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Abstract 
Acceptance of new spacecraft structural architectures and concepts requires validated 
design methods to minimize the expense involved with technology validation via flight-
testing. This paper explores the implementation of probabilistic methods in the sensitivity 
analysis of the structural response of a Hypersonic Inflatable Aerodynamic Decelerator 
(HIAD). HIAD architectures are attractive for spacecraft deceleration because they are 
lightweight, store compactly, and utilize the atmosphere to decelerate a spacecraft 
during re-entry. However, designers are hesitant to include these inflatable approaches 
for large payloads or spacecraft because of the lack of flight validation. In the example 
presented here, the structural parameters of an existing HIAD model have been varied 
to illustrate the design approach utilizing uncertainty-based methods. Surrogate models 
have been used to reduce computational expense several orders of magnitude. The 
suitability of the design is based on assessing variation in the resulting cone angle. The 
acceptable cone angle variation would rely on the aerodynamic requirements. 

 

Introduction 
High reliability entry, descent, and landing systems have been in demand for all classes 
of space applications. Specific applications include, ISS return mass, sample return, 
Mars exploration vehicles, and human-rated exploration vehicles. Architectures that 
incorporate Hypersonic Inflatable Aerodynamic Decelerators (HIADs) show promise for 
many of these applications, as discussed in Refs. [1-3]. Also various Inflatable 
Aerodynamic Decelerators (IADs) were proposed, studied, and reported in Refs. [4-6]. 
More recently, a series of small-scale test flights has demonstrated a basic functionality 
of a stacked torus configuration at the 3-m diameter scale, see Refs. [7 and 8]. HIAD 
diameters up to 81-m have been proposed, Ref. [1]. Traditionally, for such designs to 
gain acceptability, they need to be verified and validated through full-scale testing. 
Unfortunately, ground test demonstration of the structural reliability to aerodynamic 
loading is difficult due to limited test facility size and gravity effects. Therefore, such 
concepts will require certification through test-validated analysis. Fortunately, significant 
advances have occurred in the numerical simulation of the response of complex 
structural systems. For example, simulations can incorporate structural aspects such as 
geometrically accurate models and advanced material models to include nonlinear 
stress-strain behaviors, woven fabrics, and airbag inflation. This was demonstrated for 
the Orion Landing System – Advanced Development Project, where the space landing 
system effectively incorporated modeling of airbags (soft goods) in the early design 
process, see Refs. [9 and 10]. 
 
The HIAD structural analysis problem presents several design challenges. 1) Formal 
design approaches do not exist to address the various HIAD concepts. 2) HIAD 
structures exhibit complex structural responses to include soft goods and multiple load 
paths. 3) Designs of such systems require computationally efficient and robust modeling 
tools. Detailed computational tools to analyze the structural response of such systems 
are becoming sufficiently mature to accurately model the response of these complex 
structures. Computationally efficient models are also critical to enable completion of 
numerous simulations, where numerous executions of nonlinear, transient dynamics 
simulations are needed to verify the design. This study concentrates on extending 
preliminary modeling work by incorporating probabilistic methods in the design process. 
Concurrent with this analysis effort, experiments were conducted to acquire structural 
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response data for 3-m and 6-m HIAD stacked-torus configurations to support model 
assessment of simulation adequacy. Refs. [11 and 12] contain additional information 
about this HIAD application. 
 
Probabilistic analysis (PA) methods are often used to study parameter variability during 
the design process for the purposes of assessing reliability and robustness. In these 
cases parameter variations and their representation are selected based on expected 
parameter excursions from the as-built system. However, in this study PA tools are used 
to conduct parametric studies where the uncertainty model description represents a 
design space, as opposed to the uncertainty space. It is easy to lose sight of the fact that 
for many complex structures relying on inflated elements, that brute force approaches 
are often impractical. In addition more sophisticated methods may be required to 
optimally use the results from a relatively small number of simulations. For example, 
thousands of simulations using a Monte Carlo approach are typically not feasible. As the 
number of parameters, number of responses, and runtimes increase, a more 
streamlined and systematic approach may be required. One option is to incorporate 
surrogate models in the implementation of probabilistic methods to improve the 
computational efficiency. Refs. [13 and 14] provide examples for aeronautical 
applications, which focus on model adequacy. Ref. [15] provides an example for 
implementation in the spacecraft design process. 
 
