
SIL/HIL Replication of Electric Aircraft Powertrain Dynamics and
Inner-Loop Control for V&V of System Health Management

Routines
Brian Bole1, Christopher Teubert2, Quach Cuong Chi3, Hogge Edward3, Sixto Vazquez3, Kai Goebel4, Vachtsevanos George1

1 Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
bbole3@gatech.edu

2 SGT, Inc., NASA Ames Research Center, Moffett Field, CA, 94035, USA
Christopher.A.Teubert@nasa.gov

3 NASA Langley Research Center, Hampton, VA 23681, USA
cquach@nasa.gov

4 NASA Ames Research Center, Moffett Field, CA 94035, USA
kai.goebel@nasa.gov

ABSTRACT

Software-in-the-loop and Hardware-in-the-loop testing of

failure prognostics and decision making tools for aircraft sys-

tems will facilitate more comprehensive and cost-effective

testing than what is practical to conduct with flight tests. A

framework is described for the offline recreation of dynamic

loads on simulated or physical aircraft powertrain compo-

nents based on a real-time simulation of airframe dynamics

running on a flight simulator, an inner-loop flight control pol-

icy executed by either an autopilot routine or a human pilot,

and a supervisory fault management control policy. The cre-

ation of an offline framework for verifying and validating su-

pervisory failure prognostics and decision making routines is

described for the example of battery charge depletion failure

scenarios onboard a prototype electric unmanned aerial vehi-

cle.

1. INTRODUCTION

An early investment of resources into the development of an

offline verification and validation (V&V) testing infrastruc-

ture for prognostics and supervisory health management al-

gorithms is easily justified for complex systems in which on-

line testing is substantially more time consuming and costly

than offline testing. The V&V process is used to confirm that

algorithms meet requirements, and perform in a way that is
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consistent with stakeholder expectations. Flight tests prior to

algorithm V&V can be dangerous to the vehicle, pilot, and

ground crew. Offline tests to V&V algorithms in a labora-

tory setting prior to flight tests will not only improve flight

test safety, but, as many issues can be resolved during offline

tests, it reduces the number of real flight tests required for

V&V, therefore reducing cost and development time.

Offline V&V tests of supervisory failure prognosis and de-

cision making routines will allow developed supervisory al-

gorithms to interact with onboard flight controllers and mea-

sured flight data exactly as they would during flight tests. The

offline testing of health management algorithms may be con-

ducted using Software-in-the-loop (SIL) or Hardware-in-the-

loop (HIL) procedures. SIL testing refers to tests conducted

using only software simulations of system physics and em-

bedded control routines. HIL testing refers to tests that in-

clude some hardware components from the target system.

When conducting V&V of supervisory control algorithms,

injecting faults and testing to failure can provide valuable

knowledge of the algorithm’s behavior during potential fail-

ure scenarios. It is often not feasible to test to failure during

flight tests without compromising the safety of the vehicle,

onboard crew (for manned aircraft), or the ground crew. It

is therefore valuable to have a method for the offline V&V

of algorithm performance during failure scenarios. Supervi-

sory control algorithms can also be tested over a wide range

of potential environmental conditions in offline V&V, includ-

ing extreme conditions that are rarely encountered in practice.

That said however, offline V&V testing is limited by the accu-
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racy of SIL and HIL replications of nominal and off-nominal

system dynamics, and flight testing is still a necessary part of

the algorithm development and V&V process.

The SIL/HIL testing framework described in this paper uses

the X-Plane flight simulator package and an X-Plane Tool-

box for MATLAB to facilitate prognostic based control al-

gorithm V&V over a range of potential operating conduc-

tions. Examples of other offline testbeds making use of X-

Plane for aerodynamics simulation and Matlab/Simulink soft-

wares for simulation of control routines is found in (ibeiro &

Oliveira, 2010; Brown & Garcia, 2009; Sagoo et al., 2010).

The SIL/HIL testbed presented in this paper improves present

capabilities for performing offline testing with X-Plane aero-

dynamics simulations, by including a structure for simulat-

ing internal aircraft dynamics and component fault scenarios

in MATLAB simulations and in HIL realizations. The com-

munications architecture developed to interface supervisory

control routines running in MATLAB to SIL/HIL tests and

aerodynamics simulation running in X-Plane is intended to

be distributed open-source in the near future.

