IMPLICATIONS OF CO BIAS FOR OZONE AND METHANE LIFETIME IN A CCM

Sarah Strode, Bryan Duncan, Elena Yegorova, Anne Douglass

NASA Goddard Space Flight Center Greenbelt, MD, USA

CO bias: what does it tell us?

 Low bias in CO at high latitudes is a common CCM feature: consistent with CH₄ lifetime underestimate

- To what extent is low CO a symptom or cause of low OH?
 - Low CO emissions driving low CO, high OH? or
 - Other biases driving high OH driving low CO?
- What are the implications for ozone and methane?

Models and Methods

- Use chemistry options of varying complexity in GEOS-5 to quantify impact of specific CO drivers:
 - Full Chemistry:
 - radiatively coupled stratospheric and tropospheric chemistry
 - >100 species
 - Tagged CO:
 - Computationally efficient
 - CO tracers tagged by source type
 - specified OH, CH₄, biogenic hydrocarbon oxidation
 - Isolate impact of specific source and OH adjustments
 - CH₄-OH-CO parameterization
 - Feedback between OH, CH₄, and CO
 - Specify methane, ozone, NOt, etc.
 - examine sensitivity of CO and OH to biases in these inputs

Latitudinal gradient of CO

- largest absolute bias in NH Spring/ Summer
- increasing midhigh latitude emissions reduces NH bias w/ little impact on SH

Source Contributions

- TotCO
- Asian anth
- * N Am, Eu anth
- ♦ Trop BB
- △ Siberian BB

Higher Elmiss

increasing NH
 emissions reduces total
 and interhemispheric
 (IH) gradient biases

Source Contributions

- Global OH decrease reduces global bias
- decreasing NH OH lowers IH & global bias

- □ -5% OH
- □ -10% OH
- ☐ -20% NH OH

500mb CO Comparison to MOPITT

GEOSCCM - MOPITT, May 2000

GEOSCCM w/ high emiss. - MOPITT

tagCO w/ -20% NH OH - MOPITT

- Increasing Asian anthro & boreal BB emission, or decreasing NH OH both reduce negative NH bias
- Positive bias over Asian source regions for Asian and boreal emissions increase

Impacts of CO emission increase

- Ran GEOSCCM full chemistry with increased Asian anthropogenic & boreal biomass burning emissions
- reduces CO bias compared to surface obs
- ~3% increase in CH₄ lifetime against OH: OH decreases
 5% in NH, 1% in SH
 - small compared to the 20% reduction in N. hemisphere
 OH needed to correct CO bias for base emission case

Next step: examine other model biases

Can they drive CO bias via OH?

Impact of Water Vapor Bias

- high bias in water vapor
- Adjust H₂O in CH₄-OH-CO parameterization to better match AIRS
- Lower H₂O → lower OH → 12% increase in CH₄ lifetime

Surf. CO & trop OH changes from ΔH_2O

Annual, (Mar-Aug)	S. Hemisphere	N. Hemisphere
∆OH (%)	-11 (-9)	-13 (-14)
ΔCO (%)	+9 (+9)	+6 (+6)

Impact of Tropospheric O₃ Bias

- Replace modeled O₃ w/ GMAO O₃ assimilation in the troposphere in CO-OH-CH₄ parameterization
- largest O₃ decrease in the upper troposphere; increase in tropical lower troposphere → net increase in OH
- 9% decrease in methane lifetime; small impact on CO

Conclusions & Future Work

- Effects of removing NH CO bias:
 - w/ increasing high latitude emissions has small impact on methane lifetime
 - w/ decreased OH requires shift in inter-hemispheric gradient of OH
- H₂O bias increases global mean OH, while tropospheric O₃ bias decreases it
 - Neither bias alone explains CO gradient bias
- Combination of H₂O bias reduction and emissions could explain CO bias

- Future work
 - CO sensitivity to overhead ozone, NO_x, isoprene, convection
 - Quantify radiative forcing associated with each possible correction to CO bias

Impact of Tropospheric O₃ on OH & CO

- GEOSCCM tropospheric O₃ column compared to OMI/MLS climatology [Ziemke et al., 2011]: high bias in NH, low bias in SH
- Bias also seen in ACCMIP multimodel mean [Young et al., 2013]
- GMAO ozone assimilation incorporates OMI total O₃ column and MLS stratospheric O₃ profiles into GEOS-5
- Run CO-CH4-OH parameterization with GEOSCCM ozone, then rerun replacing tropospheric ozone with assimilated ozone
- 9% decrease in methane lifetime

Surf. CO & trop OH changes from ΔO_3

Annual, (Mar-Aug)	S. Hemisphere	N. Hemisphere
ΔOH (%)	+10 (8)	+5 (5)
ΔCO (%)	-3 (-3)	-1 (-1)