
An Efficient Model-based Diagnosis Engine for Hybrid
Systems using Structural Model Decomposition

Anibal Bregon1, Sriram Narasimhan2, Indranil Roychoudhury3, Matthew Daigle4, and Belarmino Pulido5

1,5 Depto. de Informática, University of Valladolid, Spain
{anibal,belar}@infor.uva.es

2 Univ. of California Santa Cruz, NASA Ames Research Center. Moffett Field, CA 94035, USA
sriram.narasimhan-1@nasa.gov

3 SGT Inc., NASA Ames Research Center. Moffett Field, CA 94035, USA
indranil.roychoudhury@nasa.gov

4 NASA Ames Research Center. Moffett Field, CA 94035, USA
matthew.j.daigle@nasa.gov

Abstract

Complex hybrid systems are present in a large range of
engineering applications, like mechanical systems, elec-
trical circuits, or embedded computation systems. The
behavior of these systems is made up of continuous and
discrete event dynamics that increase the difficulties for
accurate and timely online fault diagnosis. The Hybrid
Diagnosis Engine (HyDE) offers flexibility to the diagno-
sis application designer to choose the modeling paradigm
and the reasoning algorithms. The HyDE architecture
supports the use of multiple modeling paradigms at the
component and system level. However, HyDE faces some
problems regarding performance in terms of complexity
and time. Our focus in this paper is on developing effi-
cient model-based methodologies for online fault diagno-
sis in complex hybrid systems. To do this, we propose a
diagnosis framework where structural model decomposi-
tion is integrated within the HyDE diagnosis framework
to reduce the computational complexity associated with
the fault diagnosis of hybrid systems. As a case study,
we apply our approach to a diagnostic testbed, the Ad-
vanced Diagnostics and Prognostics Testbed (ADAPT),
using real data.

1. Introduction

Nowadays, complex hybrid systems are present in many
engineering applications, from electrical circuits to em-

Anibal Bregon et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution 3.0 United
States License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and
source are credited.

bedded computation systems. Their behavior is made
up of continuous and discrete event dynamics, making
more difficult accurate and timely online fault diagno-
sis. Our focus in this paper is on developing efficient
model-based methodologies for online fault diagnosis in
complex hybrid systems. Hybrid systems modeling and
diagnosis have been approached by the DX community,
and several proposals have been made based on hybrid
modeling (Mosterman & Biswas, 1999), hybrid state esti-
mation (Hofbaur & Williams, 2004), or a combination of
on-line state tracking and residual evaluation (Benazera
& Travé-Massuyès, 2009; Bayoudh et al., 2008). In all
cases, the solution requires to somehow model and even-
tually fully or approximately estimate the set of possi-
ble states, and to diagnose the current set of consistent
modes. A major restriction, however, is that each tech-
nique uses its own modeling paradigm and the reasoning
algorithms implement a single strategy, therefore, do not
facilitate the generation of flexible, integrated, reasoning
solutions by the inclusion of additional diagnosis strate-
gies, thus restricting the diagnostic capabilities of the
hybrid diagnoser.

In (Narasimhan & Brownston, 2007), the authors pro-
posed a general framework for stochastic and hybrid
model-based diagnosis called Hybrid Diagnosis Engine
(HyDE). HyDE offers flexibility to the diagnosis appli-
cation designer to choose the modeling paradigm and the
reasoning algorithms. The HyDE architecture supports
the use of multiple modeling paradigms at the compo-
nent and system level. Several alternative algorithms
are available for the various steps in diagnostic reason-
ing. This approach is extensible, with support for the

1



Annual Conference of the Prognostics and Health Management Society 2013

addition of new modeling paradigms as well as diagnos-
tic reasoning algorithms for existing or new modeling
paradigms. However, HyDE faces some problems regard-
ing performance in terms of time complexity.

Recently, we have proposed to use structural model de-
composition for efficient fault diagnosis and prognosis
in continuous systems (Bregon, Biswas, & Pulido, 2012;
Daigle et al., 2011, 2012). In (Roychoudhury et al.,
2013), we generalized those ideas and proposed a com-
mon model decomposition framework, where we solve
the model decomposition problems for three separate
system health management tasks, namely, estimation
(used for residual generation, that is usually required for
fault detection and fault identification), fault isolation,
and prediction (used for fault prognostics). The basic
idea of the approach is to partition the global system
model into submodels based on the set of measurements
such that each submodel can estimate at least one mea-
sured variable. This way, we will have submodels with
diagnostic capability that are smaller than the global
system model, leading to efficiency improvements and
potential for parallel computation.

In this paper, we integrate structural model decomposi-
tion as in (Roychoudhury et al., 2013) within the HyDE
diagnosis framework to reduce the computational com-
plexity associated with the fault diagnosis of hybrid sys-
tems. This work contributes in two different aspects.
First, we propose an online diagnosis approach for hy-
brid systems where the HyDE model is partitioned into
submodels. Then, the global diagnosis result is provided
by the combination of the local diagnosis results corre-
sponding to the submodels. Second, we apply our ap-
proach to a real system, the Advanced Diagnostics and
Prognostics Testbed (ADAPT) with satisfactory results.

The rest of the paper is organized as follows. Section 2
presents the HyDE diagnosis framework. Section 3 dis-
cusses the basic ideas of structural model decomposition.
Section 4 proposes an integrated framework where struc-
tural model decomposition is used to reduce HyDE’s
computational burden. Section 5 shows results for the
case study. Section 6 reviews the related work and cur-
rent approaches for hybrid systems fault diagnosis and
structural model decomposition. Finally, Section 7 con-
cludes the paper.

2. HyDE

HyDE (Hybrid Diagnosis Engine) (Narasimhan &
Brownston, 2007) combines ideas from consistency-
based, control-theory-based and stochastic diagnosis ap-
proaches to provide a general, flexible and extensible ar-
chitecture for stochastic and hybrid diagnosis. HyDE
supports the use of multiple modeling paradigms and is

extensible to support new paradigms. HyDE also offers
a library of algorithms to be used in the various steps
of the diagnostic reasoning process. The key features of
HyDE are:

• Diagnosis of multiple discrete faults.

• Support for hybrid models, including autonomous
and commanded discrete switching.

• Support for stochastic models and stochastic reason-
ing.

• Capability for handling time delay in the propaga-
tion of fault effects.

Next we present the HyDE modeling approach and rea-
soning procedure.

2.1. HyDE Models

HyDE models have two parts, the transition model and
the behavior model. The transition model describes
the components that make up the system, the various
operating modes of the system (including faulty ones),
and the conditions for transitions between the operating
modes. The behavior model specifies the behavior evo-
lution and has three parts: the propagation model, inte-
gration model, and dependency model. The information
in the propagation model allows the estimation of un-
known variable values from known variable values. The
dependency model captures information about the de-
pendencies between variables, models, and components.
The integration model describes how the variables’ val-
ues are propagated across time steps. HyDE supports
the representation of each of the behavior models in more
than one paradigm.

2.2. HyDE Reasoning

HyDE reasoning is the maintenance of a set C of
weighted candidates (ci, wi). HyDE reasoning is the
maintenance of a set of weighted candidates. A can-
didate represents the hypothesized trajectory of the sys-
tem inferred from the transition and behavior models,
knowledge of the initial operating modes of all compo-
nents and initial values of all variables, and the sensor
observations reported to HyDE. The candidates’ weights
are a way of ranking them and depend on several factors,
including prior probabilities of transitions and the degree
of fit between model predictions and observations. Al-
though weights are in the range [0, 1], weight is not a
probability measure.

