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Alicia M. Zinnecker 

N&R Engineering and Management Services, Inc. 
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Abstract 
The tool for turbine engine closed-loop transient analysis (TTECTrA) is a semi-automated control design 

tool for subsonic aircraft engine simulations. At a specific flight condition, TTECTrA produces a basic 
controller designed to meet user-defined goals and containing only the fundamental limiters that affect the 
transient performance of the engine. The purpose of this tool is to provide the user a preliminary estimate 
of the transient performance of an engine model without the need to design a full nonlinear controller. 

1.0 Introduction 
TTECTrA has been developed in the MATLAB/Simulink (The Mathworks Inc.) environment which 

allows users to access a standard library of functions and to add on toolboxes such as the Control System 
Toolbox (The Mathworks Inc.), which can be used to simplify the control design process (and is required to 
use TTECTrA). This user’s guide is written assuming the user is familiar with MATLAB and Simulink.  

TTECTrA consists of custom MATLAB functions written to perform control design calculations and 
to interact with the user’s Simulink engine model. The tool also contains the TTECTrA Simulink Block (in 
the TTECTrA_block.mdl file), which implements a scheduled proportional integral (PI) controller with the 
designed setpoints, gains, and limiters and supplies the fuel flow input to the user’s engine model. More 
information regarding the integration of TTECTrA with an engine model is contained in Section 2.0.  

TTECTrA has been tested and verified using MATLAB Version 8.0 (R2012b), Simulink Version 8.0 
(R2012b), and the Control System Toolbox Version 9.4 (R2012b). The tool integrates with an engine 
model written in Simulink and requires a piecewise linear state space model of the engine to be available. 
Note that, throughout this paper, MATLAB commands, functions, variables, files, and subsystems will be 
italicized. 

2.0 Installation and Model Setup 
2.1 Software Requirements For Using TTECTrA 

The TTECTrA tool integrates with an engine model that is compatible with MATLAB/Simulink and 
provides an interface for designing and implementing a gain scheduled PI controller with acceleration and 
deceleration limiters. The following requirements must be met in order to use TTECTrA: 

 
1. MATLAB/Simulink R2012b, with the Control System Toolbox installed (TTECTrA may work 

with other versions of MATLAB/Simulink, but has been developed and tested with R2012b) 
2. An engine model implemented in Simulink that provides the following outputs (for feedback): 

a. The control variable, such as fan speed (Nf) or engine pressure ratio (EPR) 
b. Thrust (corrected or uncorrected) 
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c. Core speed (Nc) 
d. Measurements of (total) pressure and temperature at stations 2 and 25 (for correcting 

feedback signals), and measurement of static pressure at station 3. 
 

The engine model should take, as input from TTECTrA, a fuel flow input; other inputs, such as 
variable geometry, should be included as part of the user’s engine model because the controller 
designed by TTECTrA only handles fuel flow. 

 
A piecewise-linear form of the engine model, where the linear models have been found for a set of 

thrust breakpoints and placed in the structure described in Appendix B.—Linear Model Input 
Requirements. (These models will be used for designing the setpoint controller gains.) 

2.2 Installation  

The TTECTRA code consists of a Simulink block and a folder of custom MATLAB scripts and 
functions which are called during the execution of TTECTrA. To install TTECTrA for use with an engine 
model: 

 
1. Right click on the zip package and choose Extract All. This will start the extraction wizard. 
2. Select “Next” to bring up the Select a Destination screen. 
3. Select “Browse” to open the file browser window and navigate to the folder that contains the 

engine model that will interact with TTECTrA. Select OK to return to the extraction wizard. 
4. Select “Next” to extract all files to the desired location. 
5. Select “Finish” to close the extraction wizard. 

2.3 Integrating TTECTrA With an Engine Model 

The TTECTrA tool utilizes features in MATLAB and Simulink to design and implement a scheduled 
PI controller, with acceleration and deceleration limiters, for an engine model built in Simulink. The 
user’s model must be integrated with this tool prior to proceeding with control design; the steps for doing 
so are presented in this section, following a description of the architecture of the controller implemented 
by the TTECTrA block. 

2.3.1 Controller Architecture 
The general architecture of the controller designed and implemented by the TTECTrA tool is shown 

in Figure 1, where the details of each block are omitted for simplicity. A switch is used to select the fuel 
flow calculated using one of three possible control methods (identified by the “loop selection” flag): 

 
1. Closed-loop control with the controller designed using TTECTrA to calculate the setpoint map, 

controller PI gains, and acceleration and deceleration limiters 
2. Closed-loop control where the system is driven to a demanded thrust value as fast as possible; this 

controller is only used for setpoint calculation 
3. Open-loop control where a fuel flow profile is defined; this method may be used for setpoint 

calculation, and is also used for calculating the limiters 
 

The two feedback signals (control variable and thrust) are provided by the engine model, along with 
(corrected) core speed and Ps3 (which are used by the “acceleration” and “deceleration” logic blocks 
respectively). The fuel flow command is provided to the engine to close the loop with the TTECTrA 
block, but it is important to note that this is not a closed-loop simulation if the fuel flow demand input is 
selected. 
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Figure 1.—Schematic of the controller implemented by the TTECTrA Simulink block; parameters in the highlighted 

blocks are designed by TTECTrA. 