The general framework for SIL/HIL testing is described in

Section 2. The development of an SIL/HIL simulation struc-

ture for the offline testing of battery charge management al-

gorithms onboard an Edge-540 flight vehicle is presented in

Section 3.

2. GENERAL FRAMEWORK

This section introduces an SIL/HIL framework for testing

component failure prognostics and real-time supervisory de-

cision making algorithms that are intended to run onboard

a flight vehicle. Block diagrams illustrating the structure of

control loops used for online and offline flight testing are

shown in Figure 1. The symbols used in Figure 1 and else-

where in the paper are defined in the Nomenclature table at

the end of the paper. For both online and offline control test-

ing it is assumed that an inner-loop controller updates flight

control inputs based on a known flight plan and observations

of the system state. Failure prognostics and supervisory deci-

sion making operations are performed by an outer-loop con-

troller. Inner control loops for both online and offline testing

cases are described in the following subsection

2.1. Inner-Loop Control Dynamics

In both online and offline vehicle controls testing cases, a hu-

man pilot or a pre-programmed autopilot, provides closed-

loop control by updating the control vector, u. Both human

pilot and autopilot will henceforth be referred to as just ’the

pilot’, for convenience. Measurements of the position, speed,

and orientation of a flight vehicle and its control surfaces, rep-

resented by the airframe observation vector yAF , are used by

the pilot along with a vehicle flight plan.

(a) Inner and outer control loops for online testing

(b) Inner and outer control loops for offline testing

Figure 1. Closed-loop control for online and offline flight
testing

The ‘Flight Control Mechanisms’ block shown in Figure 1(a)

represents the internal electrical and mechanical dynamics of

the vehicle’s powertrain. The inner-loop control signals sent

by the pilot, and the aerodynamic forces exerted on the ve-

hicle’s control surfaces by the surrounding environment, N,

are inputs to this block. The N vector consists of forces like

the drag on a propeller, or torque on a flap. These inputs re-

sult in the loading of powertrian components, represented by

the vector ν, which in turn determine the dynamics of pow-

ertrain component states, ẋPT , and the dynamics of potential

fault modes, γ̇.

Onboard sensors measure the current states of aircraft pow-

ertrain components, xPT , with some measurement error, de-

noted with the symbol φ. Magnitudes of potential fault modes

are represented by the fault mode vector, γ, where fault

modes are assumed to be measurable indicators of compo-

nent degradation such as crack length, spall width, or pitting

depth.

The loads exerted by the vehicle’s active components at a

given time index, k, are expressed as a function of control in-

put signals, the current states of powertrain components, and

the states of component fault modes that may reduce compo-

nent effectiveness,

νk = fPT
(
uk,x

PT
k ,γk, ξk

)
(1)

where ξ is used to represent a vector of unknown or uncertain

model parameters.

The ‘Airframe Dynamics’ block shown in Figure 1(a) repre-

sents the aerodynamic interactions between the vehicle air-
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frame, vehicle control surfaces, and the environment. The

inputs to this block are the current states of aircraft control

surfaces, represented by the vector xCS , and the current state

of the operating environment, w. Environmental states rep-

resented by w may include atmospheric pressure, air tem-

perature, wind speed, and turbulence. The current state of

the airframe is represented by, xAF ; it includes the position,

heading, linear and rotational speed, and linear and rotational

acceleration of the airframe in a set coordinate system.

Vehicle control surfaces are mechanically connected to pow-

ertrain components, so xCS should be a known function of

xPT . The forces exerted on the vehicle’s control surfaces due

to their motion through surrounding air is represented here as

a generic non-linear function of the airframe state, the states

of vehicle control surfaces, and current environmental states,

Nk = fN
(
xAF
k ,xCS

k ,wk, ξk
)

(2)

The net forces on component control surfaces are given by

the sum of the net loads exerted by powertrain components

and aerodynamical pressures.