Each candidate contains a possible trajectory of system
behavior evolution represented in the form of a hybrid
state history and transition history. The hybrid state is a
snapshot of the entire system state at any single instant.

2



Annual Conference of the Prognostics and Health Management Society 2013

It associates all components with their current operating
modes and all variables with their current values. Appli-
cations run HyDE at discrete time steps, typically but
not necessarily when observations are available. Time
steps need not be periodic. For each time step that
HyDE reasons about, a candidate contains two hybrid
states, one at the beginning of the time step and one at
the end, as well as the set of transitions taken by the
system between the previous and current time steps.

At time step 0 the candidate set is initialized with can-
didate(s) derived from the initial hybrid state of the sys-
tem. Once the initial candidate set has been created,
HyDE’s reasoning process uses the same sequence of op-
erations for each time step. The reasoning process can be
divided into three categories of operations (Narasimhan
& Brownston, 2007):

1. Candidate Set Management maintains the candidate
set. The operations include updating the weights of
all candidates, pruning candidates that do not sat-
isfy minimum weight requirements, adding new can-
didates (the next best ones from the candidate gen-
erator) when necessary, and optionally re-sampling
or normalizing the distribution of weights.

2. Candidate Testing deals with operations on a single
candidate. The operations include determining the
occurrence of any transitions, estimating the hybrid
states at the beginning and end of a time step, com-
paring against observations to update weight of the
candidate as well as reporting inconsistencies.

3. Candidate Generation creates candidate generators
from inconsistencies reported by Candidate Test-
ing and supplies the next-best potential (untested)
candidate to Candidate Set Management when re-
quested. This is achieved using a conflict directed
search. First reported inconsistencies are used to
generate conflicts, i.e., the subset of operating modes
that cannot all be true at the same time. The con-
flicts are then used to guide a search for new candi-
dates by optimizing some candidate property (typi-
cally weight or size).

As we have mentioned, the size of the system model
(HyDE uses the global model) directly affects the com-
putational complexity for each one of the steps in the
reasoning process. Our proposal on this work is to use
structural model decomposition to divide the global sys-
tem model into minimal submodels such the complexity
in the reasoning process is reduced. Next section de-
scribes our structural model decomposition approach to
compute minimal submodels. Then, in Section 4 we will
show in detail how these minimal submodels are inte-
grated within the HyDE framework.

h1

Qin

Q12 Q23

Q3

p1 p3p2

Q1 Q2

h3h2

Figure 1. Schematic of three-tank system.

3. Structural Model Decomposition

In this section, we briefly present our structural model
decomposition framework (Roychoudhury et al., 2013).
We begin with the definition of a model.
Definition 1 (Model). A model M is a tuple M =
(V,C), where V is a set of variables, and C is set of
constraints. V consists of five disjoint sets, namely, the
set of state variables, X; the set of parameters, Θ; the
set of inputs, U ; the set of outputs, Y ; and the set of
auxiliary variables, A. Each constraint c = (εc, Vc) ∈ C
consists of an equation εc involving variables Vc ∈ V .

Input variables u ∈ U are known or measured; and the
output variables y ∈ Y correspond to (measured) sen-
sor signals. Parameters θ ∈ Θ include explicit model
parameters that are used in the model constraints. Θ
does not need to include all parameters in the equations,
only those that must be included explicitly (e.g., for joint
state-parameter estimation or fault isolation). These pa-
rameters, by definition, are not computed in terms of
any other variables, and, in this way, appear as inputs.
Since the state variables X are, by definition, enough to
describe the future behavior of the system, the auxiliary
variables a ∈ A are not strictly needed, however, they
make the model easier to parse, develop, and implement.

As shown in Defn. 1, a constraint c = (εc, Vc) includes
an equation εc over the set of variables Vc. Note that
c does not impose any computational causality on the
variables Vc, i.e., although εc captures the information
about how to compute a variable v ∈ Vc in terms of
all other variables in Vc, the constraint does not specify
which v ∈ Vc is the dependent variable in equation εc.
We write a constraint c1 = (εc1 , Vc1) by its equation,
e.g., as follows:

a+ b = c+ d (c1)

where Vc1 = {a, b, c, d}.
Example 1. Fig. 1 shows the schematic of a three-tank
system. For tank i ∈ {1, 2, 3}, pi denotes the pressure at
the bottom of the tank, hi denotes the fluid height in the
tank, and Qi denotes the volumetric flow rate out of the

3



Annual Conference of the Prognostics and Health Management Society 2013

outflow pipe. For adjacent tanks i and j, Qij denotes the
flow rate in the connecting pipe, and Qin is the inflow
into tank 1. We model the three-tank system with the
following constraints:

p1 =

∫ t

t0

ṗ1dt (c2)

p2 =

∫ t

t0

ṗ2dt (c3)

p3 =

∫ t

t0

ṗ3dt (c4)

ṗ1 =
1

K1

(
Qin − p1

R1
− p1 − p2

R12

)
(c5)

ṗ2 =
1

K2

(
p1 − p2
R12

− p2
R2

− p2 − p3
R23

)
(c6)

ṗ3 =
1

K3

(
p2 − p3
R23

− p3
R3

)
(c7)

h∗
1 =

p1 ·K1

A1
(c8)

Q∗
12 =

p1 − p2
R12

(c9)

Q∗
3 =

p3
R3

(c10)

where for tank i, Ai denotes the tank cross-sectional
area, Ki denotes the capacitance, Ri denotes the re-
sistance of the outflow pipe, and for tanks i and j,
Rij denotes the flow resistance of the pipe between the
tanks. Here X = {p1, p2, p3}, Θ = ∅, U = {Qin},
Y = {h∗

1, Q
∗
12, Q

∗
3}1, and A = {ṗ1, ṗ2, ṗ3}.

In order to define for a constraint c which variable v ∈ Vc

is the dependent variable that is computed by the others
using the constraint, we require the notion of a causal
assignment.
Definition 2 (Causal Assignment). A causal assign-
ment α to a constraint c = (εc, Vc) is a tuple α =
(c, voutc ), where voutc ∈ Vc is assigned as the dependent
variable in equation εc.

Unlike a constraint, a causal assignment defines a com-
putational causality (or computational direction) to a
particular variable voutc ∈ Vc in the constraint in which
it can be computed in terms of all other variables in Vc.
We write a causal assignment of a constraint using the
constraint’s equation in a causal form. For example, for
constraint c1 above choosing voutc1 = d:

d := a+ b− c (α1)

where Constraint c1 is rewritten with a := symbol to
explicitly denote that the direction of computation is

1We name output variables with an asterisk so as to not confuse
the measured variables from unmeasured versions of them that
may be used as state or auxiliary variables.

from variables a, b, and c to d.

We say that a set of causal assignments A, for a model
M is valid if

• For all v ∈ U ∪Θ, A does not contain any α such that
α = (c, v), i.e., U and Θ are not computed in terms of
any other variables.

• For all v ∈ Y , A does not contain any α = (c, voutc )
where v ∈ Vc − {voutc }, i.e., no variable is computed in
terms of any y ∈ Y .

• For all v ∈ V−U−Θ, A contains exactly one α = (c, v),
i.e., other than the variables in U and Θ, every variable
must have exactly one constraint to compute it.

A causal model is a model extended with a valid set of
causal assignments.
Definition 3 (Causal Model). Given a model M∗ =
(V,C), a causal model for M∗ is a tuple M = (V,C,A),
where A is a set of valid causal assignments.