This paper begins with a brief overview of the finite element model (FEM) and the 
probabilistic analysis approach, followed by a discussion of the results. Within the 
discussion of the results, parameter sensitivity and variation in cone angle results are 
provided. Finally, concluding remarks provide general comments about the approach 
and findings. 

Model Description 
Figure 1a shows the FEM representation of the inflatable decelerator. In this FEM, eight 
stacked and inflated tori are constrained by a network of woven straps with loads 
reacted at the Center Body. A uniform 0.75-psi pressure load is applied to the thin, 
flexible cover, see Figure 1b, which is fully constrained at the inner and outer rims. The 
pressure load is transferred to the HIAD structure through specification of contact 
surfaces within the FEM. Most of the applied pressure is reacted by the HIAD, with 
approximately 10 percent reacted at the cover constraints. This cover and loading 
configuration was modeled to replicate the planned static loading tests, Ref.  [11]. 
 
The numerical simulations were executed in LS-DynaTM, a commercial, general-purpose, 
nonlinear, transient-dynamics, finite element code, Ref. [16]. The finite element model 
(FEM) contained 252,809 nodes, with 219,736 4-noded, fully-integrated, shell elements 
and 3752 2-noded seatbelt elements. The straps and tori were modeled with a shell 
element specially formulated for fabric materials undergoing large deformations. Torus-
to-torus and strap-to-torus interactions were modeled using contact features. Each 
simulation required approximately four hours using four processors to compute the 0.2-
second responses. Unlike many applications employing LS-Dyna, the end-state results 
and not the time varying responses were of primary interest. Additional simulations 
incorporating structural members with fabrics can be found in Refs. [17 and 18}. 
 
For each torus, the nodal displacements along a radial line will be examined.  Figure 2 
contains a schematic of the inflated tori with the nodal locations identified. The loading is 
axisymmetric and the large number of straps make the structure nearly axisymmetric. 



 

After examination of numerous circumferential locations, the response was deemed 
sufficiently axisymmetric for the application to examine one node per torus. The resultant 
displacements for these eight nodes are considered as critical response quantities for 
the overall design process. The tori displacements provide a direct measurement of the 
deformed shape as a function of an applied aerodynamics load. Knowledge of the 
deformed shape is used to conduct predictions of the aerodynamic stability, heating 
loads, and control performance during re-entry. In this preliminary study, the nodal 
coordinates of Torus 1 and Torus 7 are used to approximate the global cone angle. 
Although not explicitly studied here, other design aspects, such as strap loads, could be 
evaluated with a similar process.	  
 

Sensitivity Analysis using Analysis of Variance 
To study the global sensitivity of the critical response quantities due to parameter 
variations, five design parameters are assumed to be uncertain. The five design 
parameters used in this study are listed in Table 1 in terms of upper and lower bounds. 
Four of the parameters are related to material stiffness, namely - Tori fabric Young’s 
modulus (ETori); 4K strap Young’s modulus (E4K); 3K strap Young’s modulus (E3K); and 
multiplier for the axial cord load curve (MAxial cord). In addition, the torus fabric weave 
angle (αTori) was varied 10-degrees. Numerical values for each of the parameters 
identified in Table 1 are assumed to be equally likely (i.e., to have uniform distribution) 
within the ranges specified in the table.  
 
This study provides an example of incorporating probabilistic analysis for this type of 
application. Results reported here were focused on varying structural material 
parameters. The results and conclusions for a flight vehicle would vary as the design, 
design parameters, and parameter variances change. Prior to initiation of the 
probabilistic design process and to verify numerical stability, an extensive review of 
several simulation responses was performed. These responses include constraint 
forces, component energies, internal contact forces, tori pressures, displacements, strap 
loads, and visual inspection of deformed shapes. 
 
