deviation of 1 cm/s. The disturbed initial state is integrated forward in

time in the CR3BP until the next station-keeping maneuver location, with each maneuver computed

using the remaining portion of the reference solution as an initial estimate. Constrained optimiza-

tion enforces continuity along the reference path and specifies that the endpoint along the reference

path occurs at the same position as the initial point. Each maneuver is also subject to a maneuver

execution error randomly assigned using a gaussian distribution with a standard deviation of 1%.

This new state is then integrated forward to the subsequent station-keeping maneuver location. The

entire process is repeated until the end of the reference or baseline trajectory. An example of the

maintenance of an L1 halo orbit is displayed in Figure 2, demonstrating the success of the long term

station-keeping strategy. For each simulation where the optimization process converges, the total

station-keeping ΔV is calculated as the sum of the magnitudes of each maneuver. For each orbit,

the algorithm completes 500 trials and the average of the total ΔV is extrapolated to produce a

representative estimate of the cost required to maintain a selected periodic orbit for one year. Given

onboard propellant limitations for a spacecraft, a long-term station-keeping estimate can be used in

preliminary analyses to select a candidate periodic orbit prior to higher-fidelity modeling and more

precise maneuver computations. Other station-keeping strategies can also be incorporated.

3.63.73.8

x 10
5

−2
0

2

x 10
4

0

2

4

6

x 10
4

x [km]y [km]

z 
[k

m
]

Moon

Maneuver Location

Maneuver Location

Figure 2. Maintenance of an L1 halo orbit via long term station-keeping.
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Strategy to Estimate Transfer Costs from Low Earth Orbit

The viability of reaching each periodic orbit from LEO can be measured using some represen-

tative transfer cost and time-of-flight (TOF). For preliminary exploration of the use of a reference

catalog in trajectory design, this investigation incorporates only direct transfers involving two im-

pulsive burns: one ΔV to depart a 300 km altitude LEO, i.e., ΔVLEO, and one ΔV to insert onto

the desired periodic orbit, ΔVPOI . Of course, multiple-burn transfers, lunar flybys and manifold

connections could reduce the transfer and insertion costs; more extensive options and various ap-

proaches to construct transfers could be incorporated into more complex implementations of a ref-

erence catalog. In any case, the goal here is a set of simplified metrics to trade-off various scenarios

and allow new concepts to emerge. Thus, the initial estimate for each direct transfer is constructed

using a conic arc with a 300-km altitude periapsis and an apoapsis radius equal to the distance from

the Earth to a selected point along the periodic orbit. This estimate is then corrected within the

CR3BP using a multiple shooting algorithm to ensure continuity at all interior points. At the initial

point, the transfer is constrained to ensure that it links to the LEO in position only, with one addi-

tional constraint that the departure maneuver, ΔVLEO, is tangential to the velocity vector.13 The

terminal point of the transfer arc must also possess the same position vector as a prescribed loca-

tion along the orbit (within the specified tolerance). Once corrected, the transfer is optimized using

a sequential quadratic programming algorithm in MATLAB’s fmincon function, subject to the de-

scribed constraints. The objective function for the optimization process is set equal to the magnitude

of ΔVPOI , a quantity that is most indicative of the cost associated with reaching a desired periodic

orbit.13 Furthermore, the target location along a given periodic orbit is selected by constructing a

family of transfers along one member of each family and observing the location at which ΔVPOI is

a minimum; such a location could, for example, be the periapsis, an x-axis crossing, or the location

of maximum z-excursion. Using this methodology, transfers can be constructed from LEO to any

periodic orbit in the CR3BP and the ‘costs’ can be reasonably compared.