Example 2. The causal assignments for the three-tank
model introduced in Example 1 are as follows:

p1 :=

∫ t

t0

ṗ1dt (α2)

p2 :=

∫ t

t0

ṗ2dt (α3)

p3 :=

∫ t

t0

ṗ3dt (α4)

ṗ1 :=
1

K1

(
Qin − p1

R1
− p1 − p2

R12

)
(α5)

ṗ2 :=
1

K2

(
p1 − p2
R12

− p2
R2

− p2 − p3
R23

)
(α6)

ṗ3 :=
1

K3

(
p2 − p3
R23

− p3
R3

)
(α7)

h∗
1 :=

p1 ·K1

A1
(α8)

Q∗
12 :=

p1 − p2
R12

(α9)

Q∗
3 :=

p3
R3

(α10)

Here, we assume integral causality, i.e., state variables
are computed via integration.

For the purposes of visualizing a causal model, we rep-
resent M using a directed graph G = (V, E), where V
is the set of vertices corresponding directly to the vari-
ables V in M, and E is the set of edges, where for ev-
ery (c, voutc ) ∈ A, we include an edge (v′, voutc ) for each
v′ ∈ Vc − {voutc }.
Example 3. Fig. 2 shows the causal graph for the three-
tank system of Example 1 with Y = {h∗

1, Q
∗
12, Q

∗
3}. State

variables are denoted using dashed boxes, output vari-

4



Annual Conference of the Prognostics and Health Management Society 2013

p1 p2 p31p�

h1

2p� 3p�

Q3* *Q12*

Qin

Figure 2. Causal graph of three tank system with Y =
{h∗

1, Q
∗
12, Q

∗
3}.

ables are denoted using solid-lined boxes, and input vari-
ables are denoted using dashed circles.

Given a model, we are interested in generating submod-
els that allow for the computation of a given set of vari-
ables using only local inputs. Given a definition of the
local inputs (in general, selected from V ) and the set of
variables we wish to be computed by the submodel (se-
lected from V − U −Θ), we create from a causal model
M a causal submodel Mi. We obtain a submodel in
which only a subset of the variables in V are computed
using only a subset of the constraints in C. In this
way, each submodel computes its variable values inde-
pendently from all other submodels. A submodel can be
defined as follows.
Definition 4 (Causal Submodel). A causal submodel
Mi of a causal model M = (V,C,A) is a tuple Mi =
(Vi, Ci,Ai), where Vi ⊆ V , Ci ⊆ C, and Ai is a set of
(valid) causal assignments for Mi.

Note that, in general, Ai is not a subset of A, because
since we allow to select local inputs from Y , these vari-
ables become local inputs, i.e., appear in Ui, and the
causal assignment in A that computes these variables is
changed to a form where some other variable in the cor-
responding constraint is selected as the dependent vari-
able. As a result, these causal assignments will be dif-
ferent, but the rest of the causal assignments in Ai will
still be found in A.

The procedure for generating a submodel from a causal
model is given as Algorithm 1 (Roychoudhury et al.,
2013). Given a causal model M, a set of variables
U∗ ⊇ U that includes the input variables in M as well as
some other variables previously not in U that are consid-
ered as local inputs, and a set of variables to be computed
V ∗, and a preferences list, P (explained below), the Gen-
erateSubmodel algorithm derives a causal submodel Mi

that computes V ∗ using a subset of U∗.

In Algorithm 1, the queue, variables, represents the set
of variables that have been added to the submodel but
have not yet been resolved, i.e., they cannot yet be com-
puted by the submodel. This queue is initialized to V ∗,
the set of variables that must be computed by the sub-
model. The algorithm then loops until this queue has

Algorithm 1 Mi = GenerateSubmodel(M, U∗, V ∗, P )

1: Vi ← V ∗
2: Ci ← ∅

3: Ai ← ∅

4: variables ← V ∗
5: while variables �= ∅ do
6: v ← pop(variables)
7: c ← GetBestConstraint(v, Vi, U

∗,A, P )
8: Ci ← Ci ∪ {c}
9: Ai ← Ai ∪ {(c, v)}

10: for all v′ ∈ Vc do
11: if v′ /∈ Vi and v′ /∈ Θ and v′ /∈ U∗ then
12: variables ← variables ∪ {v′}
13: end if
14: Vi ← Vi ∪ {v′}
15: end for
16: end while
17: Mi ← (Vi, Ci,Ai)

been emptied, i.e., the submodel can compute all vari-
ables in V ∗ using only variables in U∗. Within the loop,
the next variable v is popped off the queue. We then de-
termine the best constraint to use to resolve this variable
with the GetBestConstraint subroutine (Subroutine 2).
We add the constraint to the submodel and the causal
assignment for the constraint in the form that computes
v. We then need to resolve all the variables being used to
compute v, i.e., all its predecessors in the causal graph.
Each of these variables that have not already been vis-
ited (not already in Vi), are not parameters (not in Θ),
and are not local inputs (not in U∗) must be resolved
and so are added to the queue. Then the variables are
added to the submodel and the loop continues until the
queue is emptied.

The goal of the GetBestConstraint subroutine is to
find the best constraint to resolve v. The subroutine
constructs a set C that is the set of constraints that
can completely resolve the variable, i.e., resolves v with-
out further backward propagation (all other variables in-
volved in the constraint are in Vi ∪ Θ ∪ U∗), and then
chooses the best according to a preferences list P . If
no such constraint exists, then the constraint that com-
putes v in the current causal assignment is chosen, and
further backward propagation will be necessary. Here,
we are preferring minimal resolutions of v, i.e., those
that do not require backward propagation, because then
the submodel will be minimal in the number of variables
and constraints needed to compute V ∗.

In general, a variable v is involved in many constraints,
however, exactly one of these constraints, in the given
causal assignment, computes v. If this constraint does
not completely resolve v, we find the constraints in which
v is used to compute some output variable y ∈ Y ∩ U∗.
We consider modifying the causal assignment so that
such a y (used now as an input) is used to compute v,
instead of v being used to compute y. This can only

5



Annual Conference of the Prognostics and Health Management Society 2013

Subroutine 2 c = GetBestConstraint(v, Vi, U
∗,A, P )

1: C ← ∅

2: cv ← find c where (c, v) ∈ A
3: if (Vcv − v) ⊆ Vi ∪ U∗ then
4: C ← C ∪ {cv}
5: end if
6: for all y ∈ Y ∩ U∗ do
7: cy ← find c where (c, y) ∈ A
8: if v ∈ Vcy and (Vcy − v) ⊆ Vi ∪ U∗ then
9: C ← C ∪ {cy}

10: end if
11: end for
12: if C = ∅ then
13: c ← cv
14: else if cv ∈ C then
15: c ← cv
16: else
17: C′ ← C
18: for all c1, c2 ∈ C where c1 �= c2 do
19: y1 ← find y where (c1, y1) ∈ A
20: y2 ← find y where (c2, y2) ∈ A
21: if (y1 � y2) ∈ P then
22: C′ ← C′ − {c1}
23: end if
24: end for
25: c ← first(C′)
26: end if

be performed if, for the causal assignment in which y
is being used to compute v, all other variables involved
in the constraint are in Vi ∪ Θ ∪ U∗, in which case this
constraint in this new causal assignment can completely
resolve v. If no constraint can be found that completely
resolves v, then the constraint that in the current causal
assignment computes v will have to be used, and back-
ward propagation will be necessary. Otherwise, we select
the most preferable constraint that completely resolves
v. Preference among constraints (in which an output
would be transformed to an input) is computed using
a preferences list P , that contains a partial ordering of
all the outputs in the model of the form yi � yj , mean-
ing that yj is preferred over yi. The subroutine goes
through every pair of constraints and removes from the
list of most preferable constraints, C ′, any constraint
that uses a measured variable that is less preferable to
one involved in another constraint. Of those remaining,
an arbitrary choice is made. The preferences list can be
used to prefer measured variables with less noise over
those with more noise.

