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ABSTRACT 47 

The variability of Atlantic tropical cyclones (TCs) associated with El Niño–Southern 48 

Oscillation (ENSO) in model simulations is assessed and compared with observations.  The 49 

model experiments are 28-yr simulations forced with the observed sea surface temperature from 50 

1982 to 2009.  The simulations were coordinated by the U.S. CLIVAR Hurricane Working 51 

Group and conducted with five global climate models (GCMs) with a total of 16 ensemble 52 

members.  The model performance is evaluated based on both individual model ensemble means 53 

and multi-model ensemble mean.  The latter has the highest anomaly correlation (0.86) for the 54 

interannual variability of TCs.  Previous observational studies show a strong association between 55 

ENSO and Atlantic TC activity, as well as distinctions in the TC activities during eastern Pacific 56 

(EP) and central Pacific (CP) El Niño events.  The analysis of track density and TC origin 57 

indicates that each model has different mean biases.  Overall, the GCMs simulate the variability 58 

of Atlantic TCs well with weaker activity during EP El Niño and stronger activity during La 59 

Niña.  For CP El Niño, there is a slight increase in the number of TCs as compared with EP El 60 

Niño.  However, the spatial distribution of track density and TC origin is less consistent among 61 

the models.  Particularly, there is no indication of increasing TC activity over the U.S. southeast 62 

coastal region as in observations.  The difference between the models and observations is likely 63 

due to the bias of vertical wind shear in response to the shift of tropical heating associated with 64 

CP El Niño, as well as the model bias in the mean circulation.   65 

  66 
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1.  Introduction 67 

It is well known that El Niño–Southern Oscillation (ENSO) strongly influences the 68 

interannual variability of Atlantic tropical cyclones (TCs).  El Niño (La Niña) tends to suppress 69 

(enhance) Atlantic seasonal TC activity (e.g., Gray 1984; Pielke and Landsea 1999; Bell and 70 

Chelliah 2006).  Although other climate modes, such as the Atlantic Meridional Mode, the North 71 

Atlantic Oscillation, and the Madden Julian Oscillation, also modulate North Atlantic tropical 72 

cyclone activity (e.g. Kossin et al. 2010), here our focus will be placed on ENSO.  The state of 73 

ENSO is one of the key climate factors considered by the National Oceanic and Atmospheric 74 

Administration (NOAA) for their Atlantic hurricane season outlooks (NOAA 2013).  75 

Using observational data, Kim et al. (2009) found distinct differences in Atlantic TC 76 

activity associated with eastern Pacific (EP) El Niño and central Pacific (CP) El Niño.  EP El 77 

Niño is the conventional El Niño with the warmest sea surface temperature (SST) anomalies in 78 

the tropical eastern Pacific, whereas CP El Niño or El Nino Modoki (Ashok et al. 2007) is a non-79 

conventional El Niño with the warmest SST anomalies in the tropical central Pacific.  The zonal 80 

shift of the warm SST anomalies indicates a change in tropical heating and consequent changes 81 

in atmospheric response.   82 

A composite analysis of TC track density anomaly in Kim et al. (2009, their Fig. 2) 83 

displays coherent weakening in TC activity over the Caribbean Sea, Gulf of Mexico, and U.S. 84 

Atlantic east coast region during EP El Niño and strengthened TC activity over the same regions 85 

during La Niña.  Surprisingly, the composite for CP El Niño is also opposite to that for EP El 86 

Niño over these regions and closely resembles the La Niña composite.  The results suggest a 87 

higher chance of landfalling TCs along the Gulf coast and U.S. east coast during CP El Niño 88 

than during EP El Niño.   89 
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It is well recognized that global climate models (GCMs), even at a low resolution, are 90 

able to simulate the interannual response of North Atlantic TCs to ENSO (e.g. Camargo et al. 91 

2005, Zhao et al. 2009).  However, given the distinctions in the Atlantic TC activity associated 92 

with different El Niño types revealed in observations (Kim et al. 2009), it is interesting to know 93 

whether state-of-the-art GCMs can reproduce the different response to the two types of El Niño.  94 

Such a model capability in distinguishing the responses of Atlantic TCs to different ENSO 95 

patterns is also important to both dynamical (e.g., Schemm and Long 2009) and statistical–96 

dynamical (e.g., Wang et al. 2009; Vecchi et al. 2011) hurricane seasonal prediction systems.   97 

With a primary focus on climate modeling studies of TCs, the U.S. Climate Variability 98 

and Predictability Research Program (CLIVAR) launched a Hurricane Working Group (HWG) 99 

in 2011 (U.S. CLIVAR 2011).  To improve understanding of the interannual variability and 100 

trends in TC activity, as well as projections of future TC activity under a warming climate, the 101 

HWG initiated a series of simulations with high-resolution atmospheric GCMs (Walsh et al. 102 

2013).  One set of simulations is the interannual experiment which is an Atmospheric Model 103 