One assumption in computing transfers to periodic orbits involves the inclination of the LEO

relative to the xy-plane in the CR3BP. In an ephemeris model of the Earth and Moon, the inclination

of the Moon is observed to oscillate between 18.14◦ and 28.72◦ relative to the Earth’s equator, with

a mean inclination of 23.5◦. In addition, the xy-plane in the CR3BP is defined as the instantaneous

plane of the Moon’s orbit. Therefore, the inclination of a 28.5◦ LEO with respect to the xy-plane

in the CR3BP also varies with the same amplitude and a mean value of 4.99◦. Accordingly, the

variation in the lunar inclination is incorporated into this investigation by computing transfers to

a three-dimensional periodic orbit from a LEO with three different inclinations relative to the xy-

plane in the CR3BP: imin = 2◦, imean = 4.99◦, imax = 10.37◦. Note that these three inclinations

do not encompass the entire range of LEO inclinations relative to the xy-plane in the CR3BP, but

are straightforward to implement and offer reasonable comparisons. For transfers to planar periodic

orbits, however, the LEO and the transfer arc are assumed to lie within the xy-plane, for simplicity.

Together, these inclination assumptions allow for representative direct transfers to be computed and

employed throughout the investigation.

As an example of the process, transfers are constructed to sample members of the DRO family.

First, consider a transfer to a planar DRO with a period of 20.5 days, as depicted in Figure 3(a).

In this figure, the Earth and Moon are represented by gray dots, with L1 and L2 indicated by

green diamonds. The target DRO orbit is colored red, while the planar transfer arc is black, with

arrows indicating the direction of motion. As evident in the figure, the transfer location along the

DRO is selected as the furthest x-axis crossing from the Earth; this location is close to a minimum
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(a) Transfer to planar DRO with a period of 20.5 days.
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(b) Transfer to 3D DRO with a period of 27.1 days.

Figure 3. Transfer examples.

in the required ΔVPOI for insertion. The final transfer trajectory includes a maneuver, ΔVLEO,

equal to 3.12 km/s, a periodic orbit insertion maneuver, ΔVPOI equal to 581 m/s and a flight time

corresponding to 7.06 days. A similar transfer is constructed for a three-dimensional DRO with a

much larger period of 27.1 days, from a LEO with inclination imean = 4.99◦. This sample transfer is

depicted in Figure 3(b), with the same color scheme as in Figure 3(a). For this example, the transfer

requires a ΔVLEO value of 3.48 km/s, a periodic orbit insertion maneuver, ΔVPOI , equal to 423 m/s

and a flight time of 8.23 days. Both transfers are then continued along their corresponding family

using natural parameter continuation, yielding a measure of the comparative cost required to reach

each member of the family; such a process is extended for comparison across families as well.

CLASSIFICATION OF PERIODIC ORBIT FAMILIES

Although an infinite number of families of periodic orbits exist in various regions of the Earth-

Moon space as modeled in the CR3BP, the most familiar periodic orbits in this regime are associated

with the libration points. Lying in the Earth-Moon plane, Lyapunov orbits emanate from each of the

collinear libration points. Examination of the center manifold associated with each collinear point

in the Earth-Moon system also yields a family of vertical orbits, which extend out of the plane.

Other three-dimensional libration point orbits include northern and southern halo families, axials,

and butterfly orbits. Sample members of these families are depicted in Figures 4(a)-4(c). Several

of these families of periodic orbits have been explored for potential mission concepts involving, for

instance, staging and infrastructure placement for solar system exploration missions or even scien-

tific observation.4 One mission has already succeeded in demonstrating the utility of trajectories

that exploit three-body dynamical structures in the Earth-Moon system: ARTEMIS.5 The pair of

spacecraft, with a focus on examining energetic particle accelerations near the Moon, leveraged

manifold connections between L1 and L2 quasi-halo orbits, allowing an extended mission despite

relatively small propellant availability. In addition, planar short- and long-period orbits also exist in

the vicinity of the equilateral libration points, L4 and L5. Out-of-plane vertical and axial families

are also nearby, as plotted in Figure 4(d). Periodic motions in the vicinity of the equilateral libration

points have recently been considered for the asteroid retrieval mission,14 and briefly utilized during

the Hiten mission.15 Due to these potential mission applications, periodic orbits in the vicinity of

each of the equilibrium points in the Earth-Moon system are currently the subject of much interest.
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(a) L1 Orbit Families (b) L2 Orbit Families

