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Air plasma radiation in Local Thermodynamic Equilibrium (LTE) within cylindrical
geometries is studied with an application towards modeling the radiative transfer inside
arc-constrictors, a central component of constricted-arc arc jets. A detailed database of
spectral absorption coefficients for LTE air is formulated using the NEQAIR code developed
at NASA Ames Research Center. The database stores calculated absorption coefficients
for 1,051,755 wavelengths between 0.04 μm and 200 μm over a wide temperature (500 K to
15 000 K) and pressure (0.1 atm to 10.0 atm) range. The multi-group method for spectral re-
duction is studied by generating a range of reductions including pure binning and banding
reductions from the detailed absorption coefficient database. The accuracy of each reduc-
tion is compared to line-by-line calculations for cylindrical temperature profiles resembling
typical profiles found in arc-constrictors. It is found that a reduction of only 1000 groups
is sufficient to accurately model the LTE air radiation over a large temperature and pres-
sure range. In addition to the reduction comparison, the cylindrical-slab formulation is
compared with the finite-volume method for the numerical integration of the radiative flux
inside cylinders with varying length. It is determined that cylindrical-slabs can be used to
accurately model most arc-constrictors due to their high length to radius ratios.

I. Introduction

The radiative heat flux inside the constrictor of a constricted-type arc heater can have a substantial effect
on the overall conditions of the flow field inside the constrictor as well as that exiting the nozzle into the

test section. It is therefore important that this radiation field be accurately predicted and fully coupled with
the governing equations of the flow. However, the determination of the radiative heat flux is computationally
expensive due to the highly non-gray spectral properties of the test gas. In order to fully couple the radiation
field to the flow field, a reduced radiation model must first be developed in order to dramatically lower the
computational costs and make the coupling practical.

To this end, several reduction strategies have been developed over the years. Multi-band or binning
methods have been developed which group individual spectral opacities into contiguous groups based on
frequency ranges and define a single averaged opacity and source for each range. These methods can be
very accurate, however they generally require a significant number of groups (i.e. O(

104
)
) to approach

line-by-line (LBL) accuracy. Though this is still a significant improvement over the LBL method in terms
of computational cost, it is still impractical to use multi-group methods for 2- or 3-D flow calculations.

The opacity distribution function (ODF) method (sometimes referred to as opacity binning or multi-
band method) was also developed as a technique for reducing the dimensionality of the wavelength space.1

As is done in the multi-band methods, spectral lines are grouped and the average spectral properties are
used to evaluate approximate solutions of the radiative transfer equation (RTE). However, unlike wavelength
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banding, the binning approach groups spectral properties based on contiguous opacity ranges and defines
the average opacity and source weighted by some function of opacity. Here, individual wavelengths are not
grouped in contiguous ranges but are divided into each group (or bin in this case) based on their average
opacity value over the range of conditions for a given line-of-sight. ODF methods can be much more accurate
(per group) than the simple banding method and tend to converge after O(10) bins,2 however as with the
multi-band method, reasonable accuracy is generally limited to relatively homogeneous areas of the flow
field. Moreover, the methodology for choosing the exact binning strategy is not well defined and the success
of this method is highly dependent on how the bins are chosen.

The Planck-Rosseland-Gray (PRG) model was originally developed by Sakai et al.3 for radiating shock
layers and later applied to radiation modeling in cylindrical media such as arc-heated flows.4,5 The basis for
the PRG model is that many wavelengths can be separated into either the optically thin or optically thick
regimes for some characteristic length. For all other wavelengths, the model assumes a gray gas absorption
coefficient. For optically thin and thick wavelengths the Planck and Rosseland approximations, respectively,
provide a closed form solution of the RTE. The standard RTE is then solved assuming a gray gas mean
absorption coefficient for the remaining wavelengths. The PRG model has proved successful for a wide range
of conditions, however two selection criteria which determine the boundaries between the optically thin and
thick regimes must be periodically determined iteratively in order to match the radiative flux determined by
more detailed band models. This is a major drawback of the PRG model because it must be tuned to each
experimental condition and cannot be used as a predictive tool in arc-constrictor design studies.

In this study, the multi-band and ODF methods are used to create a variety of reductions to spectral
radiative properties for equilibrium air plasma. The accuracy of the reductions are compared to line-by-
line calculations in cylinders with simulated arc-constrictor temperature profiles using the cylindrical-slab
formulation for radiative transfer. In addition, the cylindrical-slab formulation is compared to the finite-
volume method to determine its range of validity for arc-constrictor geometries.

II. Numerical Methods

The flow inside the arc column of a full-scale constricted arc-heater is assumed to be in chemical equi-
librium due to the relatively high pressures and temperatures and long residence times. For this study we
will further assume that the flow exists in a thermal equilibrium state as well in order to make tabulation
easier, though all methods employed could easily be extended to include thermal nonequilibrium effects.
Under these assumptions, any spectral property of the gas, ξλ, is uniquely determined by some function of
the mixture temperature and pressure given the element fractions of the mixture.