Example 4. For the three-tank model (Fig. 2), say that
we select U∗ = {Qin, h

∗
1, Q

∗
12} and V ∗ = {Q∗

3}, and
P = {(Q∗

12 � h∗
1)}. Algorithm 1 starts with Vi = Q∗

3,
and propagates back to p3, and adds it to Vi. From p3
it propagates back to ṗ3, adding it to Vi. Of the prede-
cessors of ṗ3, p3 is already in Vi, so is not added to the
variables queue, and p2 is not, so the algorithm propa-
gates back to p2, adding it to Vi. At this point, there are
two constraints to consider to possibly compute p2: (i)
the constraint c3 with causal assignment α3 that com-

p1 p2 p3

Q3h1

2p� 3p�

* *

Figure 3. Causal graph for the minimal submodel of the
three-tank system computed when U∗ = {Qin, h

∗
1, Q

∗
12},

V ∗ = {Q∗
3} and P = {(Q∗

12 � h
∗
1)}.

putes p2 from ṗ2, or (ii) the constraint c9 with causal
assignment α9, set to have the new causal assignment

p2 := p1 −Q∗
12 ·R12, (α11)

that computes p2 from p1 and Q∗
12. In α11, p1 is re-

quired but is not yet included in Vi, so this constraint
cannot completely resolve p2 and we default to using
causal assignment α3, propagating back to ṗ2 and from
there to p1 (p2 and ṗ3 are already in Vi). Now, at p1,
we have three constraints to consider that may resolve
p1: (i) the constraint c2 with causal assignment α2 that
computes p1 from ṗ1, (ii) the constraint c9 with causal
assignment α9, set to have the new causal assignment

p1 := p2 +Q∗
12 ·R12 (α12)

that computes p1 from Q∗
12 and p2, and (iii) the con-

straint c8 with causal assignment α8, set to have the
new causal assignment

p1 :=
h∗
1 ·A1

K1
(α13)

that computes p1 from h∗
1. Since the preferences list P

prefers h∗
1 over Q∗

12, the algorithm chooses to compute p1
using causal assignment α13. The graph for the resultant
submodel is shown in Fig. 3.

In the following sections, we show how this model decom-
position approach can be integrated within the HyDE
diagnosis framework to reduce the computational com-
plexity associated with the diagnosis of faults in hybrid
systems.

4. Integration Proposal

The three main steps in the reasoning process of HyDE
are simulation, comparison and candidate generation.
These steps are performed for each currently consistent
candidate in the candidate set. In this section, we show
how the inclusion of structural model decomposition af-
fects each one of these steps, thus proposing a framework
where decomposed models can be implemented within
HyDE.

6



Annual Conference of the Prognostics and Health Management Society 2013

In the simulation step, the behavior of the system is sim-
ulated using the global model of the system. The goal
of the simulation step is to predict expected values of
variables in the model that correspond to sensed obser-
vations. The main problem regarding this simulation
step in HyDE is related to the time and memory perfor-
mance of HyDE. Our proposal here is to use structural
model decomposition so several smaller simulation tasks
can be run. The advantage of using minimal submod-
els for simulation is its smaller size when compared to
the size of the global model. However, as we will explain
later, computing HyDE models from minimal submodels
will affect the comparison and the candidate generation
steps in the reasoning process of HyDE as well.

In order to implement minimal submodels in HyDE, we
have to look at the models used by HyDE, which are sim-
ilar to simulation models. They describe the expected
behavior of the system under nominal and fault condi-
tions. The model can be constructed in modular and
hierarchical fashion by building component subsystem
models (which may themselves contain component sub-
system models) and linking them through shared vari-
ables/parameters. The component model is expressed
as operating modes of the component and conditions
for transitions between these various modes. Faults are
modeled as transitions whose conditions for transitions
are unknown (and have to be inferred through the rea-
soning process). Finally, the behavior of the components
is expressed as a set of variables/parameters and rela-
tions governing the interaction among them (for exam-
ple, equations). The relation between HyDE components
and our structural decomposition framework is summa-
rized as follows:

• HyDE model variables are related to variables V in
our model.

• The propagation model is specified as constraint
predicates over model variables. Constraints may
be Boolean expressions if the variables are Boolean;
algebraic and ordinary differential equations for
interval- and real-valued variables, and equality or
inequality for all variables. These are related to the
causal assignments, A, in our model description.

• Candidates ci in HyDE are related to parameters θi
in our model.

• The integration model in HyDE is related to vari-
ables X in our model.

The comparison step then takes the predictions from the
simulation step and the sensed observations and deter-
mines if they are consistent with each other or not. This
step is performed only for those variables specified to
be output variables (some sensed variables are desig-
nated inputs and will not be involved in the comparison

step). Typically the percentage difference is compared to
a threshold defined in the noise characteristics for each
sensor specified when building the HyDE model. When
HyDE is run without model decomposition only a sub-
set of the sensed variables (those designated as output)
are used in comparisons, while with minimal submodels
all sensed variables will be used in comparisons. How-
ever this overhead is quite insignificant when compared
to computational complexity of the simulation and can-
didate generation steps.

The third and final step is the candidate generation
which is typically the most computationally intensive
step. When the comparison step results in inconsisten-
cies a best first search is performed over the unknown
transition space to identify potential candidates. When
predicted values and sensed observations for a set of vari-
ables do not match, then all unknown transitions that
could have influenced those inconsistent variables are
considered suspects. There are two such flavors of depen-
dencies. A component may have behavioral constraints
in the current mode that affect the inconsistent variables
and unknown transitions take the component to a differ-
ent mode that influences the inconsistent variables in a
different way. For this a dependency graph that maps de-
pendencies between variables of the system through cur-
rently active behavioral constraints is generated. Back
propagation through this graph starting from the incon-
sistent variable, identifies all suspected components. For
each suspected component, all unknown transitions from
the current mode of that component are selected as po-
tential candidates. Among these transitions those that
lead to component modes that influence the inconsistent
variable(s) in the same way as the current component
mode are eliminated.

The second flavor of influences are from components that
do not affect the inconsistent variables in the current
mode but have unknown transitions to modes that do
influence the inconsistent variables. To identify such
components a global dependency graph is generated that
maps all dependencies in all modes of all components.
Back propagation through this graph would then iden-
tify additional potential candidates that could possibly
fix the inconsistencies.

When HyDE is used without model decomposition then
the dependency graphs and candidate generation rep-
resent the entire model resulting in complexity that is
exponential in the total number of unknown transitions
that influence in the model. After model decomposition
the HyDE model is decomposed into independent sub-
models each of which has its own dependency graph that
is not connected to the other submodels. As a result,
the candidate state space is significantly reduced. While

7



Annual Conference of the Prognostics and Health Management Society 2013

this approach works for component faults, sensor faults
pose a problem when using a decomposed model. Since a
sensed observation can be used as input in other submod-
els a sensor fault would result in inconsistent variables
in all of the submodels involving the sensor as an input
or an output. In such cases we need a mechanism to
report a single sensor fault instead of a fault from each
submodel.