Several approaches exist to conduct Analysis of Variance (ANOVA) for global parameter 
sensitivity estimates. In most cases, classical design of experiments (DOE) sampling of 
the parameter space is used where a parameter or set of parameters is held constant 
while other parameters are varied. This works well for most ANOVA applications.  For 
computationally intensive problems, DOE sampling may not be appropriate when 
developing surrogate models is the ultimate goal. Although there are many techniques to 
create more adequate sampling of the parameter space, Halton-Leap deterministic 
sampling technique was chosen for this study, Ref. [19]. The Halton-Leap method 
creates multi-dimensional, uniformly distributed values between 0 and 1, which are then 
converted to engineering parameter values within the bounds specified in Table 1.  
 
Numerous executions of nonlinear, dynamic simulations are not typically feasible 
because of time constraints. To alleviate this problem, a surrogate model in conjunction 
with the Sobol computation, Ref. [21], has been used to compute contributions of the five 
input parameters to the time-varying variance of the resultant displacement. For this 
problem, 80 LS-Dyna simulations were conducted and used to create a time-varying 
surrogate model using the Extended Radial Basis Function (ERBF) approach developed 
by Mullur and Messac, Ref. [20]. Global sensitivity measures were computed using the 
Sobol method, with the resultant displacement as the response of interest for the 
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parameter sensitivities. Sobol’s method is suitable for a nonlinear design space where a 
simple gradient computation at the parameter’s mean may not be sufficient. A drawback 
of variance-based global sensitivity measures is the need for a large number of 
response samples (i.e, thousands) to compute the variance. Even for this application, 
while 10,000 responses using the surrogate model are possible to compute in less than 
20 minutes, 10,000 FEM simulations could require orders of magnitude longer. 

Results 
The 80-simulation set containing displacement time histories was used to generate the 
surrogate models (i.e., ERBF response surfaces). A unique response surface is 
generated at each time step. For the resultants presented in this document, 2001 
response surfaces were generated for each torus displacement response location. 
Although the end-state results are of primary interest, the change in sensitivities over 
time provides insights into the model behavior and stability during loading.  
 
When working with surrogate models, users should always be concerned about their 
adequacy. Surrogate model adequacy was assessed by the removal of the ith LS-Dyna 
solution from the solution set and the comparison of it to the surrogate prediction. In 
other words, the surrogate model did not contain the ith solution being evaluated. This 
approach was implemented because nonlinear FEM simulations are often 
computationally expensive. The removal process, depicted in Figure 3, can be 
performed with all 80 LS-Dyna solutions. The comparison of end-state resultant 
displacement for the ERBF surrogate and the LS-Dyna simulation for Torus 1 and Torus 
7 are provided in Figures 4 and 5, respectively. The greater discrepancy between ERBF 
and LS-Dyna for Torus 7 when compared to that for Torus 1 is likely attributed to the 
greater distance from the Center Body. The farther the torus is from the Center Body the 
greater the number of structural elements that become involved in the response. Perfect 
agreement is not anticipated when approximating the detailed multi-hour simulation of 
the complete structure response with a surrogate response requiring less than a second 
to compute. The level of agreement, as evidenced by a correlation coefficient greater 
than 0.9, is considered sufficient to proceed with assessing parameter importance. If this 
level of agreement were deemed insufficient, new simulation results can be incorporated 
to improve the surrogate’s accuracy. Also, subsequently the surrogate model results can 
be used to compute the cone angle. 

Sensitivity Results 
Figures 6 and 7 show the time-dependent results of the Sobol variance computations for 
Torus 1 and Torus 7, respectively. The bars at each time slice provide an indication of 
the contribution of the parameter to the total variance. For example, in Figure 6, at the 
final time (0.2 s) nearly all of the variance of the resultant displacement for Torus 1 can 
be attributed to variation in E4K (indicated in mustard). For Torus 7, the variability is 
primarily split between the three Young’s modulus parameters. These results show that 
the parameter sensitivities of the displacements vary by torus. Drastic variations over 
time could results from insufficient number of FEM simulations or FEM numerical 
instabilities. Thus the smooth variations over time and nearly constant distributions after 
0.1 s provide additional encouragement about quality of the sensitivity results. It was 
anticipated that one of the parameters could have been eliminated. These results 
indicate that variations in the Axial Strap Multiplier and the Torus Braid Angle do not 
significantly contribute the variability of the tori resultant displacements. Thus these 
parameters could be held constant or eliminated as uncertain variables. 
 