(c) L3 Orbit Families (d) L4 Orbit Families

Distant Prograde 
Low Prograde 
Distant Retrograde

(e) Moon-Centered Orbit Families (f) Sample Resonant Orbit Families

Figure 4. Sample members of well-known orbit families in the Earth-Moon system,
plotted in the rotating frame.
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Another type of periodic orbit family that is potentially useful in the Earth-Moon system is the

set of resonant orbits, both planar and three-dimensional. Resonant orbits, pictured in Figure 4(f),

possess orbital periods that can be approximately described as an integer ratio between the orbital

period of the spacecraft and the period of the Moon’s orbit. Although resonant families are com-

monly understood within the context of solar system dynamics, they are not widely employed in

trajectory design within the Earth-Moon system. One prominent example of the utility of resonant

orbits in Earth-Moon trajectory design, however, is the Interstellar Boundary Explorer (IBEX) mis-

sion; the IBEX spacecraft was launched in 2008.16 In the extended mission, IBEX successfully

exploited a 3:1 resonance that possessed favorable stability properties. Another example involves

a 2:1 resonant orbit about the Earth, intended for use during a scientific observation phase of the

upcoming Transiting Exoplanet Survey Satellite (TESS) mission.17 There is, therefore, merit in

considering the contribution of resonant families to the underlying dynamical structure in the Earth-

Moon system and any potential impact from leveraging these relationships.

Additional families of interest include periodic orbits that encircle either the Earth or the Moon.

In particular, consider three Moon-centered families of orbits, depicted in Figure 4(e): direct ret-

rograde orbits, distant prograde orbits and low prograde orbits. The DRO family is predominantly

comprised of stable members that travel clockwise around the Moon when viewed in a rotating

frame, as depicted in Figure 4(e). Since a stable orbit can potentially require little propellant for

maintenance, DROs have been considered as viable candidates for long-term storage orbits in as-

teroid retrieval mission concepts.18 The distant and low prograde orbits display, in general, coun-

terclockwise motion about the Moon, and their families possess some resonant members. Recently,

the DPOs have been examined as transfer mechanisms between L1 and L2 Lyapunov orbits, and as

lunar parking orbits.9,19 Each of these families also possesses three-dimensional counterparts that

can influence the dynamical behavior in the vicinity of the Moon.

Families of periodic orbits that are currently familiar to the astrodynamics community can be

categorized to facilitate construction of a reference catalog. In this investigation, four classes of

periodic orbits are defined: libration point orbits, resonant orbits, Earth-centered orbits and Moon-

centered orbits. The periodic orbits considered in this preliminary reference catalog are organized

into these families, as displayed in Figure 5. For clarity, families in each of the classes considered

in this investigation are colored green, red or blue. Note that the only type of Earth-centered orbit

utilized thus far in this investigation is LEO. Accordingly, families that are categorized as Earth-

centered orbits are colored grey. In addition, the boxes corresponding to each orbit family can

encompass both two-dimensional and three-dimensional members. Although all members of any

periodic orbit family may not belong exclusively to one class or one family, as indicated by the black

arrows, an intuitive categorization may aid in the application of an interactive reference database to

search for a desired solution without precise knowledge of its name, shape or evolution. Such a

capability is especially important for users not familiar with the intricacies of the CR3BP and the

connections between various types of orbits and their respective families.

Composite Representations of Periodic Orbit Families

To simultaneously compare a large number of orbit families, a simple composite representation

is constructed. Since the evolution of orbital parameters along a family can reflect a complex and

nonlinear relationship, it is challenging to simultaneously visualize several characteristic curves.