Such a mechanism is implemented in HyDE by repre-
senting the sensor as a single component. However inside
the component there will be a variable for each submodel
that the sensor appears in. When the sensor is used as an
observation then its corresponding variable in the HyDE
model is marked as an output variable, whereas if the
observation is used as an input in the decomposition the
corresponding variable is marked as an input variable in
the HyDE model. The modes of the sensor component
(that include nominal faulty modes) are shared by all
of these variables. In other words these variables are
connected to the rest of the variables in their submodels
through independent behavioral constraints in the sensor
component’s modes. This would result in nonconnected
dependency graphs but referring to shared component
modes. As a result the back propagation would identify
the shared component as a suspect.
Example 5. Consider a sensor component S1 with an
associated variable v1 that appears in two submodels
M1 and M2. In M1 it appears as an output variable
v1o and in M2 it appears as input variable v1i. Let the
output variable associated with M2 be v2. When S1 is
faulty then we will notice an inconsistency in the out-
put M1 (predicted value for v1o would be nominal but
because of sensor fault observed value for v10 will not
be consistent) as well as M2 (since we will simulate a
faulty v1 value through M2 predicted value for v2 will
not match the observed value). The dependency graph
associated with M1 will have edges going back from v1o
to other variables represented in relations in M1. The
edge to v10 (going back from v1) will be labeled as de-
pending on S1 being in the nominal node (which is the
current operating mode of S1). The dependency graph
for M2 will go backwards from v2 and will ultimately
reach v1i through relations represented in M2. In this
case the edge out of v1i (going back into v1i) would be
labeled as depending on S1 too. In this case when we
see v1o and v2 inconsistent, S1 will be selected as the
most likely common explanation (unless there is another
double fault with one component fault in M1 and an-
other component fault in M2 that is more probable as
defined by prior probabilities in the model). This ex-
ample sensor component is illustrated in Fig. 4. The
model inside sensor v1 is displayed below v1 component
for convenience. In the nominal and faulty modes of op-
eration, there will be independent constraints relating

v1predictedo with v10 and v1i with v1predictedi. This will
break the propagation path from M1 at v1o and start
an independent propagation path from v1i to M2.

This approach allows us to gain the benefits of reduced
computational complexity of the model decomposition
without adding and additional diagnostic fusion step
that might have been necessary if each submodel was
completely independent.

5. Case Study

In this section we present our case study, a subset
of the Advanced Diagnostics and Prognostics Testbed
(ADAPT) (Poll et al., 2007), called ADAPT-Lite, which
is an electrical power distribution system. We first
briefly present the ADAPT-Lite system and then we
show results that we obtained by using our integration
approach.

5.1. ADAPT-Lite

A schematic of ADAPT-Lite is given in Fig. 5. Sensors
prefixed with an “E” are voltage sensors, those with an
“IT” are current sensors, and those with “ISH” or “ESH”
are for states of circuit breakers and relays, respectively.
TE228 is the battery temperature sensor, and ST516 is
the fan speed sensor. Note that the inverter converts DC
power to AC, and E265 and IT267 provide rms values
of the AC waveforms. Here, vB and iB are the battery
voltage and current, v0 is the voltage across C0, vs is
the voltage across Cs, e is the inverter efficiency, vinv
is the inverter voltage on the DC side, Rinv is the DC
resistance of the inverter, Rdc is the DC load resistance,
Jfan is the fan inertia, and Bfan is a damping param-
eter. Additional details on ADAPT-Lite may be found
in (Daigle & Roychoudhury, 2010).

5.2. Diagnosis Results

For the case study we used test scenarios generated for
the Diagnostic Competition 2011 (DXC 2011) (Poll et
al., 2011). Specifically we used all of the 30 nominal
scenarios and picked 66 fault scenarios that considered
only discrete, abrupt and persistent faults. For these
scenarios we ran the full HyDE model (we will call it
HyDE) and the decomposed HyDE model (we will call it
HyDE+PC). We then compared the diagnosis as well as
the number of candidates that were tested before arriving
at the diagnosis. For the nominal scenarios both models
performed about the same with HyDE+PC using less
computational time. However this time saving was very
insignificant (order of milliseconds). One of the reasons
for this is that the full ADAPT model is relatively small
and behavioral constraint were mostly algebraic.

Both models were tuned to not generate any false pos-

8



Annual Conference of the Prognostics and Health Management Society 2013

Figure 4. HyDE PC Sensor Model.

Figure 5. ADAPT-Lite schematic.

itives when run on the nominal scenarios. The results
of running the faulty scenarios are presented in Table
1. Each row in the table represents a fault in ADAPT.
Regarding the columns, the first column identifies the
faulty component and the kind of fault; the second and
third columns indicate the time of fault injection and
its magnitude; the fourth (resp. seventh) column shows
the HyDE (resp. HyDE+PCs) diagnosis result; the fifth
(resp. eighth) column indicates the number of candidates
that HyDE (resp. HyDE+PCs) needs to explore imme-
diately after the fault detection; the sixth (resp. ninth)
column shows the HyDE (resp. HyDE+PCs) classifi-
cation errors (either a false positive or a false negative);
finally, the tenth column shows the difference in the num-
ber of fault candidates considered for each one of the
approaches. For an easier evaluation of the results ob-
tained, Table 2 summarizes these results by giving the
total number of candidates tried and classification er-
rors for both of the approaches. Table 2 distinguishes
between sensor and component faults.

Since the candidate generation takes a significant

amount of time (order of seconds) the computational
time can be considered to be directly proportional to
the number of candidates tested. From the results we
can see that there are two main advantages from com-
bining HyDE with PC’s.

First we see that the number of errors is reduced from 19
to 11. The reason for this will be apparent when we see
how the simulation step is performed in the two cases.
When only HyDE is used, the full model is simulated
and any errors introduced because of model approxi-
mations (parameters in the model are estimated from
data and are based on the best fit available and hence
are approximate) get propagated through the model and
accumulate. As a result at the comparison step some
variables are incorrectly determined to be inconsistent
when they are not (false positives). This problem can be
addressed by increasing the threshold used for compar-
ison but that would lead to some valid inconsistencies
to not be detected at all (false negatives). When using
HyDE+PC this problem is substantially mitigated by
the fact that simulation results (and any associated er-