 

In general, methods such as that proposed by Sobol, should be used to determine 
parameter importance for problems exhibiting significant non-linear behavior. However, 
for this problem, the correlation coefficient of the displacements for each torus as a 
function of uncertain parameter are also computed and provided in Figure 8. The results 
in Figure 8 show a shift in importance of the Young’s modulus parameters when 
progressing from inner to outer tori. More importantly, the parameter sensitivity of the 
displacements varies by torus. Thus the displacements of multiply tori must be 
incorporated when considering parameter importance on the deformed global structural 
shape. 
 
The variance computations provide insight into parameter importance. However, care 
must be exercised when one uses variance information in the design process since the 
variance is implicitly dependent on the range of the input parameters. Thus, if the 
parameter maxima and minima in Table 1 were changed, then the corresponding 
parameter contribution to the variance will also change. 

Cone Angle Variation Results 
The end-state cone angle of the collective HIAD tori structure is derived from end-state 
coordinates of Torus 1 and Torus 7. The cone angle approximations using Torus 1 and 
Torus 7 results are shown in Figure 9. Statistics for 10,000 ERBF approximations are 
also provided. The re-entry heating, stability, and decelerations are strongly dependent 
on this cone angle. For example, a notional aeroheating requirement could limit the cone 
angle to vary no more than 0.5-degrees from the nominal. In that case, the design space 
is too broad with regard to the material properties. If, on the other hand, the aeroheating 
could accept 3-degree variations from the nominal, then the current design space is 
sufficient.  
 

Concluding Remarks 
Acceptance of new spacecraft structures architectures and concepts requires validated 
design methods to minimize the expense involved with technology validation flight-
testing. This paper discusses a global sensitivity approach for evaluation of the structural 
response of a Hypersonic Inflatable Aerodynamic Decelerator (HIAD). The simulation of 
the response of a HIAD structure with static external pressure loading was automated 
with a combination of Matlab scripts and LS-Dyna simulations. A surrogate model was 
generated to provide displacement responses, and a correlation coefficient metric was 
established to evaluate the surrogate adequacy. The global sensitivity of the resultant 
displacement results shows that parameter sensitivity is dependent on torus location. 
However, the displacement variations were most affected by the Young’s modulus of the 
straps and the tori. For this application, the axial strap multiplier and tori fabric angle 
could be held constant. Finally, the end-state cone angle was derived from two tori 
coordinates. The cone angle variation was compared to a notional cone angle 
requirement. Ultimately, an acceptable range in cone angles would be specified by 
project. 
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Table 1.  Parameter uncertainty model. 
 

Parameter Minimum Maximum 
MAxial cord  0.1 1.0 

αTori 60° 70° 
ETori  1x105 psi 1x106 psi 
E3K 4x105 psi 4x106 psi 
E4K 2x105 psi 2x106 psi 
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Figure 1a. Finite element model without cover. 

	  

	  

 
 
 
 
 

 
 
 
 
 

Figure 1b. Finite element model with cover. 



 

	  
	  

Figure 2. Location of displacement responses on tori. 
	  
	  

 

 
 

Figure 3. Schematic of simulation removal process 
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Figure 4. Comparison of LS-Dyna and ERBF end-time displacements for Torus 1 

(Correlation coefficient=0.97). 
	  

	  
Figure 5. Comparison of LS-Dyna and ERBF end-time displacements for Torus 7 

(Correlation coefficient=0.95). 
	  



 

	  
	  

Figure 6. Time histories and variance for resultant displacement of Torus 1. 
	  
	  

	  
	  

Figure 7. Time histories and variance for resultant displacement of Torus 7. 
	  
	  

	  
Figure 8. Correlation coefficients of tori end-time displacements as a function of design 

parameter.	  	  
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Figure 9. Cone angles for the 10,000 ERBF realizations.	  
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