Even though TTECTrA includes a simple controller to drive the system to a reference thrust, this is 
not a realistic controller because there are no “thrust sensors” in an actual engine to provide the feedback 
data (this data is available in an engine model for analysis purposes). Instead, a measureable quantity that 
is related to thrust (typically fan speed or EPR) is used as the feedback to the controller; this model-
dependent measurement is referred to as the “control variable” throughout this document. The setpoint 
controller acts to drive the control variable to a reference value mapped from the demanded thrust using a 
relationship calculated for the specific engine model; consequently, if the control variable tracks the 
demand, it is expected that the thrust produced by the engine also tracks the demanded thrust. The 
tracking response is determined by how the proportional and integral gains of the controller are tuned and 
scheduled and by how tight the defined limiters for acceleration and deceleration are.  

The acceleration limiter is designed to prevent the high-pressure compressor from surge during 
engine acceleration. The core acceleration is compared to an acceleration limit that is dependent on the 
core speed; fuel flow is restricted if the acceleration is too high. The core acceleration limit as a function 
of corrected core speed is often called an acceleration schedule. The acceleration schedule is found by 
applying fuel flow profiles transitioning from an idle fuel flow to a takeoff fuel flow at different rates 
until the minimum high-pressure compressor surge margin requirement is met. The acceleration limiter 
uses a PI controller, with integral wind-up protection, to produce a fuel flow command designed to drive 
the engine acceleration to the acceleration limit. 

The deceleration limit is found by applying fuel flow transitions from a takeoff fuel flow to an idle 
fuel flow and finding the Wf/Ps3 value which would preserve the minimum acceptable low-pressure 
compressor surge margin. The fuel flow command produced by this limiter is calculated by multiplying 
the combustor pressure (Ps3) by the Wf/Ps3 limit.  

The fuel flow command provided to the “actuator dynamics” block and, ultimately, to the engine, is 
determined by first selecting the minimum of the fuel flow from the setpoint controller and that from the 
acceleration limiter. This fuel flow is then compared to the command from the deceleration limiter and 
the largest of these commands is selected. In this way, the fuel flow provided to the engine represents the 
controller that is operating closest to its respective setpoint. For more information regarding the design of 
an aircraft engine controller, the reader is referred to References 1 to 3. 

Running TTECTrA allows the user to design parameters for implementation of the three highlighted 
blocks in the figure: the setpoint map (relationship between thrust and control variable), the gain 
schedules for the PI controller, and the limiter logic that depends on the acceleration schedule and the 
lower limit on Wf/Ps3 (deceleration schedule). A set of graphical user interfaces (GUIs) has been created 
to guide the user through these design steps, which will be discussed in more detail in Section 3.0. The 
GUIs are implemented by a set of MATLAB scripts that take advantage of built-in functions that can run 
Simulink models from the command line; this enables interaction between MATLAB and Simulink while 
TTECTrA is running, which is discussed in the next section. 
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Figure 2.—Representation of how TTECTrA interacts with MATLAB and Simulink for 
designing and verifying a controller. 

2.3.2 Interaction Between TTECTrA and MATLAB/Simulink 
The TTECTrA tool has been designed to interact with MATLAB (through custom Matlab scripts, or 

.m files) and also with Simulink (though the included Simulink block, which implements the TTECTrA 
Controller block with the architecture discussed above). The framework of these interactions is 
represented in Figure 2, where the blocks highlighted in pink are implemented by TTECTrA and the 
block highlighted in blue is user-provided. The MATLAB code interacts with the Simulink model 
through calls to the MATLAB function sim in the simFromTTECTrA.m file, which is used in each of the 
four steps of design and verification, as listed in the “TTECTrA” block in Figure 2. In this way, it is only 
necessary to run the main file (TTECTrA.m) from the MATLAB command line to perform all design 
operations and run the test simulations. 

The user interfaces with the tool in two ways: by adding the TTECTrA controller block to their 
Simulink model file, which contains their engine model, and by providing parameters for the setpoint, 
controller, and limiter that TTECTrA will use in designing the controller. The steps for setting up the 
model and input file will be described in detail in the following sections. 

2.3.3 Setting Up the Simulink Engine Model 
Before using TTECTrA, the TTECTrA Simulink Block should be integrated with the user’s Simulink 

engine model following these steps: 
 
1. Copy and paste the TTECTrA Simulink Block (found in the TTECTrA_block.mdl file) into the 

Simulink model containing the engine.  
2. Connect the inputs of the TTECTrA Simulink Block, listed in Table 1, to the appropriate outputs 

of the engine model. 
3. Connect the output of the TTECTrA Simulink Block, listed in Table 2, to the fuel flow input of the 

engine model. Note that the fuel flow actuator dynamics are modeled inside this block as a first-
order filter, with a user-specified bandwidth.  An example of the TTECTrA Simulink Block 
integrated with an example engine model is shown in Figure 3. 
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TABLE 1.—INPUTS TO THE TTECTrA SIMULINK BLOCK 
Variable Name Description 

Fdbk Control variable output of the engine (feedback to the controller) 
FnR Corrected net thrust of the engine  
Time Simulation time 
NcR25 High pressure spool rotor speed corrected to station 25 
Ps3 High pressure compressor static discharge pressure 

 
 

TABLE 2.—OUTPUTS FROM THE TTECTrA SIMULINK BLOCK 
Variable Name Description 

Wf_engine Fuel flow to the engine; includes fuel flow actuator dynamics 
 
 
 

 
Figure 3.—The TTECTrA Simulink block integrated with an example engine model. 

 
 

2.3.4 Setting Up the TTECTrA MATLAB File 
The final part of the setup is to integrate the Simulink model with the TTECTrA MATLAB code. 