ξλ = ξλ (T, P ) (1)

The computation of radiative heat flux inside non-gray participating media is covered in numerous texts6,7

and is only summarized here. For a gas in local thermodynamic equilibrium (LTE), the spectral intensity
Iλ along a ray �s is governed by the radiative transfer equation neglecting scattering

∂Iλ
∂s

= κλ (Ibλ − Iλ) , (2)

where κλ is called the spectral absorption coefficient and Ibλ is the blackbody emission function or Planck
function

Ibλ(T ) =
2hc2λ−5

exp
(

hc
λkT

)− 1
. (3)

The total radiative heat flux �q at a given location is then given by integrating the spectral intensity over
all wavelengths and solid angles,

�q(�x) =

∫ ∞

0

∫
Ω

Iλ(�x,�s) d�Ω dλ. (4)

A. Absorption Database

The spectral absorption coefficient, κλ, is determined by considering the various radiative processes occurring
in a high temperature gas; these are typically classified as bound-bound, bound-free, and free-free processes.
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Chauveau et al. have recently studied these various phenomena in depth and have provided an excellent
overview of equilibrium air plasma radiation in Ref. 8. For this study, the Nonequilibrium Air radiation code
(NEQAIR9) developed at NASA Ames Research Center is used to tabulate spectral absorption coefficients
over a range of temperatures between 500K and 15 000K and pressures between 0.1 atm and 10.0 atm for
LTE air. NEQAIR contains an extensive line database for Air and CO2 species. Furthermore, the NEQAIR
code has been used extensively by other researchers and validated against numerous experimental datasets.

The species number densities for LTE air, which are required to compute the spectral properties in
NEQAIR, are computed using the recent curve fits of D’Angola et al.10 The composition of air is assumed
to be 80% N2 and 20% O2 by volume. The curve fits of D’Angola et al. were computed using the following
19 species:

N2, N
+
2 , N, N+, N 2+, N 3+, N 4+, O2, O

+
2 , O

–
2 , O, O – , O+, O 2+, O 3+, O 4+, NO, NO+, e –

In addition to the continuous processes (bound-free and free-free), the following band systems were used
to generate the (bound-bound) spectra in NEQAIR

Atomic Systems:

N O

Diatomic Systems:

N+
2 1st neg.

N2 1st and 2nd pos., BH1 and BH2, LBH, Carroll-Yoshino, Worley-Jenkins

O2 Schumann-Runge

NO infrared, γ, β, δ, ε, γ’, β’

1. Spectral Range

The total radiative heat flux is determined via Eq. 4 where the limits of integration over λ range over the
entire set of positive real values. In practice however, the spectral range is finite. For this study, the wave-
length range was chosen in order to capture all important contributions of emission (κλIbλ) and absorption
(κλIλ). Wien’s displacement law provides the wavelength where the blackbody emission is maximized for a
given temperature.

argmax
nλT

Ibλ = 2898 μmK (5)

This relationship is shown in Fig. 1 which serves as an indicator of the relative importance of each wavelength
on the total emission (and absorption) for given temperatures. For this study, a wavelength range of 400 Å
to 200 000 Å (η = 1/λ = 500 cm−1 to 250 000 cm−1) was chosen based on Fig. 1. This choice can be easily
supported by comparing the numerically integrated Planck function over this range with the analytical value
of the integral of the Planck function from 0 to ∞∫ ∞

0

Ibλdλ =
σ

π
T 4, (6)

where σ is called the Stefan-Boltzmann constant and is defined to be

σ ≡ 2π5k4B
15h3c2

= 5.6697× 10−5 erg/cm2 K4 s. (7)

Fig. 2 shows such a comparison. It is clear from the figure that the wavelength range of 0.04 μm to 20μm is
sufficient to capture the dominant emission and absorption phenomena over all temperatures and pressures
of interest.

2. Grid Spacing

The grid spacing used to tabulate the absorption coefficient database was determined through a balance
between minimizing the grid size while ensuring that the spectral properties are fully resolved over the entire
wavelength domain. To this end, a simple grid resolution study was performed to determine the optimal grid
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Figure 2: Comparison of the integrated Planck func-
tion with limits of integration from 0.04 μm to 20 μm
and the theoretical curve for 0 to ∞.

spacing necessary to meet both criteria. It was determined that the following grid ranges and spacings in
Table 1 provide fully resolved κλ while minimizing erroneous wavelength points. The total size of the entire
grid is 1,051,755 wavelengths.

Table 1: Wavelengthgth grid used in neqair.inp.