FCS = FPT + FAC (3)

Powertrain state dynamics and airframe dynamics are generi-

cally expressed in terms of the loading vectors ν and N as:

ẋPT
k = fPT

(
xPT
k ,νk,Nk, ξk

)
(4)

yPT
k = hPT

(
xPT
k ,φk

)
(5)

ẋAF
k = fAF

(
xAF
k ,xCS

k ,wk, ξk
)

(6)

yAF
k = hAF

(
xAF
k ,φk

)
(7)

The progression of component fault modes is represented as:

γ̇k = fγ
(
xPT
k ,γk,νk, ξk

)
(8)

where component failure is considered to occur when fault

magnitudes exceed a defined threshold that renders the com-

ponent ineffective. The deterioration of control surfaces and

electromechanical components on aircraft powertrains as a

function mechanical loading forces has been a topic of study

for some time; examples include: electromechanical actu-

ators (Balaban et al., 2010) and composite wing structures

(Gobbato et al., 2012), to name a few. The degradation and

failure of electrical components as a function of electrical

power loading has also been examined for aircraft batteries

(Saha et al., 2009), power electronics (Celaya et al., 2011),

and electromechanical components (Byington et al., 2004).

Adequate control of aircraft does not in most cases require

a pilot to understand environmental dynamics or the internal

dynamics of the flight vehicle in great detail. In this paper,

pilots or autopilots are considered to make decisions based

on an internal decision making policy that maps observations

of yAF
k and yPT

k at time-index k to appropriate control out-

puts, uk. An autopilot will use an embedded control policy

to map
(
yAF
k ,yPT

k

) → uk. For human pilots the mapping(
yAF
k ,yPT

k

) → uk will be determined by the pilot’s situa-

tional awareness and judgment. The mechanism for interac-

tion between an autopilot and supervisory failure prognostics

and decision making routines may be for the decision making

routines to directly update the autopilot’s control policy. Pol-

icy updates for human pilots could be prompted indirectly by

presenting the pilot with system health information and sug-

gested risk mitigating actions as described in (Bukov et al.,

2007).

Figure 1(b) shows a block diagram of the framework for sim-

ulating inner-loop vehicle dynamics. The framework includes

a pilot that will provide closed-loop control of a simulated

aircraft. Aircraft vehicle dynamics are simulated in the pro-

posed framework using the commercially available software

X-Plane1.

Sensor measurements of vehicle states are simulated using

simulated sensors and simulated noise. Additional software

modeling or hardware components may be plugged into the

SIL/HIL testing framework to provide offline simulations of

the powertrain energy conversion dynamics monitored by

outer-loop supervisory control routines. The functionality ex-

ists within X-Plane to model electric power trains; however,

that capacity was not explored for this paper.

Communication between an autopilot board and the frame-

work is facilitated by the open-source program APM Mis-

sion Planner2. The X-Plane Toolbox for MATLAB was used

to communicate with APM Mission Planner, X-Plane, and

outer-loop supervisory control routines running in Matlab.

The toolbox, currently being developed at NASA Ames Re-

search Center, provides various Matlab functions that allow

for UDP communication with an associated X-Plane plug-in

and APM Mission Planner. The team developing the toolbox

intends to release it open-source upon completion.

A hardware-only recreation of the ‘Flight Control Mecha-

nisms’ portion of the inner-loop vehicle dynamics, illustrated

in Figure 1(b), could be accomplished in a laboratory set-

ting using an aircraft battery pack, power electronic mo-

tor/actuator drivers, electromechanical components, and as-

sociated interconnection cabling. Pilot controls could be sent

directly to an electrical power distribution system assembled

in the laboratory, and additional loading hardware could be

used to apply mechanical loads to the electromechanical com-

ponents of the powertrain in order to recreate the environ-

mental loads estimated by the aircraft simulator. This ap-

proach is similar in nature to dynamometer testing commonly

performed in the testing of automotive systems (Kelly et al.,

2002; Tsang et al., 1985). Software models may be switched

1www.x-plane.com/
2http://code.google.com/p/ardupilot-mega/wiki/Mission
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in for some or all of the hardware components in this setup;

however, small errors in modeling the behavior of a given

component may have outsized effects in observed system be-

havior over long time periods.