This requires the user to modify the simFromTTECTrA.m MATLAB file, which uses three structured 
variables to communicate between TTECTrA and the Simulink model: inputs, outputs, and DWS. The 
inputs variable (Table 3) contains data from TTECTrA for use by the Simulink model simulation. The 
outputs variable (Table 4) is the collection of the workspace outputs from the Simulink model. The DWS 
variable (Table 5) contains all the information required by the TTECTrA Simulink block. The file 
simFromTTECTrA.m, which runs the simulation, is separated into two sections: model-specific 
workspace setup and model execution setup. An external file, setup_TTECTrA_block.m, is called to create 
the DWS variable used by the controller block and requires no modification by the user. 
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To link the TTECTrA MATLAB code with the full Simulink engine model, the user must: 
 
1. Set the MATLAB workspace up for simulation of their model (with a given command or set of 

commands) in the “Model-specific workspace setup” section of simFromTTECTrA.m. 
2. Write the required Simulink outputs to TTECTrA by modifying the “Model execution setup” 

section of simFromTTECTrA.m. 
 
The following sections contain instructions for making these modifications, using an example 

application of TTECTrA with a piecewise-linear engine model. 

2.3.4.1 Model-Specific Workspace Setup 
The model-specific workspace setup section of the simFromTTECTrA.m file should contain all the 

code necessary to setup the MATLAB workspace for simulation; as such, this section of the code requires 
the most user modification for TTECTrA to run successfully. 

The user-provided code should perform the following functions: 
 
1. Unpack the flight condition from the .in field of inputs (inputs.in) (shown in Table 3). The flight 

condition is defined by three scalar values: altitude (alt), Mach number (MN), and deviation of 
ambient temperature from standard-day temperature (dTamb). 
 

TABLE 3.—FIELDS OF THE inputs STRUCTURE VARIABLE ARGUMENT TO simFromTTECTrA.m 
Field Field Name Description 

in t_vec Time (vector) 
Alt Altitude (scalar) 
MN Mach number (scalar) 
dTamb Temperature deviation from standard day condition (scalar) 
simTime Length time for simulation to run 
simFileName File name of user’s engine model 
loop Controller switch (1=control variable, 2=solver for thrust, 3=open loop) 
FT_dmd Thrust demand (vector or scalar (if constant thrust)); required only for in.loop = 1 or in.loop = 2 
wf_vec Fuel flow demand (vector or scalar (if constant fuel flow)); required only for in.loop = 3 
Fdbk_flag Flag for feedback filter (= 1) 

SPcalc wf_rng Fuel flow range for engine model ([wfmin wfmax]) 
idle Idle thrust 
takeoff max takeoff thrust 
bkpt breakpoints 

controller FdbkFilterBw Bandwidth for feedback filter if >0, else no filter used 
PreFilterBW Bandwidth for prefilter (filters the thrust command or setpoint) 

actuator wf_bw Bandwidth for first-order filter modeling fuel actuator dynamics 
SMLimit Accel Desired minimum surge margin during an acceleration 

Decel Desired minimum surge margin during a deceleration 
gains Kp Proportional controller gain (vector, scheduled by control variable) 

Ki Integral controller gain (vector, scheduled by control variable) 
Fdbk Control variable breakpoints (vector, for gain scheduling) 

SP FT_bkpt Thrust breakpoints (vector)  
SP Control variable setpoints (vector, scheduled by thrust) 

Limiter NcR25_sched Corrected core speed at station 25 (vector, for acceleration schedule) 
Ncdot_sched Core acceleration limit (vector, scheduled by corrected core speed) 
LPC_Limiter Wf/Ps3 limit (scalar) 
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If, for example, the workspace is setup using a function that requires a structure containing these 
environmental variables, the following code may be used to unpack those values: 

 

% setup vectors defining altitude, Mach number, dTamb (and time) 
in.t_vec = inputs.in.t_vec; 
in.alt   = inputs.in.alt; 
in.MN    = inputs.in.MN; 
in.dTamb = inputs.in.dTamb;  

(Additional formatting may be necessary if, for instance, these conditions should be provided to 
the setup function as vectors instead of scalars.) 

2. Assign the default simulation name to the inputs.in.simFileName variable to ensure that the 
simulation executes: 

 

if ~isfield(inputs,'in') || ~isfield(inputs.in,'simFileName') ... 
                         || isempty(inputs.in.simFileName) 
    inputs.in.simFileName = ’filename.ext';   % modify this 
end  

3. Add any additional MATLAB code required to setup the workspace and trim the model to the 
initial conditions. This code may be included directly in the file, or may be contained in external 
function created to execute any of the following steps: 
 
a. Adding folders containing functions or data files needed during the simulation to the current 

MATLAB path  
b. Loading data, or creating variables, needed by the engine model (e.g. compressor maps, 

lookup table data, sampling time) 
c. Trimming the model to the initial fuel flow or thrust demand in order to define the initial 

condition of the simulation 
 
For a model that places all data needed for a simulation into a single workspace variable and uses 
a lookup table for trimming the model, this can be done by the following code: 
 

% trim model to initial thrust demand, if closed-loop simulation 
if isfield(inputs.in,'FT_dmd'); 
    wf_0 = trim_model(inputs.in.FT_dmd(1),9); 
else 
    wf_0 = inputs.in.wf_vec(1); 
end 
 
% add paths, find initial conditions, create MWS 
MWS=setup_workspace(in.t_vec,wf_0); 

 
Here, trim_model performs the table lookup for the initial fuel flow and setup_workspace 
performs the remaining setup tasks from the above list. (A more complex model may use a 
steady-state solver in place of a lookup table to trim the model.) 
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4. Assign the model sampling time, initial fuel flow, and initial core speed to the in field of the DWS 
structured variable, along with the initial conditions for pressure and temperature at station 2: 