9



Annual Conference of the Prognostics and Health Management Society 2013

Fault At
Time Magnitude HyDE

Diagnosis

HyDE
Candidates

Tried

HyDE
errors

HyDE+PC
Diagnosis

HyDE+PC
Candidates

Tried

HyDE+PC
errors

Difference in
Candidates

Tried
IT240.Offset 72.00 5.40 IT240.Offset 14 0 IT240.Offset 1 0 13
IT240.Offset 101.00 0.30 NONE 0 1 IT240.Offset 1 0 0
E242.Offset 158.00 −2.00 NONE 0 1 E242.Offset 1 0 0
IT240.Stuck 83.00 16.88 IT240.Stuck 15 0 IT240.Stuck 2 0 13
IT267.Offset 192.00 −0.20 NONE 0 1 NONE 0 1 0
IT281.Offset 101.00 1.80 IT281.Offset 7 0 IT281.Offset 1 0 6
ESH244A.Stuck 49.00 0.00 ESH244A.Stuck 2 0 ESH244A.Stuck 2 0 0
IT267.Offset 104.00 0.70 IT267.Offset 11 0 IT267.Offset 1 0 10
IT281.Offset 47.00 0.20 NONE 0 1 NONE 0 1 0
ST516.Offset 168.00 90.00 ST516.Offset 9 0 ST516.Offset 1 0 8
ST516.Offset 121.00 −30.00 NONE 0 1 NONE 0 1 0
ST516.Stuck 58.00 0.00 ST516.Stuck 10 0 ST516.Stuck 2 0 8
ISH236.Stuck 41.00 0.00 ISH236.Stuck 2 0 ISH236.Stuck 2 0 0
ST516.Offset 203.00 −300.00 ST516.Offset 9 0 ST516.Offset 1 0 8
E240.Stuck 102.00 23.90 NONE 0 1 E240.Offset 1 1 0
E242.Stuck 173.00 0.00 E242.Stuck 4 0 E242.Stuck 2 0 2
E265.Stuck 41.00 0.00 E265.Stuck 7 0 E265.Stuck 2 0 5
IT281.Offset 101.00 −0.70 NONE 0 1 IT281.Offset 1 0 0
ST516.Offset 112.00 240.00 ST516.Offset 9 0 ST516.Offset 1 0 8
IT267.Offset 174.00 0.10 NONE 0 1 NONE 0 1 0
E240.Offset 138.00 −5.10 E240.Offset 2 0 E240.Offset 1 0 1
IT267.Offset 187.00 −1.40 IT267.Offset 11 0 ERROR 3 1 8
IT267.Stuck 49.00 2.38 IT267.Stuck 12 0 IT267.Stuck 2 0 10
IT240.Offset 199.00 −1.70 IT240.Offset 14 0 IT240.Offset 1 0 13
IT281.Offset 132.00 −0.05 NONE 0 1 NONE 0 1 0
E281.Stuck 80.00 21.38 ERROR 6 1 E281.Stuck 2 0 4
IT240.Offset 69.00 −4.20 IT240.Offset 14 0 IT240.Offset 1 0 13
IT281.Stuck 152.00 0.00 ERROR 8 1 IT281.Stuck 1 0 7
TE228.Offset 175.00 5.00 TE228.Offset 1 0 TE228.Offset 1 0 0
E265.Offset 39.00 8.00 E265.Offset 6 0 E265.Offset 1 0 5
AC483.FailedOff 79.88 N/A EY272.StuckOpen 1 1 EY272.StuckOpen 1 1 0
DC485.FailedOff 51.73 N/A EY284.StuckOpen 1 1 EY284.StuckOpen 1 1 0
FAN416.FailedOff 87.92 N/A FAN416.FailedOff 1 0 FAN416.FailedOff 1 0 0
INV2.FailedOff 167.99 N/A INV2.FailedOff 1 0 INV2.FailedOff 1 0 0
CB236.FailedOpen 170.97 N/A CB236.FailedOpen 1 0 CB236.FailedOpen 1 0 0
CB262.FailedOpen 188.72 N/A CB262.FailedOpen 1 0 CB262.FailedOpen 1 0 0
CB266.FailedOpen 129.80 N/A ERROR 13 1 CB266.FailedOpen 1 0 12
CB280.FailedOpen 135.03 N/A CB280.FailedOpen 1 0 CB280.FailedOpen 1 0 0
EY244.StuckOpen 35.35 N/A EY244.StuckOpen 1 0 EY244.StuckOpen 1 0 0
EY260.StuckOpen 176.83 N/A EY260.StuckOpen 1 0 EY260.StuckOpen 1 0 0
EY272.StuckOpen 62.87 N/A EY272.StuckOpen 1 0 EY272.StuckOpen 1 0 0
EY275.StuckOpen 141.90 N/A EY275.StuckOpen 1 0 EY275.StuckOpen 1 0 0
EY284.StuckOpen 83.83 N/A EY284.StuckOpen 1 0 EY284.StuckOpen 1 0 0
DC485.FailedOff 59.08 N/A EY284.StuckOpen 1 1 EY284.StuckOpen 1 1 0
FAN416.FailedOff 105.22 N/A FAN416.FailedOff 1 0 FAN416.FailedOff 1 0 0
INV2.FailedOff 120.70 N/A INV2.FailedOff 1 0 INV2.FailedOff 1 0 0
CB236.FailedOpen 35.66 N/A CB236.FailedOpen 1 0 CB236.FailedOpen 1 0 0
CB266.FailedOpen 60.89 N/A ERROR 13 1 CB266.FailedOpen 1 0 12
EY260.StuckOpen 80.06 N/A EY260.StuckOpen 1 0 EY260.StuckOpen 1 0 0
EY272.StuckOpen 39.27 N/A EY272.StuckOpen 1 0 EY272.StuckOpen 1 0 0
ISH236.Stuck 46.00 0.00 ISH236.Stuck 2 0 ISH236.Stuck 2 0 0
ST516.Offset 187.00 −243.00 ST516.Offset 9 0 ST516.Offset 1 0 8
TE228.Offset 101.00 21.00 TE228.Offset 1 0 TE228.Offset 1 0 0
IT240.Offset 203.00 −2.30 IT240.Offset 14 0 IT240.Offset 1 0 13
ST516.Offset 188.00 420.00 ST516.Offset 9 0 ST516.Offset 1 0 8
IT281.Offset 99.00 1.70 IT281.Offset 7 0 IT281.Offset 1 0 6
IT267.Offset 163.00 0.20 NONE 0 1 IT267.Offset 1 0 0
IT267.Offset 146.00 −0.30 IT267.Offset 11 0 IT267.Offset 1 0 10
IT281.Stuck 140.00 0.00 ERROR 8 1 ERROR 2 1 6
IT240.Stuck 95.00 18.26 IT240.Stuck 15 0 IT240.Stuck 2 0 13
E242.Offset 138.00 −3.00 E242.Offset 3 0 E242.Offset 1 0 2
E281.Stuck 83.00 23.42 E281.Stuck 5 0 E281.Stuck 2 0 3
IT240.Offset 178.00 1.50 NONE 0 1 IT240.Offset 1 0 0
IT267.Offset 172.00 −2.00 IT267.Offset 11 0 IT267.Offset 1 0 10
ST516.Offset 131.00 −300.00 ST516.Offset 9 0 ST516.Offset 1 0 8

Table 1. Diagnosis Results

Kind of
Fault

Sum of HyDE
Candidates

Tried

Sum of HyDE
errors

Sum of HyDE+PC
Candidates

Tried

Sum of HyDE+PC
errors

Component faults 44 5 20 3
Sensor faults 277 14 54 8

Table 2. Summary of Diagnosis Results

10



Annual Conference of the Prognostics and Health Management Society 2013

rors) do not get propagated to other submodels (instead
the actual sensed input values are used). This results in
more accurate predictions (assuming sensor values used
as inputs are not too noisy) which leads to better diag-
nostic accuracy.

The second advantage is that fewer candidates are tested
in the candidate generation step. As shown in the re-
sults, a total of 277 candidates for sensor faults and 44
candidates for component faults are tested when using
HyDE. On the other hand, when HyDE+PC is used,
a total number of 54 candidates are tested for sensor
faults and 20 for candidate faults. The reason for this
is that the candidate generation step does not have to
back propagate past submodel boundaries when using
HyDE+PC. To understand this further first we look at
how the unknown transition probabilities are set up. All
component faults are considered to have the same prob-
ability and have higher probabilities than sensor faults.
Among sensor faults (we consider only offset and stuck)
the offset fault is considered more probable that stuck
fault. In the full HyDE model when we see some incon-
sistent variables all components upstream of the sensors
have to be considered suspect. However in the case of
HyDE+PC all components upstream of the sensor only
in that submodel have to be considered suspect. For
sensor faults we see an even more marked improvement
in performance because of the special mechanism used
to represent sensors in HyDE+PC. In this case when we
see 2 submodels to have inconsistent variables, the first
explanation is the sensor that appears as output in one
and input in the other. In the HyDE case all component
faults upstream have to be considered before the sensor
fault is considered, resulting in more candidates being
tested. For HyDE+PC we notice that we always test 1
(if actual fault is offset) or 2 (if actual fault is stuck then
offset is tested first and then stuck is selected) candidates
only.