2.2. Outer-loop Failure Prognostics and Decision Making

Supervisory outer-loop control routines use sensor measure-

ments to estimate current and future system states given ap-

proximations of system state dynamics and physics of failure

models. The Bayesian belief in the system state at time-index

k, given of sequential observations from time-index 0 to k, is:

p (xk|yk) = αp (yk|xk) ·∫
p (xk|xk−1,uk−1) · p

(
xk−1|yk−1

)
dxk−1

(9)

where xk and yk represent the system state and measured

sensor output information respectively, p (yk|xk) represents

the probability distribution for measured outputs given a

known system state, p (xk|xk−1,uk−1) represents an uncer-

tain model for system state dynamics, and α is a normalizing

constant.

As described in Section 2.1, the input-output response of the

system is expected to be dependent on the states several un-

known model parameters and the states of potential compo-

nent fault modes. A Bayesian belief expression similar to

the one given in Eq. (9) could also be used to express belief

in the current states of fault magnitudes or other model pa-

rameters based on a history of observations of the system’s

input-output dynamics, as discussed in the following refer-

ences (Baram & Sandell, 1978; Collins et al., 1974; Saha &

Goebel, 2008).

Probability distributions for belief in the current states of

xPT
k , xAF

k , and γk, based on a history of observations of yPT
0:k ,

yAF
0:k , and uAF

0:k are generically represented in Figure 2.1 as:

p
(
xPT
k ,xAF

k γk|yPT
0:k ,y

AF
0:k ,u0:k

)
(10)

Many Bayesian and machine learning methods have been

published for the estimation of such probability distributions

in the aviation domain (Lopez & Sarigul-Klijn, 2010; Napoli-

tano et al., 1998).

Prediction of the evolution of future system states may be per-

formed by propagating input uncertainty, model uncertainty,

and state uncertainty forward in time. In the case of com-

ponent remaining useful life (RUL) prediction during an air-

craft flight, predictions of the evolution of component loads

and corresponding predictions of fault state evolution are ex-

tended into the future until there is sufficient confidence in

the occurrence of either component failure or completion of

a prescribed flight plan. Particle filtering (Arulampalam,

Maskell, Gordon, & Clapp, 2002), extended Kalman filter-

ing (Ray & Tangirala, 4), and Markov modeling (Guidaa &

Figure 2. Edge-540 on runway

Pulcini, 2011) are examples of predictive filtering techniques

used to propagate current state and model uncertainties for-

ward in time.

The role of stochastic estimates of future loading in prog-

nostic predictions is described in (Sankararaman et al., 2013;

Tang et al., 2009). Because inner-loop control policies may

be modified by outer-loop supervisory control actions, the

outer-loop prognostics and decision making routines could

also be factored into the computation of future component

load estimates. (Bole et al., 2012) describes the incorpora-

tion of outer-loop control policies into inner-loop fault growth

predictions. In offline simulations stochastic beliefs about the

manner in which the environment or system will evolve over

time may be validated against repeated randomized simula-

tions of flight scenarios.

3. A CASE STUDY: UAV BATTERY CHARGE DEPLE-
TION MODELING

This section illustrates the implementation of the proposed

SIL/HIL framework for the offline simulation of battery

charge depletion onboard a prototype electric UAV platform.

The framework is intended to be used here for the offline

V&V testing of battery charged depletion prediction and deci-

sion making routines. The aircraft platform for this case study

is a commercial-off-the-shelf (COTS) 33% scale model of the

Zivko Edge 540T airplane, pictured in Figure 2. The electri-

cal and mechanical connections in the UAV powertrain are

illustrated in Figure 3. The propeller of the UAV is driven by

two tandem mounted out runner brushless DC motors that are

each powered by a series connection of two lithium polymer

battery packs. Each of the battery packs consist of five series

connections of two 4.2V 3900mAh lithium polymer pouch

cells wired in parallel. Power flow from the battery packs to

the driving motors is controlled by a Jeti 90 Pro Opto electric

speed controller (ESC) board. The ESC board sends synchro-

nized voltages to the propeller motors at a duty cycle deter-

mined by a throttle input. The throttle input is either sent by

remote control from a pilot, or by an onboard autopilot.

The Edge 540 research vehicle is operated either remotely

by a pilot on the ground, or by an onboard autopilot routine.
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Figure 3. Electrical and mechanical connections of an Edge-
540 UAV powertrain

During both remote control and autonomous flight a human

pilot will maintain line of sight with the aircraft, and stand

ready to execute a landing maneuver when the command is

given by other operators on the ground that are monitoring

the battery end-of-discharge prognostics and decision making

data from the aircraft.