 

DWS.in.Ts_cont = MWS.Ts;         % model sampling time 
DWS.in.Wf_zro  = MWS.IC.Wf_0;    % initial fuel flow 
DWS.in.Nc_zro  = MWS.IC.Nc_0;    % initial core speed 
DWS.in.P2      = MWS.IC.P2_0;    % initial P2, used for correction 
DWS.in.T2      = MWS.IC.T2_0;    % initial T2, used for correction 

2.3.4.2 Model Execution Setup 
The model execution setup section of the simFromTTECTrA.m file contains the MATLAB 

commands that run the model simulation and place the results in the outputs variable, which contains the 
fields listed in Table 4. The model is simulated using the function sim, called with the output argument y 
(to which simulation outputs are returned); each individual output can be accessed using the get command 
and specifying the variable name as it appears in the Simulink model. 

For example, if pressure at station 2 is written to the workspace variable P2, the field ‘P2’ of outputs 
would be assigned using: 
 

outputs.P2      = y.get('P2'); 

 

This may be done for each field of outputs listed in Table 4, which are required for use during the 
control design process. 

Because get accepts a single argument (the variable name), additional manipulation of the output 
variables must be done external to retrieval of results. This may be exemplified by the assignment of the 
field for corrected thrust, ‘Fnet,’ in the case that uncorrected thrust is written to the workspace from the 
model. Assuming uncorrected thrust is written to the workspace variable Fnet by the model, the following 
code cannot be used: 

 

outputs.Fnet    = y.get('Fnet./P2')/14.696;    % this doesn’t work  
TABLE 4.—FIELDS OF THE OUTPUTS STRUCTURE VARIABLE RETURNED BY simFromTTECTrA.m 
Field Name Description 

t Time vector  
P2 Inlet pressure 
Fnet Corrected net thrust 
Wf_vec Fuel flow input 
T25 Temperature at station 25 
Nc Core (or high spool) speed 
NcR25 Corrected core (or high spool) speed (used for acceleration schedule) 
Nc_dot Core acceleration (used for acceleration schedule) 
HPC_SM High pressure compressor surge margin (used for acceleration schedule) 
LPC_SM Low pressure compressor surge margin (used for Wf/Ps3 limiter) 
CV_fdbk Controlled variable output 
CV_dmd Control variable setpoint or demand 
FT_dmd Thrust setpoint or demand 
Wf_dmd Fuel flow input or demand 
Ps3 High pressure compressor static pressure (used for Wf/Ps3 limiter) 
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Instead, it is necessary to retrieve the arrays Fnet and P2 separately and do the calculation using: 
 

outputs.Fnet    = y.get('Fnet')./(outputs.P2/14.696); 

 
The variables necessary for TTECTrA to function are indicated in the simFromTTECTrA.m file, and 

listed in Table 4: 10 output fields assigned from outputs of the engine model and four from outputs of the 
TTECTrA Simulink block. Additional outputs, such as Ps3, may also be returned by retrieving the 
workspace variable and storing it in a corresponding field of outputs. 

2.3.4.3 TTECTrA Simulink Block Setup 
Prior to running the simulation, the simFromTTECTrA.m file calls the function 

setup_TTECTrA_block.m to create the DWS variable (used by the TTECTrA Simulink block) from data in 
the inputs variable. The fields contained in DWS are shown in Table 5. The user should not have to modify 
this function, as it pertains to the controller designed using TTECTrA and not to a specific engine model. 
 

TABLE 5.—THE DWS VARIABLE STRUCTURE 
Field Field Names Description 

in loop Control/Feedback indicator 
t_vec Time vector 
wf_vec Fuel flow input (default values unless loop=3) 
FT_dmd Thrust demand (default values unless loop=1 or loop=2) 
Fdbk_Flag Flag to enable/disable filter in feedback loop 
Ts_cont Simulation sample time (from user’s model) 
Wf_zro Initial fuel flow  (from user’s model) 
Nc_zro Initial core speed (from user’s model) 

TTECTrA_controller Fdbk_num_Z Discrete feedback filter numerator 
Fdbk_den_Z Discrete feedback filter denominator 
PreFilterBW Bandwidth of prefilter on thrust command (Hz) 
Fdbk Feedback breakpoints (for controller gain lookup tables) 
P_gain Proportional gains (lookup table data) 
I_gain Integral gains (lookup table data) 
IWUP Integral Wind-up Protection gain 

TTECTrA_Wf bandwidth Bandwidth of first-order filter modeling fuel flow dynamics 
TTECTrA_Limiter Nc_sched Corrected core speed breakpoints (for acceleration schedule lookup table) 

Ncdot_sched Core acceleration limits (lookup table data) 
WfPs3Limit Deceleration protection limit on Wf/Ps3  
Kp_accel Proportional gain for the acceleration limiter 
Ki_accel Integral gain for the acceleration limiter 
IWUP_accel Integral Wind-up Protection for the acceleration limiter 
accel_num Acceleration filter numerator 
decel_num Acceleration filter denominator 

TTECTrA_setpoints FT_bkpt Thrust feedback breakpoints (for setpoint lookup table) 
SP Controlled variable setpoints (lookup table data) 

3.0 TTECTrA Operation 
This section focuses on setting up and operating the Tool for Turbine Engine Closed-loop Transient 

Analysis, which can be done once it has been integrated with the user’s nonlinear engine model as 
described in Section 2.0. An example application based off of the Commercial Modular Aero- 
Propulsion System Simulation 40,000 (C-MAPSS40k) (Ref. 4) has been included with TTECTrA 
(TTECTrA_example.mdl). As the tool is discussed, it may be helpful to follow along using this example, 
which is a piecewise-linear version of the C-MAPSS40k engine model. In addition, a set of linear models 
developed at sea-level static conditions (0 ft and 0 Mach number) are included in the file LM_PWL.mat 
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for use in developing a controller; a pre-design controller can be found in the file 
TTECTrA_example_design.mat. Before running TTECTrA with this model, the make_file.m file  
(found in example_model/MEX/C_code) must be run to create the supporting code for the simulation. 