Intercomparison Project (AMIP) type of simulations with multiple GCMs and forced with the 104 

same observed time-varying SST from 1982 to 2009.  This set of simulations provides necessary 105 

data to characterize TC response to ENSO in climate models. 106 

This study aims to evaluate the performance of high-resolution GCMs in simulating the 107 

interannual variability of Atlantic TCs associated with ENSO.  The assessment is based on the 108 

analysis of AMIP-type simulations with five GCMs and comparisons with observations.  The 109 

analysis is in collaboration with HWG members to target one of the HWG objectives involving 110 

improved understanding of interannual variability of TC activity.  The following three scientific 111 

questions are to be addressed in this study.  How is the overall performance of GCMs in 112 
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simulating the variability of Atlantic TCs?  What are the characteristics of Atlantic TCs 113 

associated with ENSO in the models?  What are the possible explanations for the differences 114 

between the models and observations?  The study is expected to provide some insights into the 115 

basic characteristics of Atlantic TC activity associated with different types of ENSO in GCMs. 116 

This paper is organized as follows.  Section 2 provides a brief description of data, 117 

models, and analysis methods used.  Section 3 characterizes the Atlantic TC activity associated 118 

with ENSO in observations.  The performance of GCMs in simulating the variability of the 119 

Atlantic TCs is assessed in section 4.  Some possible explanations for the differences between 120 

the model simulations and observations are explored in section 5.  Conclusions are given in 121 

section 6. 122 

 123 

2. Data and models 124 

The data used in this study consist of SST, Atlantic TC tracks, precipitation, 200-hPa and 125 

850-hPa zonal winds over a 28-yr (1982–2009) period from both observations and simulations 126 

with five atmospheric GCMs.  For observations, the SST data are taken from the Hadley Centre 127 

Sea Ice and Sea Surface Temperature (HadISST) data set (Rayner et al. 2003) on a 1o × 1o 128 

(latitude × longitude) grid.  The 28-yr monthly mean SSTs were also prescribed as low boundary 129 

forcing for the GCMs.  The Atlantic TC track data are from the National Hurricane Center 130 

Atlantic Hurricane Best Track Data (HURDAT2; Landsea et al. 2004).  The precipitation data 131 

are from the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) data set 132 

(Xie and Arkin 1997).  The 200-hPa and 800-hPa zonal winds used to derive vertical wind shear 133 

are from the National Centers for Environmental Prediction – Department of Energy (NCEP – 134 

DOE) reanalysis 2 (R2; Kanamitsu et al. 2002).  Both precipitation and zonal winds are monthly 135 

mean data on a 2.5o × 2.5o grid. 136 



5 
 

The five GCMs employed for the HWG interannual experiments (1982–2009) are the 137 

Florida State University (FSU) model (Cocke and LaRow 2000), Geophysical Fluid Dynamics 138 

Laboratory (GFDL) model (Zhao et al. 2009), National Aeronautics and Space Administration 139 

(NASA) Goddard Institute for Space Studies (GISS) model E2 (Schmidt et al. 2013), NASA 140 

Goddard Space Flight Center (GSFC) GEOS-5 model (Rienecker et al. 2008; Molod et al. 2012), 141 

and NCEP Global Forecast System (GFS) model (Saha et al. 2013).  Table 1 lists the number of 142 

ensemble runs, model data resolutions, which are close to model resolutions, and TC tracking 143 

algorithms for the five models.  The ensemble members vary from two to five with a total of 16 144 

runs.  Horizontal resolutions range from about 0.5o to 1o.  TC track data were provided by each 145 

modeling group with different tracking algorithms.  More detailed descriptions of the models can 146 

be found in Walsh et al. (2013). 147 

The Atlantic TC activity is quantified by the annual total number of TCs, as well as the 148 

spatial distribution of track density and TC origin.  Given the spatially discrete nature of TC 149 

tracks, the track density is derived as follows: (a) the number of TCs passing through each 5o × 150 

5o box analyzed on a 1o × 1o grid resolution during an entire hurricane season is first counted; 151 

and (b) the TC counts are then averaged with the TC numbers in the 5o × 5o boxes for eight 152 

surrounding grid points with a weighting coefficient of 0.5 for the center grid point and 1/16 for 153 

each surrounding grid point.  This is done in the same way as Kim et al. (2009) to ensure a 154 

spatially smoothed distribution.  Composites of SST, precipitation, and vertical wind shear 155 

anomalies averaged over August–October (ASO), the peak of the Atlantic hurricane season, are 156 

examined for different ENSO categories.  The statistical significance of the composite anomalies 157 

is estimated by the Monte Carlo technique (e.g., Wilks 1995).  The analysis is performed for both 158 

observations and multi-model ensemble (MME) mean, as well as individual model ensemble 159 
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means.  The MME mean is obtained by averaging individual model ensemble means.  In this 160 

way, each model is treated with an equal weight for the MME, regardless of the number of 161 

ensemble members.   162 

 163 

3. Variability of Atlantic TCs associated with ENSO in observations 164 

During the 28-yr period (1982–2009), there were five EP El Niño (1982, 1986, 1991, 165 

1997, and 2006) and five CP El Niño (1987, 1994, 2002, 2004, and 2009) years identified based 166 

on the definition of McPhaden et al. (2011), and eight La Niña years (1983, 1984, 1988, 1995, 167 

1998, 1999, 2005, 2007).  Figure 1 shows the composite of ASO seasonal mean SST anomalies 168 

for EP El Niño, CP El Niño, and La Niña, respectively.  Compared to EP El Niño (Fig. 1a), the 169 