Charge estimation and end of charge prediction for UAV pow-

ertrain batteries has previously been examined in several pub-

lications by Bhaskar Saha at NASA ARC, Quach Chong Chi

at NASA LaRC, and others (Saha, Quach, & Goebel, 2011;

Saha, Koshimoto, et al., 2011). A separate battery system is

used to power the data acquisition and other flight commu-

nications and control hardware. The two battery systems are

sized such that it is very likely that the batteries powering

the propeller motors will be the first to be depleted. For that

reason, onboard battery discharge prognostic algorithms and

supervisory decision making actions are considered to only

be concerned with the propeller driving batteries.

Implementation of the SIL/HIL framework is described in

three parts: inner-loop controls, power battery modeling, and

battery demand modeling.

3.1. The Inner-Loop Controller

Inner-loop controls are considered to be generated from pilot

or autopilot that regulates aircraft throttle and actuator con-

trols according to an internal control policy, just as it would

onboard the aircraft. Vehicle flight plans are considered to

be given in terms of an ordered set of 3D coordinates to be

visited by the UAV, and a desired airspeed for making the

translation from one waypoint to the next.

Autonomous control of the Edge 540 is performed using an

ArduPilot board. The ArduPilot works to follow a speci-

fied flight plan based on a set of PID control parameters,

tuned prior to flight, and periodic measurements of vehicle

airspeed, heading, and GPS position. As shown in Figure

1(b), the closed-loop performance of inner-loop aircraft con-

trol routines may be simulated over a variety of flight plans

and environmental conditions using the X-Plane flight simu-

lator. Plane Maker, A design tool within the X-Plane package,

was used to specify the aircraft mass, balance, and geometry

for use in X-Plane aerodynamic simulations. APM mission

planner, an open source software package is used to commu-

nicate with the ArduPilot board, and to translate the simulated

aircraft state data generated by X-Plane into the sensor signals

expected by the ArduPilot. There is some unavoidable error

between the actual geometry, drag, and mass distribution of

the aircraft and that used in the X-Plane aerodynamics mod-

els; however, because the control system is closed-loop small

errors in simulating aircraft aerodynamics will not typically

accumulate into large errors.

This configuration allows for the thorough testing of algo-

rithm performance and safety before conducting flight tests.

X-Plane can simulate various weather conditions and hard-

ware configurations, and the ArduPilot can be tested with var-

ious flight plans.

3.2. The Battery Model

The outer-loop routines are considered to be focused on the

depletion of battery charge. Onboard outer-loop routines will

estimate the charge remaining in the aircraft’s batteries us-

ing domain knowledge and periodic measurements of battery

current and voltage (Pang, Farrell, Du, & Barth, 2001).

Battery voltage-current dynamics may be recreated over sim-

ulated flights in a laboratory by loading real or simulated bat-

teries with a current indicative of flight loads. It should be

noted however that battery dynamics will vary substantially

as a function battery health and temperature (Jossen, 2006).

Differences in state of health and thermal loading of real and

simulated batteries may cause results from SIL/HIL cycling

of batteries in a laboratory to diverge from the observed bat-

tery dynamics in flight test.

Aircraft powertrain batteries are simulated in SIL testing us-

ing the equivalent circuit model shown in Figure 4 . This

battery model uses six electrical components that are tuned to

recreate the observed current-voltage dynamics of Edge 540

powertrain batteries. Battery charge is stored in the capaci-

tor, Cb. The Rs, Cs and Rcp, Ccp pairs capture internal re-

sistance drops and concentration polarization effects, respec-

tively. The resistor Rp accounts for battery self-discharge

over time.

Because battery current-voltage dynamics are known to vary

as a function of battery SOC some of the resistive and capaci-

tive (RC) components in the equivalent circuit model must be

parameterized as functions of battery SOC (Zhang & Chow,

2010). It was decided based on qualitative observation that

defining Cb, Ccp, and Rcp as parameterized functions of bat-

tery SOC gave an acceptable trade-off between the number of

5
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Figure 4. Equivalent circuit battery model

Parameter Value Parameter Value

qmax 2.88× 104 C Cs 89.3 F
Cmax 2.85× 104 C Rcp0 1.60× 10−3 Ω
CCb0 19.4 F Rcp1 8.45
CCb1 1576 F Rcp2 −61.9
CCb2 41.7 F Ccp0 2689 F
CCb3 −203 F Ccp1 −2285 F
Rs 2.77× 10−2 Ccp2 −0.73 F

Table 1. Parameter values used in equivalent circuit model

parameters to be identified and model error.