A typical control design using TTECTrA involves three main steps: calculating the setpoint map, 
finding the controller gain schedules, and calculating the acceleration and deceleration limiters. After 
TTECTrA has been started, the steady-state mapping between corrected thrust and the control variable 
setpoint is calculated. This relationship is dependent on the engine model and requires that the user 
connects the appropriate feedback signal to the Fdbk input of the TTECTrA Simulink block in the 
Simulink model before performing the calculation. Next, the tool calculates the controller gains for each 
model composing the provided piecewise-linear model of the engine; these controller gains will be 
scheduled (based on control variable) for implementation in the setpoint controller. The final set of 
calculations addresses the need for implementing transient limiters to protect the engine from surge; 
acceleration and deceleration schedules can be found to ensure the user-specified minimum surge margins 
for the high- and low-pressure compressors (HPC and LPC) are not violated during periods of high 
engine demand. The TTECTrA controller only considers these two limiters, but it is possible to expand 
the limit logic to include additional constraints, such as core speed or Ps3. 

After the controller has been designed, two simulations will be run to test the functionality of the 
controller: a simulation with small changes in thrust demand (to test the setpoint controller) and a 
simulation with large changes in thrust demand (to test the limiters). The results for the control design and 
verification for the example model will be presented here along with discussion of each step of the design 
process using TTECTrA. 

3.1 Getting Started 

Before operating TTECTrA, the user has the option to specify default values and preferences for the 
parameters listed in Table 6 in the file TTECTrA_Inputs.m. The values in this file are loaded by TTECTrA 
and recalled when the GUI is started, but may be changed during the design process if necessary.  

 
TABLE 6.—USER DEFAULT INPUTS FROM TTECTrA_Inputs.m FILE, WHICH ARE LOADED INTO THE GUI 

SubField Field Name Description 
in alt Altitude (scalar) 

MN Mach number (scalar) 
dTamb Ambient temperature deviation from standard day (scalar) 
simTime Length of the simulation (scalar) 
simFileName File name (and extension) of the user’s Simulink engine model with the TTECTrA Simulink 

Block controller 
SPcalc wf_rng Fuel flow range ([min max]) 

idle Idle corrected thrust 
takeoff Takeoff corrected thrust 
bkpt If scalar, specifies the number of linearly spaced thrust values from idle to takeoff for 

calculating setpoints 
If vector, defines specific thrust breakpoints for calculating setpoints 

controller LMFileName Name of .mat file which contains linear model 
lmVar Name of variable containing the linear model data 
FdbkFilterBW Feedback filter bandwidth if > 0, otherwise no filter is used 
PreFilterBW Prefilter bandwidth 
CVoutput Element of the linear model output vector (yi) corresponding to the controlled variable 
Wfinput Element of the linear model input vector (ui) corresponding to  fuel flow 
bandwidth Default bandwidth for tuning the controller 
phasemargin Default phase margin for tuning the controller 

actuator wf_bw Bandwidth of filter modeling fuel flow dynamics 
SMlimit Accel Minimum allowed surge margin during acceleration (for limiter design) 

Decel Minimum allowed surge margin during deceleration (for limiter design) 
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3.2 GUI Operation 

To begin the control design using TTECTrA, run the TTECTrA.m file. The dialog box shown in 
Figure 4 will appear, asking if a previously-saved controller should be loaded. To load a previously-
designed controller (with the option of full or partial redesign of the loaded controller), select “yes” and 
proceed as follows when the Load Controller Data GUI of Figure 5 appears. Otherwise, select “no” to 
bring up the Setpoint Calculator GUI (Go to “Setpoint Calculator” section). 
 

1. Press the “Choose File to Load” button to browse to and select the appropriate file. If the file is 
not on the current MATLAB path, the location of the file will be added to the path to ensure it 
can be loaded successfully. (The file TTECTrA_example_design.mat, located in the 
example_model folder, contains data for a controller designed for the example model.) 

2. Verify that the correct file name appears in the text box, and then press the “Load Data” button to 
load the controller. MATLAB will issue a warning if any required fields are missing from the 
data; these fields may be assigned later by TTECTrA. An error will be encountered if there is a 
problem loading the appropriate data from the file (e.g. the file name is incorrect, or the file does 
not contain a variable named inputs). 

3. The Controller Redesign GUI in Figure 6 will appear, asking which parts of the controller the 
user would like to redesign, if any; check the appropriate boxes then click Continue. If the loaded 
controller is missing any of the three parts required by TTECTrA, the corresponding check boxes 
will be marked as shown in Figure 6, forcing the controller design to complete before simulation. 

4. If no part of the controller is to be redesigned, the model will be simulated immediately after the 
controller data is loaded (Go to the “Verify and Execute Simulation” section). Otherwise, 
TTECTrA will proceed with the specified controller design steps. 

 
 

 
Figure 4.—Dialog box asking if the 

user would like to load previously 
designed controller data. 