SST anomalies in CP El Niño (Fig. 1b) shift towards the west.  This may lead to significant 170 

changes in tropical heating for the atmosphere between the two types of El Niño.  The amplitude 171 

of the CP El Niño SST anomalies (~ 1 K) is smaller than the EP El Niño (~ 1.5 K), but 172 

comparable to the La Niña (~ 1 K, Fig. 1c).   173 

Similar composites are shown in Fig. 2 for TC track density (top row) and track density 174 

anomaly (middle row), respectively, associated with the three ENSO types.  In La Niña years 175 

(Fig. 2c), track density displays high values (> 1) across the North Atlantic basin.  Areas with 176 

track densities greater than 1.5 are found in the central main development region (MDR; 10o – 177 

20oN, 20o – 80oW), the Gulf of Mexico, and U.S. east coastal region.  In contrast, track density is 178 

relatively low over these regions for EP El Niño (Fig. 2a), but increases considerably for CP El 179 

Niño (Fig. 2b), particularly in the MDR and U.S. southeast coastal region.   180 

Consistent with the track density patterns, track density anomalies are generally below 181 

normal across the basin for EP El Niño (Fig. 2d), with the largest negative anomalies over the 182 

Gulf and MDR, and above normal during La Niña (Fig. 2f).  Associated with CP El Niño (Fig. 183 
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2e), positive track density anomalies are found over the MDR, the Caribbean Sea, Gulf coast and 184 

the southeast coast, and negative anomalies further to the east, as well as in the west Gulf of 185 

Mexico.  The results indicate that relative to EP El Niño, there is a high chance of landfalling 186 

TCs along the U.S. southeast coast during CP El Niño. 187 

The spatial distributions of total TC origins for the three ENSO categories are also shown 188 

in Fig. 2 (bottom row).  For a fair comparison with five EP El Niño and five CP El Niño, TC 189 

origins for La Niña are also shown for five episodes that occurred in the most recent years.  190 

There are increased TC origins over the MDR during CP El Niño (Fig. 2h) as compared to EP El 191 

Niño (Fig. 2g) and an additional increase of TC formation over the Gulf of Mexico during La 192 

Niña (Fig. 2i).   193 

Although the sample size for ENSO composites is very limited over the 28 years, the 194 

composite anomalies in Fig. 2 (middle row) are statistically significant above the 90% level.  The 195 

anomaly patterns also resemble those in Kim et al. (2009) with longer records (57 yrs, 1950–196 

2006).  Additionally, the sampling issue can be partially addressed by using HWG interannual 197 

experiments which provide more atmospheric realizations than for the observations.  Although 198 

the AMIP type of simulations does not increase the sample size of ENSO events, the ensemble of 199 

AMIP runs presented in the next section increases the sample size of atmospheric realizations for 200 

a fixed set of ENSO events.  This can effectively enhance the signal-to-noise ratio (Kumar and 201 

Hoerling 1995) and thereby provide a more reliable estimate for the ENSO-forced variability of 202 

the Atlantic TCs. 203 

 204 

4. Variability of Atlantic TCs associated with ENSO in GCMs 205 

The climatology and interannual variability of the annual number of Atlantic TCs are 206 

examined first.  Figure 3 shows the time series of the annual number of Atlantic TCs from 1982 207 
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to 2009 for both observations and model simulations, including MME mean and individual 208 

model ensemble means.  Both observations and MME display an upward trend over the 28-yr 209 

period.  The grey shading in Fig. 3 denotes the range of ± one standard deviation of the spreads 210 

of the five individual model ensemble means around the MME mean.  Over 80% (23 out of 28 211 

yrs) of the observations fall into this range.  Obviously, the GFS model has very high numbers of 212 

TCs and the GISS model has low numbers of TCs.   213 

Table 2 summarizes the TC statistics for the observations and model simulations, 214 

including the climatological mean value, variance of interannual variability, linear trend over the 215 

28 years, anomaly correlation (AC) between the models and observations, and root-mean square 216 

error (RMSE).  The GFDL model (12.7) and GSFC model (10.9) have a mean value close to the 217 

observations (11.7).  In contrast, the climatology in the GISS model (6.2) is only about a half of 218 

the observations while the GFS model (22.0) has double the number in observations.  The 219 

strength of the interannual variability in the GSFC and GFS models is comparable to 220 

observations and weaker in the other models and the MME.  The linear trends in all models (� 2 221 

TCs per decade) are weaker than in the observations (� 4 TCs per decade).  AC is highest for the 222 

MME (0.86), followed by the GFDL (0.74) and GFS (0.73) models.  This implies that 74% of 223 

the observed interannual TC variance is captured by the time series of the MME mean number of 224 

TCs and 54% is captured by the GFDL and GFS models.  Additionally, the MME has the 225 

smallest RMSE.  Due to the large mean biases, the GFS and GISS models have relatively large 226 

RMSEs.  In terms of the five parameters in Table 2 (i.e., mean, interannual variability, trend, AC, 227 

and RMSE), the overall performance of the MME, GFDL and GSFC models is better than that of 228 

the FSU, GISS, and GFS models.  It should be noted that both the GFDL and GSFC models have 229 
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a higher resolution than the other three models.  This may suggest that a GCM with a higher 230 

resolution gets better performance in simulating the interannual variability of Atlantic TCs. 231 

The average number of TCs for each ENSO category is examined in Table 3 and 232 

compared with the corresponding 28-yr climatology for both observations and simulations.  In 233 

the observations, there are about 7, 10, and 15 TCs each hurricane season in EP El Niño, CP El 234 

Niño, and La Niña, respectively, equivalent to 58%, 87%, and 125% of the mean value (11.7).  235 