Battery SOC is defined as:

SOC = 1− qmax − qb
Cmax

(11)

where qb is the charge stored in the battery, qmax is the maxi-

mum charge of the battery, and Cmax is the maximum charge

that can be drawn from the battery. The term coulombic effi-

ciency is used to refer to the portion of stored charge that can

no longer be withdrawn after each charge-discharge cycle of

the battery. Resting the battery can temporarily unlock some

of its lost capacity, however the overall trend is inevitably

downward.

Cb, Ccp and Rcp are parameterized as:

Cb = CCb0+CCb1 ·SOC+CCb2 ·SOC2+CCb3 ·SOC3 (12)

Ccp = Ccp0 + Ccp1 · exp (Ccp2 (1− SOC)) (13)

Rcp = Rcp0 +Rcp1 · exp (Rcp2 (1− SOC)) (14)

where the parameterization coefficients are tuned based on

observed current-voltage battery data over a SOC range. Val-

ues for all of the RC components and parameterization coef-

ficients used are defined in Table 1.

The current and voltage dynamics of the equivalent circuit

model are defined as:

xB =
[
qb qcp qCs

]T
(15)

Figure 5. Measured and fitted profiles for Cb and battery volt-
age

ẋB=

⎡
⎢⎣
− 1

CbRp

1
CcpRp

1
CsRp

1
CbRp

− 1
CcpRpRcp

1
CsRp

1
CbRp

1
CcpRp

1
CsRp

⎤
⎥⎦x+

⎡
⎣ i
i
i

⎤
⎦+ξ (16)

yB = Vp =
[

1
Cb

1
Ccp

1
Cs

]
· x (17)

where qb, qcp, and qcs represent the charge stored in Cb, Ccp,

and Ccs respectively. The total voltage drop across the bat-

tery terminals, Vp, is given by the sum of the voltage drops

across the each of the three capacitors in the equivalent cir-

cuit model.

The RC parameters in the equivalent circuit model are identi-

fied using data from two battery characterization experiments.

The first experiment is a low current discharge of a battery

from a fully charged state until a cutoff voltage of 17.5V is

reached. This type of discharge is mostly affected by the Cb,

qb, qmax, and Cmax parameters in the model. Figure 5 shows

a polynomial fit of Cb as a function of SOC, and the battery

voltage fit for the tuned parameter values for CCb0, CCb1,

CCb2, CCb3, qmax, and Cmax.

A pulsed loading experiment is used to fit the remaining

parameters in the equivalent circuit model to the observed

changes in battery hysteresis behavior as a function of SOC.

Figure 6 shows the battery voltage fit over a pulsed loading

profile.

Observed battery loading over a piloted flight of the Edge 540

is shown in Figure 7. As was shown in Figure 3, batteries B2

and B4 are wired in series with batteries B1 and B3 respec-

6
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Figure 6. Measured and fitted profiles for battery voltage dur-
ing pulsed loading

tively, so the current flowing through series connected batter-

ies is equal. An asymmetric loading of the two propeller mo-

tors over the sample flight is apparent from the battery loads

given in Figure 7. Motor M2 is known to consistently draw

more current than motor M1 on the Edge 540, due to un-

regulated coupling of the two motor electron speed controls

(ESCs). Predicted and measured voltage profiles for batter-

ies B1 and B3 using the recorded battery current profiles are

shown in Figure 7. The close match between observed battery

voltages and open-loop predictions over a given loading pro-

file provides a measure of the validity of the software model.

The tuned battery model may be used to estimate the internal

SOC of powertrain batteries based on sampled voltage and

current data. The output of model based filtering approaches

such as Kalman filtering will be much less susceptible to ini-

tialization and measurement errors than the Coulomb count-

ing method currently used in many battery monitoring sys-

tems (Dai, Wei, & Sun, 2006).