 

 
Figure 5.—Load Controller Data GUI. 
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Figure 6.—Redesign Controller GUI. 

 

 
Figure 7.—The Setpoint Calculator GUI. 

3.2.1 Setpoint Calculator 
The Setpoint Calculator GUI, shown in Figure 7, allows the user to define the flight condition and 

parameters for the simulations through which the relationship between corrected thrust and the control 
variable will be defined. The GUI is divided into four sections: Environmental Inputs, Simulation Inputs, 
Fuel Flow, and Corrected Thrust Inputs. 

3.2.1.1 Calculate the Control Variable Setpoints 
1. Enter the environmental condition (altitude, Mach number, and dTamb) in the “Environmental 

Inputs” section. The values specified in the input file will be loaded by default, but may be 
changed in the GUI. 

2. Select the setpoint control type to indicate how the relationship between the corrected thrust and 
the control variable should be derived. The choices are: 
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a. Thrust setpoint—constant corrected thrust is provided to the model; the setpoint relationship 
is defined by the steady-state control variable for each corrected thrust 

b. Constant Fuel Flow—constant fuel flow is provided to the engine; steady-state corrected 
thrust and control variable values at each fuel flow are used to define the relationship 

3. Specify how long the simulation should run to allow the engine to establish a steady-state 
condition for the given input (“simulation time”). 

4. Select the file containing the nonlinear engine model integrated with the TTECTrA Simulink 
block; if the file is not on the MATLAB path, the location of the model will be added to the path 
definition. 

5. Enter the information necessary to calculate the setpoints, as required by the control type 
selection made in Step 2. 
 
If “thrust setpoint” control type is selected: 
The “Corrected Thrust Inputs” section is enabled and the following information should be 
entered: 
 
a. Idle thrust 
b. Maximum takeoff (or corrected) thrust 
c. The number of thrust breakpoints or a vector containing the specific thrust breakpoints for 

which control variable setpoints are to be calculated  
 
If “constant fuel flow” control type is selected:  
The “Fuel Flow” section is enabled and the following information should be entered: 
 
a. Minimum fuel flow 
b. Maximum fuel flow 
c. The number of breakpoints at which the relationship between control variable and corrected 

thrust is to be determined  
 

In both cases, the breakpoint vector will include the specified minimum and maximum values; if 
a vector of thrust breakpoints is specified, TTECTrA will check whether the minimum and 
maximum values are included and add them if they are not. 
 

6. Press the “Calculate Setpoints” button to begin the process of determining the relationship 
between the corrected thrust and controlled variable. Once the lookup table has been defined, a 
plot of the setpoint relationship will appear, like that shown in Figure 8. 

7. Close the figure window, or click the “Continue” button in the GUI, to accept the calculated 
setpoint relationship and continue with the control design process. Otherwise, the figure window 
should be left open and new inputs (such as different breakpoint locations) may be entered and 
the setpoints recalculated by pressing the “Recalculate Setpoints” button (previously the 
“Calculate Setpoints” button). 
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Figure 8.—Example setpoint relationship between the corrected thrust 

and control variable using TTECTrA. 
 

3.2.2 Control Design Setup 
The TTECTrA setpoint controller contains a simple proportional integral (PI) controller with integral 

wind-up protection, where the PI gains are scheduled as functions of the control variable. The PI gains are 
found using the MATLAB functions pidtune and pidtuneOptions, which are included in the Control 
System Toolbox. The pidtune function produces a controller which meets the specifications provided 
through input arguments to the function and options set using pidtuneOptions. In this case, the bandwidth 
and phase margin of the loop gain (product of the controller and engine model transfer functions) are 
specified when calling pidtune. Prior to designing the gains for the PI controller, TTECTrA allows the 
user to identify the file containing the linear models used to calculate the gains, and to provide the default 
tuning parameters, through the Control Design Setup GUI shown in Figure 9. This GUI has two sections: 
Linear Model Setup and Controller Tuning Setup. 

3.2.2.1 Linear Model Setup 
To specify the linear model data for control design, the user should specify: 
 
1. The file containing linear model data, which will be shown under the text “Model Selected.” If 

the correct file is not shown, select the “Load Linear Model” button to open a popup box and 
browse to and select the correct data (.mat) file; if the file is not on the MATLAB path, its 
location will be added to the path definition. The required format of the linear models in this file 
is detailed in Appendix B. 

2. The index, i, of the element in the linear model output vector corresponding to the control 
variable (i.e. the control variable is the ith element of the output vector y, yi). 
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Figure 9.—The TTECTrA Control Design Setup GUI. 

3.2.2.2 Controller Tuning Setup 
To define the initial parameters for tuning the PI controller gains for each linear model, the user 

should specify: 
 

1. The desired bandwidth of the loop gain (Hz), which is the product of the controller and plant 
transfer functions. 

2. The desired phase margin (degrees). 
3. The bandwidth (Hz) of the feedback filter in Figure 1, which filters the control variable error 

(difference between setpoint and feedback). The feedback filter will not be used if no value, or a 
negative value, is provided. If EPR is the control variable, then it is recommended to specify a 
feedback filter bandwidth of 10 Hz, especially if the engine model is zero-dimensional (does not 
contain volume dynamics). 

4. The bandwidth (Hz) of the prefilter in Figure 1, which filters the thrust command and does not 
affect the stability of the system. 

 

Once all the data is entered, the user can press the “Start” button to begin control design. 