λ1 [Å] λ2 [Å] Δλ [Å] Points

400 2,000 0.04 40001

2,000 6,350 0.10 43501

6,350 200,000 0.20 968253

The resulting absorption coefficient spectrums for five different temperatures at 1 atm for LTE air as
computed by NEQAIR are presented in Fig. 3. From the figure, it is clear that the spectral absorption
coefficient varies wildly with wavelength and temperature due to the highly non gray nature of the absorb-
ing/emitting gas and the changing chemical composition due to the LTE air formulation. Solving the RTE
in Eq. 2 requires integrating over each spectral wavelength, line of sight, and solid angle. Performing the
full integration in this way is called a line-by-line calculation and represents the most accurate method for
computing the radiative transfer in a non gray medium. For 3-dimensional geometries, this can pose an
impractical computational task, especially when it is desired to couple the radiation field to the flow field
governed by the Navier-Stokes equations. (Note: the strong, isolated downward-pointing spikes in Fig. 3
(a), (b), and (c) are artifacts of the wavelength domain decomposition and are not physical.)

B. Multi-band Model and Opacity Distribution Functions

In essence, the multi-band model and the opacity distribution function model (multi-bin) are similar methods
in that they both attempt to reduce the dimensionality of the wavelength space by grouping individual
wavelength’s together and defining an average absorption coefficient (opacity) and emissivity for each group.
The primary difference lies in how the groups are formed. This common ground allows a succinct development
of both methods starting with an identical formulation but diverging in the formation of the groups.

The radiative heat flux is computed using Eq. 4. Since the direction-cosine of the ray �s is not a function
in wavelength (or any spectral quantity), the integral over wavelength in Eq. 4 may be moved inside the
radiative transfer equation, Eq. 2.

∂

∂s

∫ ∞

0

Iλdλ =

∫ ∞

0

κλIbλdλ−
∫ ∞

0

κλIλdλ (8)
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Figure 3: Absorption coefficient spectra for an LTE air plasma at 1 atm and multiple temperatures.

Note that the above equation does not make any assumptions or approximations and is still completely valid
in a mathematical sense. However, the right-hand term of the right side of Eq. 8 is not closed and cannot
be determined. In order to close the equation the following approximation is made.∫∞

0
κλIλdλ∫∞

0
Iλdλ

≈
∫∞
0

κλIbλdλ∫∞
0

Ibλdλ
(9)
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from which it follows that ∫ ∞

0

κλIλdλ ≈
∫∞
0

κλIbλdλ∫∞
0

Ibλdλ

∫ ∞

0

Iλdλ (10)

The integrated RTE can then be written as

∂I

∂s
= κ (Ib − I) , (11)

where

I =

∫ ∞

0

Iλdλ, Ib =

∫ ∞

0

Ibλdλ, and κ =

∫∞
0

κλIλdλ

Ib
. (12)

In its present form, Eq. 11 can be solved using any RTE solver, and the corresponding heat flux is then

�q(�x) =

∫
Ω

�Ω I(�x) dΩ (13)

Furthermore, since κ and Ib can be tabulated for a range of temperatures and pressures, the integrated
RTE is extremely cheap to solve - reducing O(

106
)
equations to 1. However, as the absorption coefficient is

rapidly varying function of wavelength, the Planck-weighted absorption coefficient κ is often very inaccurate
in representing the intensity-weighted function (the approximation made in Eq. 10). In order to improve this
accuracy, the integrated RTE is solved over subsets of the entire spectral range using multiple Planck-mean
absorption coefficients which are either spectrally local (banding) or local to a given opacity range (binning).

The multi-band models fall into the first category of spectrally-local mean absorption coefficients. In
these models, the wavelength range is divided into contiguous sets of wavelengths called bands.

{λi}MB =
{
λ ∈ R

+ | λL
i ≤ λ < λU

i

} ∀ i = 1 . . . nband (14)

A natural band sizing comes from a logarithmic scaling as spectral features tend to be much finer at low
wavelengths (absorption/emission due to changing electronic levels) and more spread out at large wavelengths
(continuous and rovibrational band radiation).

So-called opacity distribution functions are found if the grouping is based instead on contiguous ranges
in absorption coefficient space, where each range is called a bin. The wavelengths included in each bin i are
then described by

{λi}ODF =
{
λ ∈ R

+ | κL
i ≤ κ(λ) < κU

i

} ∀ i = 1 . . . nbin (15)

Note that this grouping rule will not generally produce contiguous wavelength segments. As with the bands,
the bin levels are scaled logarithmically. Once the actual wavelength groupings are determined the integrated
RTE is written for each group (bin or band)

∂Ii
∂s

= κi (Ibi − Ii) , (16)

where the integrals in Eq. 12 are evaluated over each bin or band

Ii =

∫
{λi}

Iλdλ, Ibi =

∫
{λi}

Ibλdλ, and κi =
1

Ibi

∫
{λi}

κλIbλdλ, (17)

and the total intensity is simply the summation of the intensities from each group, I(�x) =
∑

i Ii(�x).
The multi-group method1 combines the multi-bin and multi-band methods into a general framework. This

is done by considering first a set of contiguous bands which split the spectral range into smaller segments
which are then further split into separate bins leading to ngroup = nbandnbin total groups over which the
absorption coefficient is averaged. For this study, a multi-group approach is taken. Note that the multi-band
and -bin methods are simply special cases of the multi-group method where either only one bin per band or
one band total are used.