All models show consistent increases in the number of TCs from EP El Niño to CP El Niño and 236 

further increases to La Niña, except for the GSFC model.  However, the changes in TC counts 237 

from one ENSO type to another in the models are much more conservative than in the 238 

observations.  In the MME, for instance, there is a 15% increase in TCs from EP El Niño to CP 239 

El Niño and an additional 16% increase to La Niña in terms of the mean value.  The 240 

corresponding changes in observations are 29% and 38%.  The results indicate a weaker 241 

interannual variability of Atlantic TCs in the model simulations.  It should also be noted that the 242 

MME mean approach may reduce the variability of TC counts in the models. 243 

The spatial characteristics of mean TC activity are presented in Fig. 4 for both 244 

observations and simulations in the form of 28-yr mean track densities and total TC origins 245 

during the entire 28 years.  Compared to the observations (Fig. 4a), each model has different 246 

mean biases.  Among the five models, the GFDL model (Fig. 4d) is closest to the observations 247 

for both the magnitude and spatial coverage of track density.  The FSU, GSFC, and GFS models 248 

(Figs. 4c, 4f, 4g) have a very high track density (> 3) over the west MDR, east–central MDR, 249 

and most of the North Atlantic basin, respectively, whereas the GISS model (Fig. 4e) has a very 250 

low track density over the basin.  The MME mean pattern (Fig. 4h) shows a higher track density 251 
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in the MDR than the observations (Fig. 4a) and a lower track density over the U.S. east coastal 252 

regions.  Overall, the MME is better than most individual models. 253 

The TC origins in observations (Fig. 4b) are characterized by two regions with large 254 

populations, one over the MDR and the other over the Gulf of Mexico and adjacent sectors of the 255 

Atlantic Ocean and Caribbean Sea.  The FSU, GSFC, and GFS models exhibit very dense TC 256 

origins over the central and to the south of the MDR (Fig. 4i), to the south of the east MDR (Fig. 257 

4l), and to the south and east of the MDR (Fig. 4m), respectively.  The GISS model shows a lack 258 

of TC formations over the east MDR.  The GFDL model (Fig. 4j) and MME (Fig. 4n) have a 259 

distribution of TC origins closer to the observations than the other models.  The model biases in 260 

the distribution of TC origins are consistent with the biases of track density and mean number of 261 

TCs.  For example, the dense TC origins in the FSU and GSFC models (Figs. 4i and 4l) lead to 262 

high track density over the regions to the northwest of the TC origins (Figs. 4c and 4f).  If the 263 

unrealistic TC origins to the east of the MDR in the GFS model (Fig. 4m) are removed, the mean 264 

number of TCs is significantly reduced from 22.0 to 11.7, matching the observed value, and 265 

leading to a  track density distribution much closer to the observations (not shown). 266 

Similar to the ENSO composites of track density for observations (Fig. 2, top row), Fig. 5 267 

displays the ENSO composites of track density for individual model ensemble means, as well as 268 

MME mean.  In spite of the distinct biases in each model revealed in Fig. 4, the composites 269 

consistently show relatively low track densities during EP El Niño (left column) in all models 270 

and high track densities during La Niña in most models (right column), except for the GSFC 271 

model.  Furthermore, there is a clear increase in track density from EP El Niño to CP El Niño 272 

(Fig. 5, middle column).   273 
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The corresponding composites for track density anomaly are illustrated in Fig. 6.  The 274 

track density anomalies in the GCMs are generally below normal across the basin during EP El 275 

Niño (left column) and above normal during La Niña (right column).  In some spots, the negative 276 

anomalies associated with EP El Niño (left column) become positive during CP El Niño (middle 277 

column).  The results in Figs. 5 and 6 suggest that the GCMs are able to capture some of the 278 

observed features of the Atlantic TC activity associated with ENSO.  Qualitatively, there is less 279 

TC activity associated with EP El Niño, more activity associated with La Niña, and increasing 280 

TC activity during CP El Niño with respect to EP El Niño.  However, the patterns of track 281 

density vary from model to model and differ from observations.  Particularly, there are no 282 

indications of increasing landfalling TCs along the U.S. southeast coast during CP El Niño in the 283 

model simulations. 284 

The modeled TC origins over five years from one ensemble member of each model are 285 

shown in Fig. 7 for each ENSO category.  Relative to EP El Niño (left column), there are 286 

increases in the formation of TCs over or near the MDR during CP El Niño (middle column) and 287 

La Niña (right column) in some models, such as the GSFC and GFS models.  Only the GFDL 288 

model shows some increase in TC origins at high latitudes between 20oN and 40oN, especially 289 

during CP El Niño.  Unlike observations (Fig. 2i), there are no increases in TC origins over the 290 

Gulf of Mexico and west Caribbean Sea in all models during La Niña.  This may be related to the 291 

model bias in simulating the TC formations over these regions (Fig. 4).  The differences in TC 292 

origins among the three ENSO categories in the MME (Fig. 7, bottom row) are not as large as in 293 

the observations (Fig. 2, bottom row).  This is another indication of relatively weak interannual 294 

variability of Atlantic TCs in GCMs.   295 

 296 
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5. Possible explanations for model biases 297 

The changes in both the mean and variability of Atlantic TCs is accompanied by changes 298 

in atmospheric circulation (e.g., Goldenberg and Shapiro 1996; Goldenberg et al. 2001).  299 