3.2.3 TTECTrA Controller AutoTune 
At each thrust point for which a linear model was provided, a PI controller is designed using the 

design parameters specified in the Controller Tuning Setup section of the Control Design Setup GUI. The 
window shown in Figure 10 will appear, displaying metrics for the controller designed for a specific 
linear model. Bode plots of the open loop plant (engine only) and the loop gain (engine and controller) are 
shown in the leftmost column; the top plot shows the magnitude response and the bottom plot shows the 
phase response. The top right plot shows the root loci of the plant and loop gain and the bottom right plot 
shows the step response of the closed-loop linear model with and without a prefilter on the input (labeled 
“Pre-Filter” and “LM,” respectively). This latter information is useful in determining whether 
modification of the prefilter bandwidth is warranted. The Controller AutoTune GUI, shown in Figure 11, 
also appears, indicating the thrust point of the model for which the controller is being designed and 
displaying the rise time and settling time of the step response of the linear model response with a prefilter, 
along with the bandwidth, phase margin, and proportional (Kp) and integral (Ki) gains of the PI 
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controller, in the Current Controller Design section. If the response is not satisfactory, the controller can 
be retuned (for a specific thrust point) by specifying a different bandwidth and/or phase margin in the 
Controller Design Inputs section of the GUI. Enter a bandwidth greater than the current bandwidth as the 
“Bandwidth” input to design a more aggressive controller. Enter a phase margin larger than the current 
phase margin as the “Phase Margin” input to reduce overshoot in the step response. 

 

 
Figure 10.—The controller auto tune output showing the Bode plot, root locus, and 

linear model response of the current controller. 
 

 
Figure 11.—The Controller AutoTune GUI. 

-50

0

50

100

150

M
ag

ni
tu

de
 (d

B)

10
0

-180

-135

-90

-45

0

Ph
as

e 
(d

eg
)

 

 

Bode Diagram

Frequency  (rad/s)

Plant
Loop Gain

-20 0 20 40 60
-20

-10

0

10

20
Root Locus

Real Axis (seconds-1)

Im
ag

in
ar

y 
Ax

is
 (s

ec
on

ds
-1

)

0 1 2 3 4 5
0

0.5

1

1.5

Time, s

C
on

tro
l V

ar
ia

bl
e

 

 

LM
Pre-Filter



NASA/TM—2014-216663 17 

1. Press the “Execute” button to recompute the controller and update the performance metrics 
(Figure 10). 

2. Once the performance is satisfactory (for a given thrust point), press the “Finish” button to design 
the controller for the next thrust breakpoint.  

This process gets repeated for each thrust breakpoint, tuning the controller gains for each breakpoint 
in the linear model. Once the current breakpoint finishes, the Figure 10 plot will appear for the next point 
using the bandwidth and phase margin specified in the Controller Tuning Setup step. 

3.2.4 Transient Limiter Design 
Transient limiters are designed to protect against engine surge during acceleration and deceleration. 

The Transient Limiter Setup GUI opens after the setpoint controller has been designed, and contains 
sections for designing the acceleration and deceleration limiters, as shown in Figure 12. 

3.2.4.1 Design the Acceleration Limiter 
1. Enter the minimum HPC surge margin that is acceptable during an acceleration 
2. Press the “Design Accel Limiter” button to begin calculation of the acceleration schedule 
3. Once the acceleration schedule is designed, the “Show Accel Schedule” button will be enabled; 

pressing this button will display the acceleration schedule, as shown in Figure 13. (A default 
schedule will be displayed if this button is pressed prior to step 2.) 

4. To redesign the schedule (for a different minimum surge margin), go back to step 1. 

3.2.4.2 Design the Deceleration Limiter 
1. Enter the minimum LPC surge margin that is acceptable during a deceleration. 
2. Press the “Design Decel Limiter” button to begin calculation of the deceleration limiter. 
3. Once the limiter has been designed, the value will be shown under the “Designed Wf/Ps3 

Limiter” heading. If the desired minimum surge margin is too low, “NaN” will be shown under 
“Designed Wf/Ps3 Limiter.” The limiter will show 0, as in Figure 12, if the deceleration limiter 
has not yet been designed. 

 
After designing both the acceleration and deceleration limiters, the “Continue” button will be 

enabled; pressing this button will continue running TTECTrA. 
 
 

 
Figure 12.—Transient Limiter Setup GUI.  
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Figure 13.—Example acceleration schedule. 

 

 
Figure 14.—Thrust and control variable commands and outputs for 

small thrust transients to test the setpoint controller. 
 

3.2.5 Verification/Simulation 
Before running verification simulations, TTECTrA will execute the function TTECTrA_integration.m to 

calculate the integral wind-up protection (IWP) gain for the setpoint controller. This is done automatically 
and requires no user interaction. The process involves running multiple closed-loop simulations of the 
model and adjusting the IWP gain to reduce the maximum overshoot below a specified threshold. 

The full controller is tested by simulating the model with two different thrust transients, constructed 
from the control variable setpoints from Figure 7. The first is a series of four small, equally-spaced 
transients from minimum (idle) to maximum (takeoff) thrust, which tests the setpoint calculator and 
controller. Figure 14 shows a comparison of actual to demanded thrust and control variable for simulation 
of the example model with the included controller (top and bottom plots, respectively). The plots show 
that both the control variable and thrust are driven to the commanded values, even though the controller 
has no knowledge of the actual thrust produced by the engine. 
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Figure 15.—Actual and commanded thrust and control variable for 

large thrust transient to test the transient limiters. 
 

 
Figure 16.—The HPC surge margin and acceleration schedule for the 

large thrust transient. 
 