As examples we will consider one component fault
(DC485 Failed) and one sensor fault (IT281 Offset). The
HyDE and HyDE+PC model fragments containing these
two components are illustrated in Fig. 6 and Fig. 7. For
the DC485 Failed scenario using only HyDE we see that
IT281 and IT240 are inconsistent and HyDE identifies
EY284, DC485, CB280, EY260, EY244 and CB236 as
possible suspects (based on the intersection of what is
upstream of IT240 and IT281). When EY284 is tested
it is consistent (EY284 and DC485 failures cannot be
distinguished because they do not have any sensors in
between them). When using HyDE+PC only IT281 is
detected to be inconsistent and now only EY284 and
DC485 are picked as suspects since only those 2 compo-
nents are present in the submodel that contains IT281 as
output. In this case also EY284 is tested first and found

to be consistent (resulting in the same diagnostic error
due to lack of diagnosability).

When we consider the IT281 Offset scenario, HyDE gen-
erates EY284, DC485, CB280, EY260, EY244, CB236
and IT281 as suspects. Since component faults have
higher probability it considers the the 6 component faults
first but they do not provide consistent predictions. Fi-
nally IT281 Offset is selected as a candidate which re-
sults in consistency. When HyDE+PC model is used,
IT281 and IT240 are found to be inconsistent. In this
case the only intersection when searching for suspects
is the IT281 component. Testing the IT281 Offset (be-
cause it has higher probability than IT281 Stuck) results
in consistency.

6. Related work

Hybrid systems diagnosis has been tackled in different
ways. Approaches based in a pure DES following the
proposition by (Sampath et al., 1995): most of them
model the system as a set of automata, one for each work-
ing mode, that tries to track the discrete state, while per-
forming diagnosis as a state-estimation process (Hofbaur
& Williams, 2004; Benazera & Travé-Massuyès, 2009).
Obvious difference and advantage with HyDE is that it
does not need to pre-enumerate modes because they are
generated on the fly. Moreover it not required to gener-
ate, track and confirm any potential new discrete estate
given the ability to track continuous behavior.

Decompositional approaches for continuous systems di-
agnosis –such as PCs (Pulido & Alonso-González,
2004), ARRs (Staroswiecki & Declerck, 1989),
MSOs (Krysander et al., 2008)–, have been extended
for hybrid systems following somewhat the proposal
by (Cocquempot et al., 2004), and their concept of
parameterized ARRs (Bayoudh et al., 2009; Moya et al.,
2012). The set of ARRs or PCs for any mode must be
generated off-line, and the active PCs or ARRs must be
derived on-line. The obvious disadvantage is the need
to model every potential transition in terms of known
or estimated system variables.

There is also the option to combine ARRs and hybrid
mode tracking as in (Rienm’́uller et al., 2013). This
work combines hybrid estate estimation which is focused
based on activated or non-activated residuals derived
from ARRs for the current system. As in previous ap-
proaches, the set of potential states must be taken into
account and two different diagnosis processes must be
done at the same time to avoid tracking multiple dis-
crete modes.

To avoid enumeration of potential modes, approaches
based on Hybrid Bond Graphs, HBGs, adapt the

11



Annual Conference of the Prognostics and Health Management Society 2013

Figure 6. HyDE PC Sensor Model.

Figure 7. HyDE PC Sensor Model.

model of the current continuous state by activat-
ing/deactivating switching junctions in a Bond-Graph
model, and quickly providing a valid causal assign-
ment (Narasimhan & Biswas, 2007). That approach
can be combined with system model decomposition such
as PCs, in the Hybrid PCs approach, providing a set
of subsystems that can track the continuous behavior,
while adapting to mode changes thanks to the underly-
ing hybrid bond-graph modeling (Bregon, Alonso, et al.,
2012). These HBG based approaches avoid enumeration
of modes, but are still linked to one kind of diagnosis
algorithm.

Summarizing a main difference between HyDE and the
mentioned approaches is that all of them are linked to
one (or at most two modeling paradigms), and integrates

one diagnosis algorithm.

An implicit assumption in the integration of HyDE and
PCs, due to the potential presence of output sensors as
input in the subsystems defined by PCs is that sensor
noise should not be too high. This is an issue with all
model decomposition approaches, because the additional
introduction of sensor noise as inputs. This fact provokes
sometimes a delay in the detection time, needing a longer
period to be sure that the difference in the residual is not
related to noise. But this is a common problem in almost
any approach to model-based diagnosis.

12



Annual Conference of the Prognostics and Health Management Society 2013

7. Conclusions

In this paper we presented a method of combining HyDE
and structural model decomposition that lets us improve
the performance of HyDE under assumptions that sen-
sor noise is not too high. The combined approach re-
sults better diagnosis accuracy as well as reduced com-
putational complexity. We demonstrated this on an
electrical testbed at NASA Ames Research Center that
has published nominal and faulty data sets as part of
the Diagnostic Competition series. In future work we
would like to apply this method to other systems, more
datasets, and further characterize the improvement in
performance. Of particular interest would be multiple
fault and increased sensor noise scenarios.

Acknowledgment

A. Bregon and B. Pulido’s funding for this work was
provided by the Spanish MCI TIN2009-11326 grant. S.
Narasimhan, I. Roychoudhury and M. Daigle’s funding
for this work was provided by the NASA System-wide
Safety and Assurance Technologies (SSAT) Project.

References

Bayoudh, M., Travé-Massuyès, L., & Olive, X. (2008).
Coupling Continuous and Discrete Event Sys-
tem Techniques for Hybrid System Diagnosability
Analysis. In Proceeding of the 2008 conference on
ECAI 2008: 18th European Conference on Artifi-
cial Intelligence (pp. 219–223). Amsterdam, The
Netherlands, The Netherlands: IOS Press.

Bayoudh, M., Trave-Massuyes, L., & Olive, X. (2009).
On-line analytic redundancy relations instantia-
tion guided by component discrete-dynamics for a
class of non-linear hybrid systems. In Decision and
control, 2009 held jointly with the 2009 28th chi-
nese control conference. cdc/ccc 2009. proceedings
of the 48th ieee conference on (p. 6970-6975). doi:
10.1109/CDC.2009.5400946

Benazera, E., & Travé-Massuyès, L. (2009, October).
Set-theoretic estimation of hybrid system configu-
rations. Trans. Sys. Man Cyber. Part B , 39 , 1277–
1291. doi: 10.1109/TSMCB.2009.2015280

Bregon, A., Alonso, C., Biswas, G., Pulido, B., & Moya,
N. (2012). Fault diagnosis in hybrid systems us-
ing possible conficts. In Proc. of safeprocess’2012.
Mexico City, Mexico.

Bregon, A., Biswas, G., & Pulido, B. (2012, May). A
decomposition method for nonlinear parameter es-
timation in TRANSCEND. IEEE Trans. on Sys-
tems, Man, and Cybernetics, Part A: Systems and
Humans, 42 (3), 751-763.

Cocquempot, V., El Mezyani, T., & Staroswiecki, M.

(2004, july). Fault detection and isolation for hy-
brid systems using structured parity residuals. In
Control conference, 2004. 5th asian (Vol. 2, p. 1204
- 1212 Vol.2). doi: 10.1109/ASCC.2004.185027

Daigle, M., Bregon, A., & Roychoudhury, I. (2011,
September). Distributed damage estimation for
prognostics based on structural model decompo-
sition. In Proceedings of the Annual Conference
of the Prognostics and Health Management Society
2011 (p. 198-208).

Daigle, M., Bregon, A., & Roychoudhury, I. (2012,
September). A distributed approach to system-
level prognostics. In Annual Conference of the
Prognostics and Health Management Society 2012
(p. 71-82).

Daigle, M., & Roychoudhury, I. (2010, October). Qual-
itative event-based diagnosis: Case study on the
second international diagnostic competition. In
Proceedings of the 21st International Workshop on
Principles of Diagnosis (pp. 371–378).