3.3. Battery Demand Modeling

The proposed SIL/HIL testbed separates the simulation of

aerodynamics and powertrain dynamics into two functional

blocks. Connecting these two blocks requires that the air-

frame loads reported by the aerodynamics simulation be

translated into loads on the system’s powertrain components.

In practice, the lack of direct measurements for airframe loads

such as component forces and torques increases the difficulty

of this mapping.

Tuning and validation of a propeller load mapping function is

separated into two steps in this paper. First, a series of char-

acterization experiments are performed in X-Plane to identify

a nonlinear mapping between propeller output power and air-

craft angel of climb, speed, and acceleration. Second, the

Figure 7. Modeled and measured voltages of batteries B1 and
B3 for a sample flight loading profile

modeled propeller power is mapped to a required battery

power using a fixed power conversion efficiency coefficient

and a proportional drag correction coefficient.

The nonlinear relationship between propeller output power

and aircraft angel of climb, speed, and acceleration is ob-

served in X-Plane simulations by performing a series of

climbing and descending maneuvers at varies angle of climb

and throttle setpoints. This experiment is used to fit a general

set of aircraft aerodynamics and energy conservation equa-

tions. The equations below are developed using the following

assumptions: 1) the propeller is mounted on the aircraft nose;

2) the angle between the thrust vector generated by the pro-

peller and the velocity vector of the aircraft is small; 3) Turn-

ing forces are small in comparison to thrust and drag forces

in the direction of travel.

The sum of the forces acting in the aircraft direction of travel

is given by

Txw
= D(v) +m · g · sin (γ) +m · v̇ (18)

where Txw is the net force on the aircraft in the direction of

travel, D is the drag force acting in the opposite direction of

aircraft motion, v is the aircraft speed, v̇ is acceleration, γ is

angle of climb, m is the vehicle mass, and g is total accelera-
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tion due to gravity.

The mass of the instrumented Edge 540 is approximately

44lbs. The drag force on the airframe is represented by the

following polynomial function of airspeed and angle of climb.

D(v, γ) = c1 + c2 · v + c3 · v2 + c4 · γ (19)

Figure 8(a) shows a fit of the drag model to the averaged drag

force reported by the X-Plane simulator over several steady

speed climbing and descending maneuvers. The fitted param-

eter values are: c1 = 13.47, c2 = −0.6, c3 = 0.019, c4 =
0.14. During take-off and landing maneuvers when the air-

craft speed is less than the stall speed of the aircraft the drag

force is approximated as D = 3·.
A plot of the measured and estimated propeller thrust versus

airspeed is shown in Figure 8(b). The model fit is shown to be

very close except at speeds near the stall speed of the aircraft,

which is approximately 15m/s.

The product of thrust and airspeed gives the motive power

exerted by the aircraft. A proportional relationship is used to

model the ratio between the power output of the propeller and

the resulting motive power:

Pp =
1

ηp
· Txw

· v (20)

where Pp represents propeller output power, which is the

product of its torque and speed, and ηp represents the approx-

imate propeller output power conversion efficiency. Figure

10 shows the modeled propeller power and that reported by

the X-Plane simulator for several steady speed climbing and

descending maneuvers. The ηp parameter for the modeled

aircraft is fit to ηp = 0.7652.

Conversion between the propeller power to maintain an air-

speed and angle of climb is performed by assuming a fixed

battery power conversion efficiency for the motors and power

electronics. The combined efficiency of the aircraft motors

and onboard power electronics is expressed as the ratio of

battery power input to motor power output,

Pp =
1

ηe
· Pb (21)

where ηe represents power conversion efficiency.

A proportional drag correction coefficient is introduced to

scale the drag model fit using the X-Plane generated data by

a fixed ratio to match observed aircraft dynamics,

DA(v, γ) = λD ·DM (v, γ) (22)

where DA and DM represent the drag forces seen by the ac-

tual aircraft and the fitted model respectively at a given ve-

hicle speed and angle of climb, and λD is an approximated

constant of proportionality. ηe = 0.85 and λD = 0.9 were

(a) Estimated and measured drag vs airspeed at various angels of climb

(b) Estimated and measured thrust vs airspeed at various angels of climb

(c) Estimated and measured propeller power output vs airspeed at various
angels of climb

Figure 8. Model fitting results for X-Plane flight load charac-
terization tests

fitted using flight data.