The procedure for generating the groups from the tabulated spectral absorption coefficients is as follows.
First, the spectral range is split into nband number of bands using a logarithmic scale in wavelength. This is
done in order to try and even out the number of wavelengths associated with each band as the wavelength
grid spacing increases with increasing wavelength. Another important reason is that a primary assumption
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Figure 4: Example showing how the binning procedure works with 4 bins in the 300 nm to 500 nm range for
equilibrium Air at 10 000K and 1 atm.

of the binned RTE methodology is that the Planck function is considered constant over each group. From
Fig. 1 it is clear that Ibλ varies exponentially at lower wavelengths. In addition to the logarithmic scaling,
an additional constraint is placed on the bands. It was found during the course of testing that since above
100 μm, κλ is a smooth function of λ, it was beneficial to force the last band to cover the 100μm to 200μm
range. This constraint improves accuracy by allowing the remaining bands to cover a smaller spectral range.

After the wavelengths are split into bands, each band is then subdivided into nbin bins. Several strategies
for determining the opacity ranges which determine the bins in each band were tested. If a constant or
logarithmic spacing was used, it is was found that not all bins were guaranteed to contain at least a single
wavelength. In addition, it was likely that one bin would contain over 90% of the wavelengths in the band
and thus the other bins would suffer from a statistical point of view. In light of these issues, another method
was adopted in which the spectral absorption coefficients were first ordered in each band and the bin ranges
were determined by assigning equal numbers of wavelengths to each bin. This process is shown graphically
in Fig. 4.

After assigning each wavelength to a group, the mean absorption coefficient and integrated Planck func-
tion as defined in Eq. 17 were computed for each group and tabulated versus temperature and pressure to
form a reduced spectral model. One important observation about the integration method should be noted.
Originally, the authors attempted to use the trapezoidal rule for computing the integrals in Eq. 17, however,
as can be easily verified, the trapezoidal rule is not consistent with the original RTE. In other words, when
the number of groups approaches the number of wavelengths, the accuracy of the “reduced” model should
converge to LBL, however this is not the case when trapezoidal rule is used because cross-multiplication
terms are introduced between spectral values. These inconsistencies actually increase the error of a reduc-
tion substantially as the number of groups increase. Therefore, the rectangular rule was used instead to
perform the numerical integration which is consistent with LBL calculations.

C. Cylindrical Slab Formulation

The equations for radiative heat flux in a cylindrical “slab” are derived in the paper by Kesten et. al.11 To
compute the radiation intensity in the radial direction at a point O (see Fig. 5), they analytically integrate
the equation representing the change in intensity along a light beam, Eq. 2, starting at a point A, on the
cylinder wall, passing through point O.

After a series of coordinate transformation and analytical integration over angles, they write,

ql(r) = 4
∫ π/2

0

[
Il|RD3

{∫ r cos γ

0
κnu(y

′′)dy′′ +
∫√R2−r2 sin2 γ

0
κnu(y

′′)dy′′
}

+
∫√R−r2 sin2 γ

0
D2

{∫ r cos γ

0
κnu(y

′′)dy′′ +
∫ y′

0
κnu(y

′′)dy′′
}
ηl(y

′)dy′
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Figure 5: Ray path (AOB) in cylindrical geometry. The coordinates (s and x) and angles are shown on the
figure.
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+
∫ r cos γ

0
D2

{∫ r cos γ

y′ κ(y′′)dy′′
}
ηl(y

′)dy′
]
cos γdγ

−4
∫ π/2

0

[
Il|RD3

(∫√R2−r2 sin2 γ

r cos γ
κl(y

′)dy′
)

+
∫√R2−r2 sin2 γ

r cos γ
D2

(∫ y′′

r cos γ
κl(y

′)dy′
)
ηl(y

′′)dy′′
]
cos γdγ

(18)

where Il|R is the radiative intensity at the wall and Dn is the exponential integral function,

Dn(x) =

∫ 1

0

μn−1√
1− μ2

exp(−x/μ)dμ

Nicolet et al.12 developed a numerical algorithm to solve Eq. 18. They start by adopting an approxima-
tion to Dn using exponential fits of the form,13

Dn(x)
.
= an exp(−bnx), (19)

and substitute the above in Eq. 18. They chose a best fit to D3, and have set,

b2 = b3 = 5/4

a2 = a3 = π/4

The cylinder is then discretized into N mesh points. They derived the final approximation to Eq. 18
using logarithmic quadrature rules to obtain,

ql,i = (q+l,i − q−l,i)
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where,

q±l,i = 4

N∑
j=2

G±
i,j +G±

i,j−1

2

(
rj
ri

− rj−1

ri

)
(20)

Nicolet et al.12 used a band approximation where they have set Il|R, the radiative energy flux at the
wall, to be the integral of the emissivity in a band [ll, ll+1], determined by,

