

Tool Development for NIRPS Industrial Base Analysis PropSIMA (Propulsion Supplier Integrated Modeling and Analysis)

Contributors from The Aerospace Corporation:

Robert Erickson Randy Williams

Shannon McCall Karen Richardson

Matthew Eby Nick Cohen

Michael Moore Margaret Bogumian

Navneet Mezcciani

Contributors from NASA:

Brad Perkins and Rajiv Doreswamy

21 May 2014

Agenda and Outline

- Time Management
 - Presentation: 25 min.
 - Database demonstration: 20 min
 - Questions: 5 min
- Task Overview
- Supply Chain Model and Analysis Approach
- Results Summary
- Database Visualization Demonstration

PropSIMA (Propulsion Supplier Integrated Modeling and Analysis)

- The Aerospace Corporation is assisting NIRPS with the development of rocket engine and solid motor supply chain database analytical capabilities
 - Conduct a <u>bottom- up</u> analyses of how launch vehicle and engine procurement selections affect rocket engine industrial base (suppliers and engine manufacturers)
 - Prototype Tool developed with following analytical capabilities
 - Visualize data for a detailed supplier level database
 - Identify supplier interdependencies, critical & high risk suppliers, etc.
 - Conduct industry related trade studies for engine demand scenarios
- NIRPS collaborated with NASA's Space Launch System (SLS) Program on a pilot project to guide capability development
 - Evaluate potential impacts of SLS Exploration Upper Stage (EUS) engine options on propulsion industrial base
 - Compare to the J-2X baseline

PropSIMA (Propulsion Supplier Integrated Modeling and Analysis)

What the Tool Does

- Models Propulsion Industry-Wide
 Participation for Launch Vehicle Demand
- Allows High-Level Trade Studies between
 Different Engine Demand Scenarios
- Tracks Suppliers and Prime Involvement in rocket engine production
- Accounts for Engine Demand Uncertainty using Discrete Event Simulation tool
- Book-keeps Suppliers and How They are Shared Across the Industrial Base
- Book-keeps Relative Part Value for what Supplier Provides to Primes
- Stores metadata associated suppliers: parts produced, location, estimated financial health and dependency of prime
- Allows Several Types of Visualization for Industry-Wide Supply Chains

What the Tool Does NOT Do

- Model Business Metrics on a Supplier Scale
- Model Process Flow for Engine Production
 - Currently does not identify bottlenecks but could be incorporated
- Track Every Sub-Tier Supplier
 - Trade high level accuracy (complexity/time) for ease of performing demand scenario trade studies
- Model Supplier Uncertainty or Future Diversification

PropSIMA (Propulsion Supplier Integrated Modeling and Analysis)

PropSIMA Supplier Data

- Major suppliers for engines and motors used for US expendable launch vehicles have been identified and the parts they supply to major subsystems
- Metadata recorded for the supplier include the best estimate
 - Supplied Commodity
 - Alternative Suppliers
 - Financial health
 - Dependency on engine prime contractor
 - Relative value of parts supplied
 - Location (City, State, Country)

Subassembly	Sub-subassembly	Part(s)	Supplier	Category	Commodity	Location	Financials (1-5)	Dendency (1-5)	alternatives (Y/N)	Net Sales/Employment	Data Source
		Thick Shaft	,	Machining & Fabrications	Turbopump Machining		Ĭ	2	Y	\$35M; 110 emp	InsideView
		Crossover	(k	Raw Materials, Castings, Forgings	Casting		1	1		\$57.7B; 218,000 emp (\$30M; 375 emp MN unit)	Morningstar, http://
			<u> </u>	Machining & Fabrications	Machining	₽ .	3	3		\$10M-\$49.9M; 100-249 emp	http://free.salesfue
		Pump Inlet	-	Raw Materials, Castings, Forgings	Casting	- > -	3	1		\$10M-\$49.9M; 100-249 emp	http://free.salesfue
100				Machining & Fabrications	Machining		3	3	_	\$10M-\$49.9M; 100-249 emp	http://free.salesfue
		Pump Inducer	2 S S S	Machining & Fabrications	Machining		3	2	Υ	\$40M; <200 emp	therm.com & http://
		1st Stage Impeller	/ate	Machining & Fabrications	Turbopump Machining		3	2	Y	\$35M; 110 emp	InsideView
		2nd Stage Impeller	. 9 % [Machining & Fabrications	Turbopump Machining		3	2	Y	\$35M; 110 emp	InsideView
		Turbine Exhaust Housing		Raw Materials, Castings, Forgings	Casting		31	2	Y	\$24B; 61,000 emp	Morningstar
Fuel Turbopump				Machining & Fabrications	Machining		3	3	Y	\$10M-\$49.9M; 100-249 emp	http://free.salesfue
		Turbine Manifold		Raw Materials, Castings, Forgings	Casting			2	Y	\$24B; 61,000 emp	Morningstar
				Machining & Fabrications	Machining		3	3	Y	\$10M-\$49.9M; 100-249 emp	http://free.salesfue
			1	Machining & Fabrications	Turbopump Machining		3	2	Υ	\$35M; 110 emp	InsideView
		Turbine Blisks	(Raw Materials, Castings, Forgings	Forging		1	1	Y	300 emp,	manta.com