Accordingly, a simple statistical summary, representative of each family, is developed in the form

of its mean, range and standard deviation; such measures facilitate the construction of an aggregate
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Figure 5. Organization of orbit families included in reference catalog to date, with
selected links indicated; the framework is easily expanded as new options emerge.

representation of a large set of families. Consider, for example, Figure 6(a), which approximately

summarizes an average stability reflected by the various orbits in each family; such a representation

is currently available in the reference catalog, with each family identified by the abbreviations in

the legend in Figure 6(b). Each family is represented by a single circle located at the mean value

of the stability index computed for each orbit along the family. For each circle in Figure 6(a), the

radius is equal to a scaled value of the range of the parameter values across the family. Although

such a plot does not precisely represent the range in the stability index encompassed by the orbits

across a complete family, it can be employed for preliminary identification of candidate families for

further examination. As an example, families represented by small circles located near a value of

the stability index equal to unity may indicate that a family is comprised of a significant range of

stable members that are likely surrounded by bounded quasi-periodic motion, such as the family of

planar DROs. Alternatively, a small circle located at a relatively large value of the mean stability

index may indicate that the family is dominated by unstable periodic orbits. Such an observation

may be useful during the search for unstable periodic orbits that may offer a transfer mechanism to

access various regions of the Earth-Moon space.

To visualize the range of a certain quantity across all families for comparison, a composite rep-

resentation can be constructed using bars. Consider, for example, the search for candidate orbit

families that may be connected by low-cost transfers. Two periodic orbits at comparable energy

levels may, in fact, possess these low-cost links. To guide this search, Figure 7 illustrates a bar

representation of the Jacobi constant, an energy-like quantity, for all families now available in the

reference catalog. Recall that a legend of abbreviations is displayed in Figure 6(b). Each bar en-

compasses the range over the Jacobi constant values corresponding to various orbits along a family,

with the lower and upper bounds indicated by horizontal lines. Any bars that overlap vertically

indicate that some members from each family exist at similar energy levels. To demonstrate the

use of the plot in Figure 7, consider a transfer to a DPO. Since the Jacobi constant values along the

DPO family exist at much higher values than the Jacobi constant across the three-dimensional DRO

family, it is unlikely that low-cost connections exist between any members of these two families. In

10



6

200

400

600

800

1,000

S
ta

b.
 In

de
x 

[n
di

m
]

rs
34 HS

rp
34

DPO
rs

32 Ly
1

Ly
2 V1 A1 V2 H1 A2 H2

rp
13rs

23LP
4
LP

5
rp

23
rp

32rs
13

1

2

3

4

5

6

S
ta

b.
 In

de
x 

[n
di

m
]

rs
12
Lo

PO
rp

12A45 V3
Ly

3 H3 A3

rs
23

B
V45

DRO
rp

11
rp

31
rp

21rs
21

rs
11

DRO3Drs
31
SP45

1e6

4e4

(a) Composite dot representation of the stability index across all families.

Lyi = Lyapunov for Li 
Hi = Halo for Li 
Ai = Axial for Li 
Vi = Vertical for Li 
SPi = Short Period for Li 
LPi = Long Period for Li 
HS = Horseshoe 

rpnm = Planar Resonant 
  n:m 

rsnm = Spatial Resonant 
  n:m 

 

DRO = Planar Distant 
 Retrograde 

DRO3D = Spatial 
 Distant Retrograde 

DPO = Distant Prograde 
LoPO = Low Prograde 
 

(b) Legend of abbreviations, colored by category.

Figure 6. Sample dot representation of characteristic quantities of all families avail-
able in the reference catalog.