The second transient profile is a large throttle transient, from the largest of 14% of the takeoff thrust 

and the minimum thrust to the maximum thrust (specified in the control variable setup). The actual and 
commanded thrust and control variable for the example application are compared in Figure 15. The 
verification simulations can be changed by modifying the data assigned to the fields ttectra_in.in.t_vec 
and ttectra_in.in.FT_dmd under the Test Controller Design section of TTECTrA.m.    

Although the controller is able to drive the engine to both the takeoff and idle thrust values, the presence 
of the limiters slows this response significantly, as can be seen in Figure 15. When the engine begins to 
accelerate at low core speeds, it is operating at or near the acceleration schedule limit and the controller 
restricts the fuel flow to the engine to protect from surge, increasing the time it takes for the engine to reach 
takeoff thrust from idle thrust. This is reinforced by the top plot of Figure 16, where the HPC surge margin 
can be seen to approach the limiting value on the same time range in which the responses in Figure 15 are 
slowed during acceleration. Similar results are seen in Figure 17 during deceleration, where the limit on 
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Wf/Ps3 is reached, but not exceeded, protecting the engine from violating the LPC surge margin. Like the 
HPC surge margin, the LPC surge margin remains above the minimum limit (the top plots in Figure 16 and 
Figure 17), approaching it only at the time in which the limit on Wf/Ps3 is reached. These results 
demonstrate that the limiters are working as intended for the controller designed for the example model. 

3.2.6 Save Controller Data 
Once simulation of the closed-loop model has completed, the dialog box in Figure 18 will appear, 

asking the user if they would like to save the controller data. 
To save the controller data, select “yes” to bring up the Save Data GUI in Figure 19 and enter the 

name of the .mat file in which to save the data, then press “Save Data.” A confirmation message will print 
to the MATLAB window stating that the file has been saved. Select “no” to skip saving the controller. 

The tool will finish running once the controller has been saved (or the user has selected “no” and the 
window has closed). 

  

 
Figure 17.—The LPC surge margin and Wf/Ps3 limit for the large 

thrust transient. 
 

 
Figure 18.—Save controller popup box. 

 
Figure 19.—Save Controller Data GUI.   
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Appendix A.—Nomenclature 
A.1  Variables 

accel  Acceleration  
alt  Altitude* 
decel  Deceleration 
dTamb Free-stream static temperature minus standard atmosphere temperature* 
DWS Dynamic systems analysis workspace (WS) variable 
Fdbk Feedback signal 
Fnet (Uncorrected) thrust* 
i Index for input or output vectors of linear models (u and y) 
inputs Variable containing inputs for configuring simulation of engine model with TTECTrA 
Kp Controller proportional gains 
Ki Controller integral gains 
MN  Mach number 
Nc (Uncorrected) core speed* 
Ncdot  Core speed acceleration* 
NcR25   Core speed corrected at station 25* 
Nf (Uncorrected) fan speed* 
outputs  Variable containing outputs from simulation of engine model with TTECTrA 
P2 Pressure at station 2* 
Ps3  High-pressure compressor static pressure* 
u Input vector for linear models 
Wf/Ps3 Ratio of fuel flow to static high-pressure compressor static pressure 
y Output vector for linear models 
* Units of these variables are model-specific 

A.2  Acronyms 

EPR Engine Pressure Ratio 
GUI Graphical User Interface 
HPC High-Pressure Compressor 
IWP Integral Wind-up Protection 
LM Linear Model 
LPC Low-Pressure Compressor 
PI Proportional Integral controller 
TTECTrA Tool for Turbine Engine Closed-loop Transient Analysis 
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Appendix B.—Linear Model Input Requirements 
The Tool for Turbine Engine Closed-loop Transient Analysis requires a “good” state space linear 

model at a minimum of two thrust points. Here, “good” implies that the linear model converges at a given 
thrust breakpoint so that the four state-space matrices can be found. The linear models should be saved to 
a structure array that has a length equal to the number of thrust breakpoints for which a steady-state model 
has been obtained. The structure should contain the following fields: 

 
� A – state matrix of state space model (A) 
� B – input matrix of state space model (B) 
� C – output matrix of state space model (C) 
� D – feed-through matrix of state space model (D) 
� IC – Initial conditions or trim values at the linearization point 
� Fn – thrust breakpoint at which the model has been constructed 
 
If an automated script is used to determine the linear models, it is possible that some models will not 

converge; in this case, the matrices and initial conditions (or trim values) can be entered as empty inputs.  
The controller code will print a warning to the command window and continue with the linear model of 
the engine at the next thrust point when it encounters an “empty” model. 
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Appendix C.—Controller Elements to be Verified Against Another Model 
The TTECTrA Simulink Block has been designed and tested on an in-house engine model and includes 

the following control elements in addition to those designed by TTECTrA: 
 
� A gain correction on the setpoint controller based on P2, primarily to decrease the gain of the 

controller at higher altitudes. 
� IWP gain in the setpoint controller, calculated by running simulations of the closed-loop model to 

find the gain that reduces overshoot during acceleration and deceleration below a specified 
threshold 

� PI gains in the thrust setpoint controller, designed using linear models of the in-house model, and 
further adjusted to improve the model response 

� PI and IWP gains in the acceleration schedule, designed (using the in-house model) to depend on 
the ambient pressure (altitude) at which the model is being simulated 

 
Although necessary to obtain acceptable results from simulations of the in-house model, these 

modifications may not be required when the controller is implemented with other engine models. A 
piecewise-linear version of this in-house model has been developed and tested successfully with the tool, 
but it is necessary to test the controller block with other engine models (independent from the in-house 
model) to verify the necessity of these additional elements. 
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