Il|R = σT 4(f(ξl)− f(ξl+1))

where f(ξl) is the fractional function,

f(ξl) =

∫ ∞

ξl

ξ3

exp(ξ)− 1
dξ

and ξl = hc/(λlkBT ).
The expressions for G−

i,j and G+
i,j in Eq. 20, are Eq. (A-21) and (A-22), given in Nicolet et al.12

D. Finite Volume Radiative Transfer

For verification of the cylindrical slab results, the radiative transfer problem was also solved by means of a
3-d finite-volume method using the same spectral absorption coefficients and emission function. We write
the radiative transfer equation, Eq. 2, in three-dimensional form as

Ω · ∇Iλ(x,Ω) = κλ(x) (Ibλ(x)− Iλ(x,Ω)) , (21)

where Ω is the direction of propagation and x is the spatial position. The distance variable s in Eq. 2 is
measured along the vector Ω. Upon integration of Eq. 21 over a computational cell we obtain∫

cell surface

Iλ(x,Ω)Ω · dS =

∫
cell volume

κλ(x) (Ibλ(x)− Iλ(x,Ω)) dV. (22)

Discretizing Eq. 22 by approximating the volume integral with the value of the integrand at the cell center
times the volume and approximating the surface integral by a summation over the faces of face-centered
values times the corresponding areas, one obtains∑

faces k

Iλ(xk,Ω)Ω ·ΔSk = κλ(xc) (Ibλ(xc)− Iλ(xc,Ω))V, (23)

where xc is the position of the cell center, xk is the position of the center of face k, V is the cell volume,
and ΔSk is the outward-pointing surface area vector of face k of the cell. Splitting the surface summation
into incoming and outgoing parts and using cell-center values for the outgoing facial intensities in each cell,
one gets the standard finite-volume method for radiative transfer:7

Iλ(xc,Ω) =
κλ(xc)Ibλ(xc)V +

∑
k,Ω·ΔSk<0 Iλ(xk,Ω) |Ω ·ΔSk|

κλ(xc)V +
∑

k,Ω·ΔSk>0 Ω ·ΔSk
. (24)

While this classic formula, Eq. 24, is an adequate approximation for many applications, we used a similar
but more accurate formulation.14 This method allows for significant variation in Iλ(x,Ω) across a cell. The
outgoing intensity at each outgoing face is given in this method by

Iλ(xo,Ω) =

∑
k,Ω·ΔSk<0 Iλ(xk,Ω) |Ω ·ΔSk|∑

k,Ω·ΔSk>0 Ω ·ΔSk
e−κλ(xc)d + (1− e−κλ(xc)d)Ibλ(xc), (25)

where xo is the position of an outgoing face, and

d =
V∑

k,Ω·ΔSk>0 Ω ·ΔSk
(26)

is the average value of the distance across the cell from the incoming to the outgoing faces in direction Ω.
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The value of Iλ(xo,Ω) is computed using Eq. 25 for a set of Ω vectors, the so-called discrete ordinate
method.7 This set is chosen to produce an accurate quadrature over the 4π direction space for computing
the divergence of the radiative heat flux, ∇·qλ . The average radiative heat flux in a cell is thereby computed
via

1

V

∫
cell volume

∇ · qλ dV =
1

V

∫
cell surface

qλ · dS (27)

≈ 1

V

∫
4π

∑
faces k

Iλ(xk,Ω)Ω ·ΔSk dΩ (28)

≈ 1

V

∑
i

∑
faces k

Iλ(xk,Ωi)Ωi ·ΔSk ΔΩi (29)

where the weights ΔΩi are given by the chosen quadrature formula. In this work all angular quadratures
were done with the S4 set of discrete ordinates, which uses 24 directions Ωi.

III. Results and Discussion

A. Reductions

High pressure arc-columns typically have a hot core near the upstream region which expands and cools
downstream. The radial temperature profile inside a column resembles a gaussian temperature distribution
with a peak temperature in the center and a fixed wall temperature at the radius of the column. The
temperature distribution of Eq. 30 has been created in order to simulate such profiles at different downstream
cross-sections.

T (r) = (Twall − Tmax)

[
exp

(−(r/R)2/2σ2
)− 1

exp (−1/2σ2)− 1

]
+ Tmax (30)

The temperature distribution is parameterized based on the maximum and wall temperatures, Tmax and Twall,
the radius of the column, R, and a stretching factor, σ, which corresponds to the variance of the gaussian
profile. Three temperature profiles have been chosen to test the performance of the spectral reductions using
Eq. 30. The values of Tmax, Twall, R, and σ are given in Table 2 and the actual temperature profiles are
plotted graphically in Fig. 7.

Table 2: Parameters corresponding to model temperature distribution used to test the accuracy of various
model reductions (see Eq. 30).

Name Tmax Twall R (cm) σ

G08 8,000 1,000 1.5 1000

G10 10,000 1,000 1.5 1

G12 12,000 1,000 1.5 0.5

Several reductions were computed using the methodology described in Section B. A variety of band and
bin combinations were chosen in order to study the overall effectiveness of the methodology in accurately
reducing the full spectrum of absorption coefficients to a manageable number. Each reduction was compared
to LBL calculations using the cylindrical-slab method for the three temperature distributions detailed in
Table 2. The accuracy of each reduction is assessed based on two criteria. The first criteria, ε∇·�q, is based
on the relative, maximum percent difference of ∇ · �q(r) as compared to the LBL calculation along the entire
radial distance in the column.