−2

0

2

4

JC
 [n

di
m

]

rp
21 V3 V2 H1

rs
23 V1

rs
12

rs
13V45

rp
11

rp
13 A3

rp
12

DRO
rp

23 Ly
3 H3

SP45 HS
rs

31

−2

0

2

4

JC
 [n

di
m

]

Ly
1
rp

31 A45
rp

34
rs

23
B

LP
4
LP

5
rs

21
rs

11

DRO3Drp
32
Lo

PO
rs

34 Ly
2
DPO

rs
32 H2 A2 A1

Figure 7. Bar representation of the Jacobi constant of all families available in the reference catalog.
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contrast, the ranges of the Jacobi constant values over the L1 Lyapunov family of orbits in compar-

ison to the DPO family do overlap. Accordingly, a more extensive numerical search for low-cost

links between some members of the two families would be warranted; in fact, low-cost transfers do

exist between these two families.9 This capability for rapid and efficient identification of candidate

orbits satisfying a particular mission objective may be useful during the trajectory design process.

CONCEPTUAL OVERVIEW OF AN INTERACTIVE REFERENCE CATALOG

A conceptual overview of an interactive reference catalog that offers intuitive access to the dy-

namical structures available in the Earth-Moon system is now demonstrated. In particular, this

concept is developed to allow an iterative examination of a large set of well-known periodic orbit

families. It is assumed that a critical capability is the selection of a range of orbits that can be

stored and exported for later examination in a trajectory environment such as ATD.9 A conceptual

overview of the reference catalog concept is summarized and displayed in Figure 8, with two paths

available for orbit selection.

A first potential strategy for orbit selection involves the analysis of individual families in the

catalog, categorized as depicted in Figure 5. In the top left of the conceptual overview in Figure 8,

one orbit family that warrants consideration may originate from any of the four categories and it is

useful to view a summary of the parameters describing members along a selected family. Filters can

also be applied to narrow the range of values for the characteristics quantities along each family -

size, period, Jacobi constant and stability index - and plot the remaining members from the selected

family in configuration space. Since this process is inherently iterative, it may be beneficial at any

time to select additional families and add them to the plot with individually defined filters. To

represent one of the characteristic quantities along each family, a color scale can also be introduced.

Once all of the desired filters have been applied, the remaining periodic orbits, belonging to any

number of families, are input to a workspace.

An alternative strategy for orbit selection originates with a more global portrait of the periodic

orbit families available in the catalog. Beginning at the bottom left of Figure 8, a designer may

visualize a statistical summary of one characteristic quantity for every family in the catalog. This

visualization is realized using plots such as the dot and bar representations portrayed in Figures 6

and 7. As an example of the interactive nature of such a reference catalog, consider the flexibility

achieved by a switch, at any time, between the two types of representations or an option to modify

the characteristic quantity on the vertical axis. By point-and-click selection, candidate families may

be selected for closer examination and comparison. During this next stage of the orbit selection

process, the candidate families may be represented in a two-parameter space. At this time, the pa-

rameters to be selected on either the vertical or horizontal axes include size, period, Jacobi constant,

stability index, transfer cost, transfer TOF, and station-keeping cost. At any time, the characteristic

quantities on each axis can be modified. With further insight into the characteristic quantities along

each family, ranges along families of periodic orbits may be selected and input to a workspace.

Once suitable sets of periodic orbits are identified, the selections can be viewed in the catalog

or reference workspace. In this final step, the desired periodic orbits are plotted in configuration

space and their characteristic quantities summarized in a table. A range of periodic orbits is then

selected to export to a data file or for use in a more complete trajectory design environment such

as ATD.9 For demonstration of the process, an illustrative example is useful. Thus, the interactive

reference database concept is now applied to the search for a possible storage orbit for space-based

infrastructure that may be support lunar or solar system exploration.

12



�������	�
 
�����	�����	����	��

������������	�

����
����


�����	����������	
��

�

�

�

�

�

�




�

�

�

�

�

�

�

�

�����������������

���	������	������	�

���	������	�����




�

�

�

�

�

�

�

�


������
���������
��������

�������������


��������������������������������


��������������������������������

Selected ranges along various families

Selected ranges along various families

Figure 8. Graphical representation of the reference catalog concept.
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APPLICATION OF REFERENCE CATALOG TO TRAJECTORY DESIGN IN THE EARTH-
MOON SYSTEM

To demonstrate the utility of this interactive catalog approach, consider a recent mission concept

of interest: storage options for infrastructures that may facilitate lunar activities or further explo-

ration of the Moon or the solar system. Such infrastructures could, for example, exist in the form

of a propellant depot, or an experimental long-duration habitat. For this sample mission, a set of re-

quirements are assumed. First, the orbit is to be maintained for a relatively long time interval. Since

the ΔV required to reach Mars, for example, is lowest once every synodic period, 780 days, it may

be desirable for a propellant depot to remain in the selected storage orbit for at least several years.