Hofbaur, M., & Williams, B. (2004, oct.). Hy-
brid estimation of complex systems. Systems,
Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions on, 34 (5), 2178 -2191. doi:
10.1109/TSMCB.2004.835009

Krysander, M., Åslund, J., & Nyberg, M. (2008).
An efficient algorithm for finding minimal over-
constrained sub-systems for model-based diagno-
sis. IEEE Trans. on Systems, Man, and Cybernet-
ics, Part A, 38 (1).

Mosterman, P. J., & Biswas, G. (1999). Diagnosis of
continuous valued systems in transient operating
regions. IEEE Transactions on Systems, Man, and
Cybernetics, Part A: Systems and Humans, 29 (6),
554-565.

Moya, N., Pulido, B., Alonso-González, C., Bregon, A.,
& Rubio, D. (2012). Automatic generation of dy-
namic bayesian networks for hybrid systems fault
diagnosis. In Proceeding of intl. workshop on prin-
ciples of diagnosis, dx, 2012. Great Malvern, U.K..

Narasimhan, S., & Biswas, G. (2007, may). Model-based
diagnosis of hybrid systems. Systems, Man and
Cybernetics, Part A: Systems and Humans, IEEE
Transactions on, 37 (3), 348 -361.

Narasimhan, S., & Brownston, L. (2007, May 29-31).
Hyde - a general framework for stochastic and hy-
brid model-based diagnosis. In Proceedings of the
18th International Workshop on Principles of Di-
agnosis, DX07 (p. 186-193). Nashville, TN, USA.

Poll, S., de Kleer, J., Abreau, R., Daigle, M., Feld-
man, A., Garcia, D., . . . Sweet, A. (2011, Oc-
tober). Third International Diagnostics Compe-
tition – DXC’11. In Proc. of the 22nd Interna-
tional Workshop on Principles of Diagnosis (pp.

13



Annual Conference of the Prognostics and Health Management Society 2013

267–278).
Poll et al., S. (2007, May). Evaluation, selection, and

application of model-based diagnosis tools and ap-
proaches. In AIAA Infotech@Aerospace 2007 Con-
ference and Exhibit.

Pulido, B., & Alonso-González, C. (2004). Possible
conflicts: a compilation technique for consistency-
based diagnosis. IEEE Trans. on Systems, Man,
and Cybernetics, Part B, Special Issue on Diagno-
sis of Complex Systems, 34 (5), 2192-2206.

Rienm’́uller, T., Hofbaur, M., TravÃl’-MassuyÃĺs, L., &
Bayoudh, M. (2013, March). Mode set focused
hybrid estimation. International Journal of Ap-
plied Mathematics and Computer Science, 23 (1),
131-144.

Roychoudhury, I., Daigle, M., Bregon, A., & Pulido, B.
(2013, March). A Structural Model Decomposi-
tion Framework for Systems Health Management.
In Proceedings of the 2013 IEEE Aerospace Con-
ference.

Sampath, M., Sengputa, R., Lafortune, S., Sinnamo-
hideen, K., & Teneketsis, D. (1995). Diagnosability
of discrete-event systems. IEEE Transactions on
Automatic Control .

Staroswiecki, M., & Declerck, P. (1989, July). Analytical
redundancy in nonlinear interconnected systems by
means of structural analysis. In Ifac symp. on ad-
vanced information processing in automatic con-
trol.

Biographies

Anibal Bregon received his B.Sc., M.Sc., and Ph.D.
degrees in Computer Science from the University of Val-
ladolid, Spain, in 2005, 2007, and 2010, respectively.
From September 2005 to June 2010, he was Graduate
Research Assistant with the Intelligent Systems Group
at the University of Valladolid, Spain. He has been vis-
iting researcher at the Institute for Software Integrated
Systems, Vanderbilt University, Nashville, TN, USA; the
Dept. of Electrical Engineering, Linkoping University,
Linkoping, Sweden; and the Diagnostics and Prognos-
tics Group, NASA Ames Research Center, Mountain
View, CA, USA. Since September 2010, he has been
Assistant Professor and Research Scientist at the De-
partment of Computer Science from the University of
Valladolid. Dr. Bregon is a member of the Prognos-
tics and Health Management Society and the IEEE. His
current research interests include model-based reasoning
for diagnosis, prognostics, health-management, and dis-
tributed diagnosis and prognostics of complex physical
systems.

Sriram Narasimhan is a Project Scientist with Univer-
sity of California, Santa Cruz working as a contractor at

NASA Ames Research Center in the Discovery and Sys-
tems Health area. His research interests are in model-
based diagnosis with a focus on hybrid and stochastic
systems. He is the technical lead for the Hybrid Diag-
nosis Engine (HyDE) project. He received his M.S and
Ph.D. in Electrical Engineering and Computer Science
from Vanderbilt University. He also has a M.S in Eco-
nomics from Birla Institute of Technology and Science.

Indranil Roychoudhury received the B.E. (Hons.)
degree in Electrical and Electronics Engineering from
Birla Institute of Technology and Science, Pilani, Ra-
jasthan, India in 2004, and the M.S. and Ph.D. de-
grees in Computer Science from Vanderbilt University,
Nashville, Tennessee, USA, in 2006 and 2009, respec-
tively. Since August 2009, he has been with SGT, Inc., at
NASA Ames Research Center as a Computer Scientist.
Dr. Roychoudhury is a member of the Prognostics and
Health Management Society and the IEEE. His research
interests include hybrid systems modeling, model-based
diagnostics and prognostics, distributed diagnostics and
prognostics, and Bayesian diagnostics of complex physi-
cal systems.

Matthew Daigle received the B.S. degree in Com-
puter Science and Computer and Systems Engineering
from Rensselaer Polytechnic Institute, Troy, NY, in 2004,
and the M.S. and Ph.D. degrees in Computer Science
from Vanderbilt University, Nashville, TN, in 2006 and
2008, respectively. From September 2004 to May 2008,
he was a Graduate Research Assistant with the Insti-
tute for Software Integrated Systems and Department
of Electrical Engineering and Computer Science, Van-
derbilt University, Nashville, TN. During the summers
of 2006 and 2007, he was an intern with Mission Criti-
cal Technologies, Inc., at NASA Ames Research Center.
From June 2008 to December 2011, he was an Associate
Scientist with the University of California, Santa Cruz,
at NASA Ames Research Center. Since January 2012,
he has been with NASA Ames Research Center as a Re-
search Computer Scientist. His current research inter-
ests include physics-based modeling, model-based diag-
nosis and prognosis, simulation, and hybrid systems. Dr.
Daigle is a member of the Prognostics and Health Man-
agement Society and the IEEE.

Belarmino Pulido Belarmino Pulido received his De-
gree, MsC degree, and PhD degree in Computer Science
from the University of Valladolid, Valladolid, Spain, in
1992, 1995, and 2001 respectively. In 1994 he joined
the Departamento de Informatica in the University of
Valladolid, where he is Associate Professor since 2002.
He has been working on Model-based reasoning and
Knowledge-based reasoning, and their application to Su-
pervision and Diagnosis. He has worked in different

14



Annual Conference of the Prognostics and Health Management Society 2013

national and European funded projects related to Su-
pervision and Diagnosis. He is a member of the IEEE
(M’2000), ACM (M’2003), and CAEPIA (1997, part of
ECCAI) professional associations. He is also the coor-
dinator of the Spanish Network on Supervision and Di-

agnosis of Complex Systems since 2005. Currently he is
working on model-based diagnosis and prognosis of con-
tinuous and hybrid systems, using both centralized and
distributed approaches.

15