Therefore, in order to understand the mean biases of TC activity in GCMs, Fig. 8 shows the ASO 300 

season climatology of vertical shear of zonal wind between 200 and 850 hPa derived from 301 

observations and mean biases for individual model ensemble means and the MME mean.  The 302 

regions of weak mean vertical wind shear (< 10 m s-1, Fig. 8a) coincide with the regions of high 303 

mean track density and TC origins in observations (Figs. 4a and 4b).   304 

The mean bias in the vertical wind shear may account for the mean bias in Atlantic TC 305 

activity in some models.  In the FSU model (Fig. 8b), for instance, a large negative bias of 306 

vertical wind shear (over –10 m s-1) in the west MDR leads to a close-to-zero mean state of 307 

vertical wind shear, which favors the generation and development of TCs.  This is consistent 308 

with the mean bias of high track density and TC origins over this region (Figs. 4c and 4i).  In the 309 

GISS model (Fig. 8d), a positive bias of vertical wind shear in the east MDR enhances the mean 310 

vertical wind shear and prevents TCs from occurring over this area.  As a result, TC tracks and 311 

TC origins shift towards the west (Figs. 4e and 4k).   312 

Both individual model ensemble means (Figs. 8b–8f) and the MME mean (Fig. 8g) 313 

exhibit negative biases in vertical wind shear over and/or near the MDR and positive biases to 314 

the north, especially over the Gulf coast and U.S. southeast coast.  Consequently, there are biases 315 

of high track density and dense TC origins at low latitudes and low track density and sparse TC 316 

origins over the Gulf and U.S. southeast coast in the models (Fig. 4).   317 

Figure 9 displays the composites of ASO season vertical wind shear anomalies associated 318 

with the three ENSO categories for observations (top row) and MME (bottom row), respectively.  319 



13 
 

Overall, the model circulation response to different ENSO SST anomalies agree with the 320 

observations, both with positive vertical wind shear anomalies to the south of 20oN associated 321 

with EP El Niño (left column) and negative anomalies associated with La Niña (right column).  322 

The circulation response to CP El Niño is less significant or spatially coherent over the 323 

subtropical North Atlantic (middle column).  This is likely due to the weak amplitude and small 324 

area-coverage of the CP El Niño SST anomalies (Fig. 1).  Thus the atmospheric response may be 325 

weak (e.g., Wang et al. 2013).  In spite of that, it is still evident that wind shear anomalies over 326 

the MDR are largely reduced as compared to EP El Niño, a condition that is more favorable for 327 

TC activity during CP El Niño.  The results present in Fig. 9 are also consistent with the better 328 

simulations of Atlantic TC activity in GCMs for EP El Niño and La Niña than for CP El Niño.   329 

ENSO influences the Atlantic TC activity by altering vertical wind shear over the MDR 330 

through atmospheric teleconnection (e.g., Goldenberg and Shapiro, 1996).  It may also change 331 

tropical Atlantic SST via local air-sea interaction (Enfield and Mayer 1997), which in turn 332 

affects the TC activity (Goldenberg et al. 2001). The composites of SST anomalies in Fig. 1 333 

suggest very weak Atlantic SST anomalies associated with ENSO in ASO.  Furthermore, 334 

diagnostics of the ENSO modulation of TC activity using a genesis potential index identified 335 

vertical wind shear as one of the main environmental factors responsible for this modulation in 336 

the North Atlantic (Camargo et al. 2007).  Therefore, the atmospheric response to tropical 337 

heating related to ENSO SST anomalies and atmospheric teleconnection are likely the primary 338 

processes responsible for the ENSO impact.   339 

The westward shift of warm SST anomalies from EP El Niño to CP El Niño (Fig. 1) may 340 

lead to changes in tropical heating.  In the tropics, precipitation associated with deep convection 341 

is a good indicator of tropical heating in the atmosphere.  Similar to Wang et al. (2012), the 342 
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composites of ASO season precipitation anomalies over the tropical Pacific are used to illustrate 343 

and verify the changes in tropical heating, as shown in Fig. 10.  In both observations and the 344 

MME mean of the GCM simulations, associated with EP El Niño (Figs. 10a and 10d), there are 345 

positive precipitation anomalies across the central and eastern equatorial Pacific.  Associated 346 

with CP El Niño (Figs. 10b and 10e), precipitation anomalies shift towards the west with no 347 

large anomalies over the eastern Pacific.  In La Niña, negative precipitation anomalies cross the 348 

tropical Pacific (Figs. 10c and 10f).  In general, the GCMs reproduce the observed major features 349 

of precipitation anomalies over the tropical Pacific for different types of ENSO.  On the other 350 

hand, precipitation response to ENSO over the tropical North Atlantic (not shown) varies 351 

considerably across the models, which may contribute to the model diversity in simulating the 352 

TC variability associated with ENSO. 353 

There are also differences in precipitation between observations and simulations over the 354 

tropical Pacific, such as weaker precipitation anomalies in the models between 160oE and the 355 

dateline for all ENSO categories.  These differences may be related to model convection 356 

schemes and model sensitivity to SST.  Together with model biases in mean circulation (not 357 

shown), they may modify the Rossby-wave source (Sardeshmukh and Hoskins 1998) and thus 358 

affect the detailed structure of circulation response to ENSO. 359 

Figure 11 gives a simple example of changes in vertical wind shear associated with a 360 

westward shift of warm SST anomalies from the Niño-3 region (5oS – 5oN, 90o – 150oW) to the 361 