ε∇·�q =
maxr (∇ · �qLBL(r)−∇ · �q(r))

maxr |∇ · �qLBL(r)| × 100% (31)

Note that defining the error in the radiative source term in this way does not lead to large relative errors
when ∇ · �q(r) is nearly zero. Instead, this criterion gives a sense of the maximum error with respect to the
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Figure 7: Gaussian temperature profiles from Table 2.

overall order of magnitude of the peak heating within the column. The second criteria, εqr,wall
, is the relative

error in the radiative heat flux at the wall as compared to LBL.

εqr,wall
=

qr,LBL(R)− qr(R)

qr,LBL(R)
× 100% (32)

Table 3 summarizes the 28 different reductions computed and their accuracies as compared to LBL based
on the above two criteria. The table is ordered by increasing bands and then increasing bins to show the clear
relationship the number of bands has on the overall accuracy of the reduction. Regardless of the number of
bins used in the reduction, an error of less than 10% for all temperature profiles cannot be obtained with
less than 1000 bands. It is also important to note that in general, it appears that the radial heat flux at the
wall is easier to accurately predict than the divergence of the heat flux within the column, however for all of
the pure binning cases (1-5), the opposite trend is observed.

Fig. 8 presents the error criterion of Table 3 in a graphical way making it easier to visualize the overall
trends. It is clear from the figure that indeed the wall radiative heat flux is better predicted by the reduced
models as compared to the divergence of the flux in the column. The bulk of the εqr,wall

values are centered
around 10% where as the ε∇·�q values trend closer to 100%. Fig. 8 also highlights another important (though
expected) result. The colors in the figure represent which temperature profile in Table 2 the errors belong
to. It is therefore clear to see that in nearly all cases, the lower the peak heating is, the better each reduced
model can predict the radiative heating within the cylinder. This suggests that a practical RTE solver could
select from a range of reduced models depending on the core temperature of the arc-column, enabling a
computational speedup in the downstream regions where the temperatures are more uniform.

Fig. 9 shows the actual qr and ∇ · �q profiles for the LBL and five reductions in Table 3 which have the
lowest overall errors. The heat flux within the column first peaks to a maximum due to the hot core at the
center before the absorption in the colder regions towards the wall tends to equilibrate the radiative flux from
both directions. The radiative flux at the wall is much lower than the peak location, owing to the absorption
in the wall region. Interestingly, the errors in the peak heating region due to the various reductions shown
in Fig. 9a have little affect on the final radiative flux reaching the wall, suggesting that the cold region is
optically thick.

In addition, it is clear that small differences in the core temperature result in very large differences in
peak heating as can be seen by comparing the ∇·�q profiles for each temperature distribution in Fig. 9b. This
is most likely due to the fact that at 10 000K, atomic nitrogen is at its peak concentration before ionization
begins for equilibrium air at 1 atm. Above 10 000K, the concentrations of N+ and e – begin to become
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Table 3: Summary of the errors, ε∇·�q (Eq. 31) and εqr,wall
(Eq. 32), of each reduction tested on the gaussian

temperature profiles listed in Table 2.