A similar conclusion drives the assumption for the storage orbit of an experimental long-duration

habitat. This requirement that the storage orbit be maintained for several years is translated into a

requirement that the station-keeping cost should be reasonably small. In addition, it is desirable that

the storage orbit be easily accessible from the L1 and L2 Lyapunov orbits, which may be employed

for staging options. Alternatively, the manifolds of the Lyapunov orbits might possibly be exploited

as transfer mechanisms to various asteroids and Mars.20 This requirement suggests that the storage

orbit should possess a Jacobi constant comparable to that of the L1 and L2 Lyapunov families. In

addition to these two requirements, bounds on other characteristic quantities are employed based on

intuition to constrain the acceptable range of values. For example, a candidate orbit could be sought

that does not possess a large stability index, thereby limiting the departure options in terms of ex-

ploiting the local dynamics in the vicinity of the reference periodic solution. A ‘fuzzy’ constraint

may also be introduced on the period and geometry of any candidate orbits to avoid strong limita-

tions on the launch opportunities for on-orbit rendezvous. Candidates for a storage orbit satisfying

these constraints may be selected using the interactive reference catalog.

Selection of Candidate Orbits

To identify candidate storage orbits, a global portrait of the families available in the ‘dynamic’

catalog may be the most appropriate entry point. First, the composite bar representation displayed

in Figure 7 is utilized. Recall that the candidate storage orbits should include members with Jacobi

constant values that are comparable to the L1 and L2 Lyapunov families. From this figure, it is

clear that the L3 axial family and the Moon-centered low prograde family do not meet this loose

constraint. Accordingly, these families likely do not possess members that are easily accessible to or

from either an L1 or L2 Lyapunov orbit. The three-dimensional DRO family can also be excluded,

since their range of Jacobi constant values do not exist close to the values in the L2 Lyapunov family.

Families of orbits that are not viable are, therefore, purposefully deselected.

Next, constraints on the period and geometry of any candidate orbit are applied using, respec-

tively, a composite bar representation for the period as well as plots of selected members across a

family in configuration space. As displayed in Figure 9, the L4 and L5 long-period orbits possess

a large mean period of approximately 107 days. Since the corresponding range for these families

is small, all members clearly possess a relatively large period. A similar conclusion is quickly ap-

parent for the horseshoe orbits and many of the resonant families. Since their periods are large,

rendezvous opportunities to these orbits may be difficult. Accordingly, these families can be im-

mediately discarded in the search for a candidate storage orbit. In addition, the L3 Lyapunov, halo,

axial and vertical families are located far from the L1 and L2 Lyapunov orbits and the Moon, when

viewed in a rotating frame. This relative geometry may limit the accessibility and utilization of any

infrastructure in an L3-centered storage orbit. Furthermore, the 3:1 and 2:1 resonant families do not
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Figure 9. Composite representation of period of the orbits in the families available in
the reference catalog.

exhibit a close lunar passage and may not sufficiently support lunar activities. These families can,

therefore, be excluded from the set of candidate orbits. The only remaining resonant orbit in the

set of candidates is the spatial 1:1 resonant family, which is simply a three-dimensional DRO. This

family has already been excluded via a Jacobi constant filter.