Niño-4 region (5oS – 5oN, 150oW – 160oE).  First, the ASO season vertical wind shear anomalies 362 

are regressed against the Niño-4 and Niño-3 SST indices, separately.  The differences between 363 

the two sets of regression coefficients are shown for observations (left panel) and the MME 364 

(right panel), respectively.  Both the observations and the MME exhibit a similar large-scale 365 
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wave train pattern originating from the western and central equatorial Pacific and along a great 366 

circle route to tropical Atlantic.  A close inspection of Fig. 11 reveals some differences in the 367 

changes of vertical wind shear over the tropical North Atlantic between the observations and 368 

simulations.  Negative wind shear anomalies are found to the north of the MDR in the 369 

observations (Fig. 11a) whereas positive anomalies are found over the MDR in the MME (Fig. 370 

11b).  The results illustrate the difference between the observations and GCMs in North Atlantic 371 

vertical wind shear response to the shift of tropical Pacific SST anomalies.  The difference may 372 

cause further changes in the responses of Atlantic TCs to the shift of SST anomalies.   373 

 374 

6. Summary and conclusions 375 

Based on the analysis of the HWG interannual experiments, the GCM’s performance in 376 

simulating the variability of Atlantic TCs associated with ENSO are assessed.  The results 377 

indicate that each model has different mean biases in terms of track density and TC origin.  378 

Among the five models, the GFDL model with a relatively high resolution has the best 379 

performance.  The MME mean has the highest anomaly correlation for the number of TCs and 380 

the least RMSE.  Therefore, using an MME should be considered a better approach for 381 

dynamical hurricane season prediction than using a single model.  Overall, the GCMs simulate 382 

the variability of Atlantic TCs well with weaker activities during EP El Niño and stronger 383 

activities during La Niña.  For CP El Niño, there is a slight increase in the number of TCs as 384 

compared with EP El Niño.  However, the spatial distribution of track density and TC origin is 385 

less consistent among the models.  Particularly, there is no indication of increasing TC activity 386 

over the U.S. southeast coastal region as found in observations.  The differences between the 387 

models and the observations may be due to the bias of vertical wind shear in response to the shift 388 

of tropical heating associated with CP El Niño, as well as the model bias in the mean circulation.  389 
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It should also be noted that there are limited sample sizes for both EP and CP El Niño events in 390 

the observations.  The differences between EP and CP El Niño composites may not be just due to 391 

ENSO response, but also contain some random component. 392 

There are at least two factors that may affect the results presented in this paper.  One is 393 

the model sensitivity to different SST data sets (e.g., LaRow 2013).  For example, the FSU 394 

model forced with the NOAA optimum interpolation SST version 2 (OISST v2; Reynolds et al. 395 

2002) may improve the simulations of Atlantic TC activity with a better TC climatology (11.5) 396 

and RMSE (4.5) than those forced with HadISST (Table 2).  Knowledge of the model sensitivity 397 

to SST forcing may help estimate the uncertainty of the model simulated TCs.  In this study, 398 

different TC tracking algorithms were employed by the five modeling groups for their GCMs 399 

(Table 1).  Track density and TC origin in the models may also be sensitive to the algorithms 400 

used (e.g., Horn et al. 2013).  A unified tracking algorithm may be helpful to reduce the related 401 

uncertainty for model assessment. 402 

The impact of ENSO on Atlantic TC activity may have some implications for projections 403 

of future TC variability under a warming climate.  Studies have shown an increase in tropical 404 

Atlantic wind shear (Vecchi and Soden, 2007) and a reduction of Atlantic TCs associated with 405 

global warming with a high-resolution GCM (Zhao and Held 2010).  In more recent studies, no 406 

robust changes in North Atlantic TC activity were found in the 21st century simulations with 407 

low-resolution models (Camargo 2013; Tory et al. 2013).  On the other hand, downscaling 408 

studies of these simulations lead to contradictory results, varying from a significant decrease 409 

(Knutson et al. 2013), ambiguous trends (Villarini and Vecchi 2013), to a significant increase 410 

(Emanuel 2013) in North Atlantic TC activity by the end of the 21st century.  In addition to 411 

possible changes in the mean TC activity, the variability of TC activity is also expected to 412 
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change as the intensity of CP El Niño (EP El Niño) would increase (decrease) under a warming 413 

climate (Kim and Yu 2012).  In fact, CP El Niño has been documented to occur more frequently 414 

in the most recent two decades (Yeh et al. 2009), which could be a manifestation of global 415 

warming in observations. 416 

There is a possibility that the relationship between Atlantic TC activity and ENSO under 417 

the present-day climate found in Kim et al. (2009) might not be maintained under a warming 418 

climate.  Indeed, changes in atmospheric teleconnection in response to ENSO have been detected 419 

in model simulations for the 21st century (e.g., Stevenson 2012).  This would add additional 420 

uncertainty to the future projection of Atlantic TC variability.  Nevertheless, this study indicates 421 

the feasibility of utilizing high-resolution GCMs to assess the Atlantic TC activity associated 422 

with ENSO for climate change projections. 423 
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Figure Captions 552 

Fig. 1. Composites of ASO seasonal mean SST anomalies (unit: K) for (a) EP El Niño 553 