Supply Chain Details

Fraction of engine cost between prime contractor and suppliers is estimated:

	Development	Production
Prime	60%	67%
Suppliers	30%	25%

- Initial analysis using this tool focused on prime and first-tier suppliers, but the database and discrete event simulation tools are highly scalable
- Top 15-20 suppliers make up 80% of the material cost for an engine
- Supplier "touches" (single unit purchase) do not represent every touch needed to produce a single engine focus on big ticket items
- Some suppliers provide multiple parts and others just one
- A value of "importancy" has been assigned to the suppliers

$$\underline{Importancy} = \frac{Percentage \ of \ Hardware \ Cost \ for \ Engine}{Number \ of \ supplier's \ touches \ in \ our \ database}$$

 Multiplying the number of "touches" for a supplier by the importance allows the analysis to recover the percentage of hardware cost

Demo Liquid Engine Model Database

- Database Type: JavaScript Object Notation (JSON) Datafile
- Scripts generate large Möbius Descrete Event Models from JSON databases

Launch Vehicle Scenarios: Engine Demand

- Baseline engine demand constructed from current launch manifests that impact the U.S. industrial base, combined with projections for future
 - EELV
 - DoD
 - NASA LSP
 - Commercial EELV
 - NASA Human Spaceflight
 - Commercial Crew Launch
 - SLS (booster, core, and EUS options)
- Variation in engine demand included to reflect uncertainty in future years
 - Uncertainty captures events such as launch date slips or mission cancellation
- Alternative Scenarios represent a fundamental change to launch vehicle demand due to higher level decisions
 - Payloads moving from one existing launch vehicle to another
 - New launch vehicle enters market
 - New propulsion system developed for an existing launch vehicle

Baseline Demand Model

- Launch vehicle demand model determines production rates for all engines
 - Vehicle demand and propulsion configuration are inputs to kick-off engine level supply chain model (Möbius)
- Monte Carlo method used to sample a production rate for all engines for each year considered for analysis
 - Triangular distribution applied in the Monte Carlo simulation

Möbius Overview

- Möbius: Model-Based Environment for Validation of System Reliability, Availability, Security, and Performance
 - Software tool for modeling the behavior of complex systems
 - Developed by the University of Illinois
- Distributed discrete-event simulation: Evaluates the custom measures using efficient simulation algorithms to repeatedly execute the system, either on the local machine or in a distributed fashion across a cluster of machines, and gather statistical results of the measures.*
 - Current models execute on a 30-core cluster; several hours to complete simulation
- The Aerospace Reliability and Statistics Department (RSD) has applied Möbius to a number of programs:
 - Audit of a commercial satellite constellation reliability model
 - Augmentation of replenishment modeling capabilities
 - Process/Schedule analysis

Trade Study Analysis for Competing Scenarios

- A "composed" Möbius model ties together engine models and identifies shared suppliers
- Monte Carlo simulation performed for each alternative scenario
- Results of each alternative scenario traded
- Cumulative supplier benefit (mean value and distribution)

Figure courtesy of https://www.mobius.illinois.edu/

Supplier Disruption Alternative Scenario Analysis

Cumulative Benefit of Scenarios Compared

Summary and Future Work

- Prototype tool developed (PropSIMA) to perform industrial base analysis including
 - Baseline launch vehicle demand scenario including variability in launch manifest
 - Trade Studies featuring alternative scenarios for launch vehicle options based on potential future developments in the market
- PropSIMA Tool Structure
 - Launch Vehicle Demand Model
 - Flexible Engine/Motor supplier databases with user-specified metadata tagging
 - Engine Hardware & Supplier Network Visualization
 - Discrete Event Simulation Tool
 - Analysis Tools for Extracting Significant Findings of Industrial Base Impact
- Future Work
 - Expand capabilities and information in Engine/Motor Database
 - Develop additional visualization capabilities
 - Further develop trade study analysis/visualization methodology
- Propose JANNAF PIB to develop industry panel to provide guidance on how to define PropSIMA inputs and metrics