The remaining families of periodic orbits can be further analyzed, with candidates selected

through a comparison of the transfer and station-keeping costs. First, a simple box representa-

tion of the transfer and station-keeping costs, such as that in Figure 10, can be constructed using

information from the interactive catalog. Analogous to the dot plot, the center of each box is located

horizontally at the mean annual stationkeeping ΔV value and vertically at the mean ΔVPOI . Each

box is sized using the standard deviation in the corresponding direction. Note that the representative

station-keeping cost corresponding to each family is dependent upon the number of Monte Carlo

trials and the size of the errors applied to each state and maneuver, whereas the cost of a direct

transfer to a specific location along each orbit is not a statistical quantity. Although Figure 10 does

not precisely reflect all the station-keeping and transfer results throughout each complete family,

the figure enables a simple visualization in contrast to a more complex (and more precise) repre-

sentation as plotted in Figure 11. Using either Figure 10 or 11 as a reference, however, a number

of observations offer insight into the suitability of each candidate family. First, the L1 Lyapunov

and L2 halo families may require a large ΔVPOI for a transfer from LEO, assuming the simple

direct transfer concept without any assistance in the form of a lunar flyby. On average, the DRO

and L1 halo families require the least ΔVPOI . Similarly, the L1 and L2 halo families possess many

members that are expensive to maintain via the sample long-term station-keeping strategy employed

in this investigation. On average, periodic orbits from the DRO family appear to require relatively

little in terms of annual station-keeping ΔV . Although there are families in the vicinity of L4 and

L5 that require both low transfer and station-keeping costs, these orbits do not remain sufficiently

close to the Moon at all times. While a number of the other orbit families included in these transfer

diagrams may possess potential candidates for further analysis, the DRO family seems most inter-

esting due to its favorable geometry, low station-keeping costs over nearly the entire range of orbits

and low periodic orbit insertion ΔV s assuming a straightforward transfer from LEO.
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Figure 11. Characteristic curves of transfer and station-keeping cost of each family.

Analysis of DRO Family

Given that most members of the DRO family appear to meet the previously defined requirements

for a storage orbit that supports a space-based infrastructure, the family can be analyzed further

in a catalog workspace. First, the DROs are isolated on a transfer diagram, as depicted in Figure

12. On the vertical axis in each plot is the insertion cost, ΔVPOI , to reach a DRO from a LEO

that is assumed to lie within the xy-plane, while the horizontal axis corresponds to the annual

station-keeping ΔV . Both quantities are displayed as m/s. In Figure 12(a), the one parameter curve

representing the DRO family is colored by the TOF associated with the transfer from LEO. Since

an interactive environment allows modification of the visualization parameters at any time, Figure

12(b) displays the same curve colored by the period of each orbit in the DRO family. Using these

two figures as a reference, observe that the period of the DROs monotonically increases as the family

evolves away from the Moon. The transfer TOFs from LEO to the DROs appear to follow a similar

pattern. From these observations, it is apparent that larger DROs with periods greater than 16 days
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Figure 12. Diagram of transfer and annual station-keeping costs for orbits sampled
along the DRO family.

can be characterized both by low transfer costs and low station-keeping costs. These attributes may

be suitable for an infrastructure that is intended to be frequently accessed and maintained.

Upon further examination of the DRO family, a candidate storage orbit can be isolated, one that

is accessible, for example, by a crewed vehicle that may also require up to one orbital period for on-

orbit rendezvous. Recent concepts for manned missions to the lunar vicinity are typically limited to

a maximum roundtrip time-of-flight of approximately 21 days, based on restrictions for hardware,

supplies, and human factors.13 This limit of 21 days includes both the outbound and return legs

along a transfer arc, as well as the time-on-orbit. Since the TOF corresponding to a one-way trip

to the sample DROs can vary between 5.4 and 7.2 days, a candidate storage orbit must possess an

orbital period of, at most, 10 days. This upper bound assumes that on-orbit rendezvous activities

may require up to one revolution in the periodic orbit. From Figure 12(b), a user of an interactive

database would search for DROs that are represented by blue dots. Assuming that the storage orbit

is accessible from either an L1 or L2 Lyapunov orbit, some sample DROs that satisfy each of these

requirements are colored red in Figure 13. The selected candidate storage orbit for an infrastructure

asset that is accessible by a human crew is the DRO displayed in Figure 14(a). This orbit possesses

a period of 9.39 days, a Jacobi constant equal to 2.97, and requires a flight time of 5.76 days for

a direct transfer from LEO. Assuming, at most, one revolution of on-orbit rendezvous activities,

this candidate storage orbit meets the requirements for the scenario outlined in this example: the