(1982, 1986, 1991, 1997, and 2006), (b) CP El Niño (1987, 1994, 2002, 2004, and 2009), and (c) 554 

La Niña (1983, 1984, 1988, 1995, 1998, 1999, 2005, and 2007) during 1982–2009.  The 555 

anomalies circled by light lines are above the 99% significance level estimated by the Monte 556 

Carlo tests. 557 

Fig. 2. Composites of TC track density (top row) and track density anomaly (middle row) 558 

for (a),(d) EP El Niño, (b),(e) CP El Niño, and (c),(f) La Niña years, and distribution of TC 559 

origins during (g) five EP El Niño, (h) five CP El Niño, and (i) five La Niña years derived from 560 

observations.  The anomalies circled by light lines (middle row) are above the 90% significance 561 

level estimated by the Monte Carlo tests.  The boxes with dash lines denote the main 562 

development region (MDR; 10o–20oN, 20o–80oW). 563 

Fig. 3. Time series of annual number of Atlantic TCs from 1982 to 2009 for observations 564 

(OBS) and multi-model ensemble (MME) mean (thick lines with open circles), as well as 565 

individual model ensemble means (thin lines).  Grey shading denotes the range of ± one standard 566 

deviation of the spreads of the five individual model ensemble means around the MME mean. 567 

Fig. 4. Climatology of track density for (a) observations, (c)–(g) individual model 568 

ensemble means, and (h) MME mean, and 28-yr total TC origins for (b) observations, (i)–(m) 569 

one ensemble member of each model, and (n) MME total from one member of each model.  The 570 

boxes with dash lines denote the MDR. 571 

Fig. 5. Composites of track density during EP El Niño (left column), CP El Niño (middle 572 

column), and La Niña (right column) for five individual model ensemble mean (top five rows) 573 

and MME mean (bottom row).  The boxes with dash lines denote the MDR. 574 
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Fig. 6. Composites of track density anomaly during EP El Niño (left column), CP El Niño 575 

(middle column), and La Niña (right column) for five individual model ensemble mean (top five 576 

rows) and MME mean (bottom row).  The anomalies circled by light lines are above the 90% 577 

significance level estimated.  The boxes with dash lines denote the MDR. 578 

Fig. 7. Distribution of TC origins during five EP El Niño (left column), five CP El Niño 579 

(middle column), and five La Niña (right column) years from one ensemble member of each 580 

model (top five rows) and MME total from one member of each model (bottom row).  The boxes 581 

with dash lines denote the MDR. 582 

Fig. 8. (a) Observed ASO season climatology of vertical shear of zonal wind (unit: m s-1) 583 

between 200 and 850 hPa and mean bias in the (b) FSU, (c) GFDL, (d) GISS, (e) GSFC, and (f) 584 

GFS models, as well as (g) the MME.  The boxes with dash lines denote the MDR. 585 

Fig. 9. Composites of ASO seasonal mean vertical wind shear anomalies (unit: m s-1) for 586 

(a),(d) EP El Niño, (b),(e) CP El Niño, and (c),(f) La Niña during 1982–2009 in observations 587 

(top row) and the MME mean (bottom row).  The anomalies circled by light lines are above the 588 

90% significance level.  The boxes with dash lines denote the MDR. 589 

Fig. 10. Composites of ASO seasonal mean precipitation anomalies (unit: mm day-1) for 590 

(a),(d) EP El Niño, (b),(e) CP El Niño, and (c),(f) La Niña during 1982–2009 in observations 591 

(left column) and the MME mean (right column).  The anomalies circled by light lines are above 592 

the 99% significance level. 593 

Fig. 11. Changes in vertical wind shear (unit: m s-1 K-1) associated with a westward shift 594 

of warm SST anomalies from the Niño-3 region (5oS – 5oN, 90o – 150oW) to the Niño-4 region 595 

(5oS – 5oN, 150oW – 160oE).  The boxes with solid lines denote the MDR. 596 

  597 
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Table 1. List of five GCMs for the HWG interannual experiments, the number of 598 
ensemble members, model data grid, and references for TC tracking algorithms. 599 
 600 

Model 
Ensemble 
members 

Model data grid 
zonal×meridional Tracking algorithm 

FSU 3 384 × 192 LaRow et al. (2008) 

GFDL 3 576 × 360 Zhao et al. (2009) 

NASA GISS 3 360 × 180 Camargo and Zebiak (2002) 

NASA GSFC 2 576 × 361 LaRow et al. (2008) 

NCEP GFS 5 360 × 181 Camargo and Zebiak (2002) 
 601 

  602 
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Table 2. List of TC statistics for observations (OBS), multiple model ensemble (MME) 603 
mean, and individual model ensemble means, including 28-yr (1982–2009) long-term mean 604 
annual number of Atlantic TCs, variance of interannual variability, linear trend (increase of TCs 605 
per decade), anomaly correlation (AC) between observations and model simulated interannual 606 
TC anomalies, and root-mean-square error (RMSE).  The variance for each model is the average 607 
of the variance derived from individual ensemble members. 608 
 609 