G08 G10 G12

No. Type nband nbin ngroup ε∇·�q εqr,wall
ε∇·�q εqr,wall

ε∇·�q εqr,wall

1. bins 1 10 10 -26.0 -149.7 -84.6 -122.1 -121.8 -179.7

2. bins 1 20 20 -26.0 -147.9 -82.2 -119.5 -118.5 -174.7

3. bins 1 50 50 -25.9 -147.0 -79.4 -117.2 -116.4 -171.6

4. bins 1 100 100 -25.9 -146.5 -78.9 -116.7 -116.2 -170.9

5. bins 1 500 500 -25.9 -145.4 -76.4 -114.8 -114.2 -167.9

6. multi-group 4 50 200 -9.9 -9.4 -81.4 -8.6 -113.5 -12.6

7. multi-group 5 5 25 -47.5 -41.6 -227.6 -92.4 -170.7 -115.5

8. multi-group 5 10 50 -43.2 -13.8 -207.6 -21.4 -153.4 -26.2

9. multi-group 5 20 100 -38.3 -8.5 -172.0 -8.4 -129.7 -9.2

10. multi-group 8 25 200 -8.3 -4.4 -72.8 -5.3 -94.2 -6.0

11. bands 10 1 10 -174.5 -102.4 -733.7 -397.1 -475.7 -482.5

12. multi-group 10 5 50 -122.2 -10.8 -322.8 -16.1 -212.5 -25.5

13. multi-group 10 10 100 -77.0 -7.9 -129.2 -9.6 -100.0 -16.2

14. multi-group 10 20 200 -32.6 -7.0 -50.1 -8.3 -57.5 -13.0

15. multi-group 10 50 500 -3.9 -6.6 -32.2 -6.8 -51.3 -9.2

16. multi-group 20 5 100 -44.9 -6.0 -175.4 -8.6 -134.4 -15.2

17. multi-group 20 10 200 -27.8 -4.7 -99.2 -6.4 -85.4 -11.0

18. multi-group 20 25 500 -12.2 -4.3 -41.6 -4.2 -55.8 -6.6

19. multi-group 25 8 200 -23.6 -3.6 -82.6 -6.2 -69.2 -11.3

20. multi-group 25 20 500 -12.0 -3.5 -39.0 -4.8 -47.9 -7.8

21. multi-group 50 4 200 -26.7 -2.6 -79.3 -4.7 -59.1 -8.2

22. multi-group 50 10 500 -12.4 -2.9 -31.6 -5.0 -34.9 -7.8

23. bands 100 1 100 -50.7 2.6 -161.7 -15.0 -136.0 -23.4

24. multi-group 100 2 200 -26.5 -1.2 -75.2 -9.9 -58.2 -14.8

25. multi-group 100 5 500 -10.5 -2.9 -27.4 -7.3 -27.8 -10.1

26. bands 500 1 500 -16.5 4.6 -40.6 -7.0 -38.4 -12.9

27. bands 1000 1 1000 -5.8 4.8 -7.3 -0.8 -3.9 -1.9

28. bands 10000 1 10000 4.9 4.1 -2.2 2.0 1.1 3.5

substantial which increase the radiant power due to bound-free and free-free transitions. Thus, the peak
heating at 12 000K is about −16 kW/cm3 while at 10 000K and 8000K the peak heating is only −2 kW/cm3

and −0.5 kW/cm3 respectively. This observation underlines the importance of accurately predicting the gas
composition in the column which can be highly dependent on the radiative-flow coupling.

Finally, we consider the poor performance of the pure binning reductions (reductions 1-5 in Table 3).
Surprisingly, the performance of the reductions is barely affected by the number of bins used. For example,
the error in the radiative flux at the wall for the G12 temperature profile changes from 179.7% with just 10
bins to only 167.9% with 500 bins. In contrast, the pure banding yields for the same error criteria 482.5%
error with only 10 bands but just 12.9% with 500 bands.

Fig. 10 shows the qr and ∇ · �q profiles for each temperature distribution using each of the pure binning
reductions as compared to the LBL calculations. As hinted at by the errors listed in Table 3, the pure
binning profiles are nearly identical regardless of the number of bins used. Several authors have previously
noted that the assumption made in Eq. 16 is that each group of wavelengths (either bins or bands or mixed)
either spans a spectral region in which the Planck function is nearly constant, or the spectral absorption
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Figure 8: Results of Table 3 shown graphically. Symbols represent type of reduction (�, pure binning; �,
pure banding; 
, mixed). Colors represent the temperature distribution (red, G12; green, G10; blue, G08).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

q r
 [W

/c
m

2 ]

Radial Location [cm]

G12

G10

G08

LBL
500 Bands

1,000 Bands
10,000 Bands

50 Bands, 10 Bins
100 Bands, 5 Bins

(a) qr

-2000

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

di
v(

q)
 [W

/c
m

3 ]

Radial Location [cm]

G12

G10

G08

LBL
500 Bands

1,000 Bands
10,000 Bands

50 Bands, 10 Bins
100 Bands, 5 Bins

-1000

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

(b) ∇ · �q

Figure 9: Comparison of LBL and reduced model calculations of the radiative heat flux and its divergence
for the temperature distributions shown in Fig. 7. Only the five reductions with the smallest errors as given
in Table 3 are shown.

coefficient can be treated as randomly distributed such that the errors associated with the Planck-weighted
mean absorption coefficient are small. If either assumption is not met, then the errors in the reduction will be
large. Therefore, the poor performance of the pure binning reductions as shown in Fig. 10 can be attributed
to the fact that the bins may span the entire wavelength spectrum, in which case the Planck function can
range over many orders of magnitude. This is further substantiated by the observation that using a few
bands to divide the wavelength spectrum into smaller regions can dramatically increase the accuracy of the
reductions. For instance, using 500 bins alone (reduction 5) yielded a εqr,wall

value of -167.9%, however if the
total wavelength range is split into 10 subregions with 50 bins each (reduction 15), this error drops to -9.2%
(note that the error in the divergence term is still over 51% for this case).

B. Cylindrical-Slab vs. Finite-Volume

In the following section, a comparison is made between the cylindrical-slab formulation and the finite-volume
formulations detailed in previous sections. This is done in order to both verify the correctness of the the
cylindrical-slab formulation as well as to determine when it is valid to use this method for arc-jet geometries.
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Figure 10: Comparison of LBL and pure binning calculations of the radiative heat flux and its divergence
for the temperature distributions shown in Fig. 7.