DRO can be maintained over several years for a reasonable station-keeping cost; is accessible from

the Earth, as well as members of the L1 and L2 Lyapunov families; and possesses both a period

and geometry that do not place significant limitations on launch opportunities prior to on-orbit

rendezvous. Further, Figure 14(b) also depicts the maintenance of this selected DRO over one year

using the long term station-keeping strategy employed within this investigation. It is apparent that

the selected DRO is well maintained over twelve revolutions, requiring only a few m/s in annual

station-keeping ΔV . This storage orbit was rapidly and efficiently selected, thereby demonstrating

the capabilities of a dynamic reference catalog in an interactive environment. In addition, alternative

candidate orbits were also retained throughout this process and could be further examined using a

similar analysis.
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Selected periodic orbits and their corresponding transfers from LEO can also be exported to a

trajectory design environment such as ATD, developed at Purdue University, for more complete

analysis including the transition to a higher-fidelity model with, potentially, an eventual delivery

to GMAT.9 As an example, consider a transfer to a DRO with period equal to 6.5 days and Jacobi

constant value of 2.91. Given an arbitrary epoch, assumed to be January 1, 2021, the DRO and its

corresponding transfer are input to ATD. This interactive trajectory design environment then allows

correction of the trajectory using a multiple shooting strategy. An example of a converged transfer

from LEO to the given DRO is displayed in Figure 15, and is plotted in an instantaneously defined

rotating, barycentered, Earth-Moon frame. Although a precisely periodic orbit does not exist in the

ephemeris model, the corrected transfer and DRO approximately retain the same characteristics as

the reference solution that was constructed in the CR3BP. Furthermore, the periodic orbit insertion

cost for the converged transfer in the ephemeris model does not deviate significantly from the trans-

fer cost estimated in the CR3BP. Accordingly, there is significant merit in using the CR3BP as a

simplified model of the Earth-Moon system in the interactive catalog. In addition to the reduction in

computational effort and the simplification in visualizing an autonomous system, the CR3BP allows

for identification of periodic solutions that predict some of the dynamical structures that are actually

present in an ephemeris model of the Earth-Moon space.

CONCLUDING REMARKS

The concept of an interactive and ‘dynamic’ catalog of solutions in the Earth-Moon system is

explored and demonstrated to offer an environment for rapid and intuitive tradeoffs among orbits

that may be exploited during preliminary mission design. This interactive database currently incor-

porates known periodic solutions in the CR3BP and is focused on comparisons involving libration

point orbits, resonant orbits and Moon-centered orbits. The framework is easily expanded as new

options evolve. The capability to compute and analyze characteristic parameters of these families

‘on demand’ via the ‘dynamic’ catalog allows for the selection of candidate orbits for missions

in the Earth-Moon system. These candidate orbits can be exported for further examination in an
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end-to-end trajectory design environment. The capabilities of the interactive reference database are

apparent when employed to select a candidate storage orbit for infrastructure that may support lunar

activities or enable solar system exploration. In addition, the use of a simplified gravitational model

for the Earth-Moon system is verified by noting that the characteristics of orbits that are periodic in

the CR3BP are approximately retained when corrected in an ephemeris model.
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Figure 14. Selected candidate storage orbit, a DRO with period of 9.39 days.
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Figure 15. Sample LEO to DRO transfer converged in an ephemeris model for a
departure epoch of January 01, 2021 [With permission21].
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