Model Mean Variance Trend AC RMSE 

OBS 11.7 25.9 3.7   

MME 13.1 17.0 1.9 0.86 3.5 

FSU 13.5 9.2 1.7 0.62 4.5 

GFDL 12.7 16.4 2.2 0.74 3.6 

GISS 6.2 8.8 1.1 0.68 6.7 

GSFC 10.9 24.5 2.6 0.62 4.2 

GFS 22.0 26.1 2.1 0.73 10.9 
 610 

  611 
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Table 3. Mean annual number of TCs over the entire 28 years, five EP El Niño, five CP 612 
El Niño, and eight La Niña years, respectively, for observations (OBS), MME, and individual 613 
model ensemble means.  Values in parentheses are the percentages of the 28-yr climatology. 614 

 615 

Model Mean EP El Niño CP El Niño La Niña 

OBS 11.7 6.8 (58%) 10.2 (87%) 14.6 (125%) 

MME 13.1 10.4 (80%) 12.4 (95%) 14.5 (111%) 

FSU 13.5 11.9 (88%) 12.0 (89%) 15.3 (113%) 

GFDL 12.7 9.5 (75%) 11.0 (87%) 15.5 (122%) 

GISS 6.2 4.5 (73%) 5.7 (91%) 7.3 (117%) 

GSFC 10.9 6.9 (63%) 12.9 (118%) 11.2 (102%) 

GFS 22.0 19.3 (88%) 20.5 (93%) 23.1 (105%) 
 616 
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 618 
Fig. 1. Composites of ASO seasonal mean SST anomalies (unit: K) for (a) EP El Niño 619 

(1982, 1986, 1991, 1997, and 2006), (b) CP El Niño (1987, 1994, 2002, 2004, and 2009), and (c) 620 
La Niña (1983, 1984, 1988, 1995, 1998, 1999, 2005, and 2007) during 1982–2009.  The 621 
anomalies circled by light lines are above the 99% significance level estimated by the Monte 622 
Carlo tests. 623 
  624 
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 625 
Fig. 2. Composites of TC track density (top row) and track density anomaly (middle row) 626 

for (a),(d) EP El Niño, (b),(e) CP El Niño, and (c),(f) La Niña years, and distribution of TC 627 
origins during (g) five EP El Niño, (h) five CP El Niño, and (i) five La Niña years derived from 628 
observations.  The anomalies circled by light lines (middle row) are above the 90% significance 629 
level estimated by the Monte Carlo tests.  The boxes with dash lines denote the main 630 
development region (MDR; 10o–20oN, 20o–80oW). 631 
 632 
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 634 
Fig. 3. Time series of annual number of Atlantic TCs from 1982 to 2009 for observations 635 

(OBS) and multi-model ensemble (MME) mean (thick lines with open circles), as well as 636 
individual model ensemble means (thin lines).  Grey shading denotes the range of ± one standard 637 
deviation of the spreads of the five individual model ensemble means around the MME mean. 638 
  639 
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 640 
Fig. 4. Climatology of track density for (a) observations, (c)–(g) individual model 641 

ensemble means, and (h) MME mean, and 28-yr total TC origins for (b) observations, (i)–(m) 642 
one ensemble member of each model, and (n) MME total from one member of each model.  The 643 
boxes with dash lines denote the MDR. 644 
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 646 
Fig. 5. Composites of track density during EP El Niño (left column), CP El Niño (middle 647 

column), and La Niña (right column) for five individual model ensemble mean (top five rows) 648 
and MME mean (bottom row).  The boxes with dash lines denote the MDR. 649 
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 651 
Fig. 6. Composites of track density anomaly during EP El Niño (left column), CP El Niño 652 

(middle column), and La Niña (right column) for five individual model ensemble mean (top five 653 
rows) and MME mean (bottom row).  The anomalies circled by light lines are above the 90% 654 
significance level estimated.  The boxes with dash lines denote the MDR. 655 
  656 
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 657 
Fig. 7. Distribution of TC origins during five EP El Niño (left column), five CP El Niño 658 

(middle column), and five La Niña (right column) years from one ensemble member of each 659 
model (top five rows) and MME total from one member of each model (bottom row).  The boxes 660 
with dash lines denote the MDR. 661 
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 663 
Fig. 8. (a) Observed ASO season climatology of vertical shear of zonal wind (unit: m s-1) 664 

between 200 and 850 hPa and mean bias in the (b) FSU, (c) GFDL, (d) GISS, (e) GSFC, and (f) 665 
GFS models, as well as (g) the MME.  The boxes with dash lines denote the MDR. 666 
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 668 
Fig. 9. Composites of ASO seasonal mean vertical wind shear anomalies (unit: m s-1) for 669 

(a),(d) EP El Niño, (b),(e) CP El Niño, and (c),(f) La Niña during 1982–2009 in observations 670 
(top row) and the MME mean (bottom row).  The anomalies circled by light lines are above the 671 
90% significance level.  The boxes with dash lines denote the MDR. 672 
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 674 
Fig. 10. Composites of ASO seasonal mean precipitation anomalies (unit: mm day-1) for 675 

(a),(d) EP El Niño, (b),(e) CP El Niño, and (c),(f) La Niña during 1982–2009 in observations 676 
(left column) and the MME mean (right column).  The anomalies circled by light lines are above 677 
the 99% significance level.  678 
  679 
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 680 
Fig. 11. Changes in vertical wind shear (unit: m s-1 K-1) associated with a westward shift 681 

of warm SST anomalies from the Niño-3 region (5oS – 5oN, 90o – 150oW) to the Niño-4 region 682 
(5oS – 5oN, 150oW – 160oE).  The boxes with solid lines denote the MDR. 683 