To begin, Eq. 30 is rewritten in two dimensions by linearly interpolating from a constant wall temperature,
Twall, at z = 0 to a gaussian temperature profile with peak temperature, Tmax, at z = L.

T (ρ, ζ) = (1− ζ)Twall + ζ

{
(Twall − Tmax)

[
expα(ρ, ζ)− 1

expα(1, ζ)− 1

]
+ Tmax

}
, (33)

where

ρ =
r

R
, ζ =

z

L
, α(ρ, ζ) =

−0.5ρ2

(ζσ1 + (1− ζ)σ2)
2 . (34)

The benefit of such a parameterization is that it is nondimensionalized by the cylinder’s length and radius,
thus radial temperature profiles at a particular non dimensional cross-section, ζ, remain unchanged when
the length of the cylinder, L, is changed. As with the stretching factor σ in Eq. 30, the factors σ1 and σ2 in
Eq. 34 determine how stretched the gaussian profiles are at z = L and z = 0 respectively. For the remainder
of this section, these values are taken to be σ1 = 0.2 and σ2 = 1.0. Fig. 11 shows the progression of radial
temperature profiles for these stretching factors in the non dimensional coordinates of Eq. 34.

The finite-volume method was used to compute the radiative flux and its divergence in a cylinder whose
temperature profile is constant in the angular direction and follows the temperature parameterization of Eq.
33 in the radial and axial directions. The radius of the cylinder, R, was taken to be 3 cm and four separate
lengths were chosen corresponding to L = 10R, 20R, 30R and 40R. The computational domain was split into
300 radial cells, 300 axial cells, and 20 angular cells totaling 1.8 million cells to model the entire domain. In
order to limit computational time, the 1000 band reduction (number 27 in Table 3) was used to represent
the spectral properties of the gas.

Fig. 12 presents the radial heat flux and the divergence as a function of the radial location at the 0.5L
cross-section of the cylinders (averaged over each angular location) compared to the solution obtained for the
same temperature profile using the cylindrical-slab formation with the 1000 band reduction. As can be seen
from the figure, as the L/R ratio increases, the cylindrical-slab formulation becomes closer to reproducing
the exact integration for the radiative heat flux in the radial direction. This could be expected but it
is far from guaranteed as the assumptions made by the cylindrical-slab formulation are 1) the cylinder is
infinitely long, and 2) the spectral properties vary only in the radial direction. The first assumption is clearly
approached with an increasing L/R ratio, however the second assumption is less obvious. However, from the
above results, it is clear that allowing small deviations in the radiative properties in the axial direction is a
sufficient condition for the applicability of the cylindrical-slab formulation.

Fig. 12 shows that for the particular temperature parameterization given, the cylindrical-slab formulation
is accurate for cylindrical geometries with L/R � 30. For comparison, Nicolet et al.12 collected size
information of various constricted arc heaters in use in 1975. The L/R values for these constrictors ranged
from about 14 to over 162 where all but one had a minimum L/R of 30. The Interactive Heating Facility
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Figure 12: Comparison of the radial heat flux and the divergence of the heat flux for finite-volume calculations
performed with varying the length of the cylinder versus a cylindrical slab formulation.

(IHF) and the Aerodynamic Heating Facility (AHF) at NASA Ames Research Center operate today at L/R
ratios of 97.3 and 79.6 respectively.

In terms of performance, the cylindrical-slab formulation was two orders of magnitude faster than the
finite-volume solver after taking into account that the cylindrical-slab code must be used at every axial
cross-section. In addition, because each cross-section is treated as independent, the cylindrical-slab lends
itself to a higher degree of parallelization. This increase in performance along with a complete reduction in
spectral properties makes fully coupled flow/radiation calculations possible for arc-constrictor simulations
while maintaining a high level of accuracy.
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IV. Concluding Remarks

Full LBL calculations of radiative transfer for real problems is in general computationally impractical
with todays computational facilities. This is further compounded when coupling the radiative source terms
with the energy conservation equation for fluid dynamics simulations. For cylindrical geometries, the above
results show that the cylindrical-slab formulation can reach the same accuracy as performing the full spatial
integration when the cylinder is long enough. One important application of this methodology is modeling
the radiative transfer occurring in high pressure arc-constrictors which greatly impacts the flow inside the
constrictor. The cylindrical-slab formulation provides a considerable increase in performance over the finite-
volume method while retaining reasonable accuracy.

The computational performance can be further improved when a reduced radiation model is used. It was
shown in the above that a 1000 band reduction is sufficient to completely model equilibrium air radiation over
a wide temperature and pressure range. Since line-by-line calculations are completely decoupled between
each wavelength, this reduction corresponds to another three orders of magnitude reduction from line-by-line
calculations.

The combined reduced model and cylindrical-slab formulation allow fully coupled flow/radiation calcula-
tions to be performed for equilibrium air in cylindrical geometries such as that present arc-constrictor flows.
In addition, the proposed model reduction does not require any additional information in order to “tune”
the model for a particular set of conditions. This gives the model a truly predictive capability and will allow
the it to be used in future arc-constrictor design studies.
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