A roughly proportional deviation between the modeled and

actual drag force is attributed to slight errors in modeling

the aircraft geometry and surface aberrations. Small errors

in modeling aircraft drag will cause only small effects on the

aircraft handling from the perspective of a pilot or an autopi-

8
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Figure 9. Approximate aircraft airspeed, acceleration, and
angle of climb measurements derived from GPS samples

lot, so the drag correction need not necessarily be made for

the SIL testing of that control loop. However, small errors in

approximating loads on onboard energy storage devices will

accumulate into large errors over a simulated flight.

Substitution of Eqns. (21) and (22) into Eqns. (18)-(20) yield

the approximate battery power required to fly at a particular

airspeed and angle of climb.

PB = 1
ηeηp

· Txw · v
PB = v

ηeηp
· (DA(v, γ) +mg · sin (γ) +mv̇)

PB = v
ηeηp

· (λDDM (v, γ) +mg · sin (γ) +mv̇)

(23)

Figure 9 shows approximate aircraft airspeed, acceleration,

and angle of climb measurements derived from GPS samples

over a sample aircraft flight. Measurements were taken at

fifteen second intervals. Figure 10 shows the predicted and

measured battery power draw over the sample aircraft flight.

The battery power predictions shown in Figure 10 are made

using periodic samples of airspeed, acceleration, and angle

of climb. The battery power predictions shown in Figure 10

are seen to match the observed power draw fairly well over

the sample flight, aside from an apparent under prediction of

battery power required during takeoff. The under prediction

of power required during takeoff could arise in part from the

assumption that the angle between the trust vector and the ve-

locity vector is small, which is not necessarily the case during

takeoff. The battery power demand modeling used here also

does not account for the fact that motor power conversion ef-

ficiency is typically very low during initial spin up.

Battery output power is equal to the product of current and

voltage. Given an estimate of the battery power output re-

quired to fly a particular maneuver, and knowledge of the di-

vision of power between the two propeller motors, the current

Figure 10. Measured and modeled battery power output

Figure 11. Measured battery power input to ESCs (Top) and
observed ESC power ratio over a sample flight (bottom)

loads on each of the series connected battery packs is given

by:

I1,2 = λESCPb

(λESC+1)·(VB1+VB2)

I3,4 = Pb

(λESC+1)·(VB3+VB4)

(24)

where λESC represents the ratio of battery power drawn by

each of the onboard ESCs.

λESC =
I1,2 · (VB1 + VB2)

I3,4 · (VB3 + VB4)
(25)

Figure 11 shows the observed ratio of battery power drawn

from each of the onboard ESCs over a sample flight. The ra-

tio of ESC power draw is currently uncontrolled, and it is seen

to drift around a value of λESC ≈ 0.7 over the sample flight.

9
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The approximation for λESC to be used in SIL and HIL test-

ing of the vehicle powertrain may be improved in future work

by incorporating possible dependencies on time, battery pack

voltage, throttle command, and other inputs control inputs.

4. CONCLUSIONS

A framework is described for the offline recreation of dy-

namic loads on simulated or physical aircraft powertrain com-

ponents based on a real-time simulation of airframe dynam-

ics running in the X-Plane flight simulation software package,

an inner-loop flight control policy executed by either an au-

topilot routine or a human pilot, and a supervisory outer-loop

control policy. The creation of an offline framework for ver-

ifying and validating supervisory outer-loop prognostics and

decision making routines is described for the example of bat-

tery charge depletion failure scenarios onboard a prototype

Edge 540 UAV with electric propulsion. The SIL/HIL testbed

described in this paper is intended to be used to perform

much more comprehensive and cost-effective testing of air-

craft fault prognostics and decision making tools than would

be practical to conduct in flight testing.
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NOMENCLATURE

xAF airframe state vector

yAF observation of airframe state vector

xPT electrical power dist. system state vector

yPT observation of xPT states

u pilot or autopilot control output vector

ν mechanical loads on electromechanical components

ν net mechanical loads exerted by airframe

w environmental state parameter vector

γ magnutude state vector for potential faults modes

ξ captures uncertainties in physics of failure models

φ captures uncertainties in physics of failure models
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