ORAU Hydrodynamics of $\boldsymbol{\eta}$ Carinae's Colliding Winds

T. Madura ${ }^{1,{ }^{\star}}$; T. Gull ${ }^{1}$; M. Corcoran ${ }^{1,2}$; A. Okazaki ${ }^{3}$; S. Owocki ${ }^{4}$; C. Russell ${ }^{3}$; K. Hamaguchi ${ }^{1,5}$; N. Clementel ${ }^{6}$; J. Groh ${ }^{7}$; D. J. Hillier ${ }^{8}$

Fellow, NASA Postdoctoral Program, administered by Oak Ridge Associated Universities, Email: thomas,i.madura@nasa.g

Abstract

Abstract

At the heart of η Carinae's spectacular "Homunculus" nebula lies an extremely luminous ($L_{\text {Total }} \geqslant 5 \times 10^{6} \mathrm{~L}_{\odot}$) colliding wind binary with a highly eccentric ($e \sim 0.9$), 5.54-year orbit (Figure 1). The primary of the system, a Luminous Blue Variable (LBV), is our closest ($D \sim 2.3 \mathrm{kpc}$) and best example of a pre-hypernova or pre-gamma ray burst environment. The remarkably consistent and periodic RXTE X-ray light curve surprisingly showed a major change during the system's last periastron in 2009 , with the X -ray minimum being $\sim 50 \%$ shorter than the minima of the previous two cycles!. Between 1998 and 2011, the strengths of various broad stellar wind emission lines (e.g. Ha, Fe II) in line-of-sight (l.o.s.) also decreased by factors of $1.5-3$ relative to the continuum ${ }^{2}$. The current interpretation for these changes is that they are due to a gradual factor of $2-4$ drop in the primary's mass-loss rate over the last ~ 15 years ${ }^{1}{ }^{2}$. However, while a secular change is seen for a direct view of the central source, little to no the primary's mass-loss rate over the last ~ 15 years ${ }^{4}$. However, while a secular change is seen for a direct view of the central source, itttle to no change is seen in profiles at high stellar latitudes or reflected off of the dense, circumbinary material known as the "Weigelt blobs" ${ }^{2}, 3$. Moreover, change is seen in profiles at high stellar latitudes or reflected off of the dense, circumbinary material known as the "Weigett blobs",3. Moreover, model spectra generated with CMFGEN predict that a factor of $2-4$ drop in the primary's mass-loss rate should lead to huge changes in the observed model spectra generated with CMFGEN predict that a factor ont - drop in the primary's mass-loss rate should lead to huge changes in the observ spectrum, which thus far have not been seen. Here we present results from large- $(\pm 1620 \mathrm{AU})$ and small-($\pm 162 \mathrm{AU})$ domain, full 3D smoothed particle hydrodynamics (SPH) simulations of η Car's massive binary colliding winds for three different primary-star mass-loss rates (2.4, 4.8, and $8.5 \times 10^{-4} \mathrm{M}_{\odot} / \mathrm{yr}$). The goal is to investigate how the mass-loss rate affects the 3 D geometry and dynamics of η Car's optically-thick wind and $\left.8.5 \times 10^{-4} \mathrm{M}_{\odot} / \mathrm{yr}\right)$. The goal is to investigate how the mass-loss rate affects the 3D geometry and dynamics of η Car's optically-thick wind and spatially-extended wind-wind collision (WWC) regions, both of which are known sources of observed X-ray, optical, UV, and near-IR emission and absorption. We use two domain sizes in order to better understand how the primary's mass-loss rate influences the various observables that form at different length scales. The 3D simulations provide information important for helping constrain η Car's recent mass-loss history and future state.

The Spatially-Extended, Time-Variable
Interacting Wind Structures

Collapse of the Inner Wind-Wind Collision Zone During Periastron Passage

Figure 4: Slices showin seven phases around periastron (rows) taken from the $r=+10 a$ SPH simulations of n Car assuming primary mass-loss rates of 8.5×10^{-4} plane at (left three columns) and $2.4 \times 10^{-4} \mathrm{M}_{\odot} / \mathrm{yr}$ (right three columns). All plots show the inner $\pm 1 a$ region. Axis tick marks correspond to an increment of $0.1 a \approx 1.55 \mathrm{AU}$. The orbital motion of the stars is counterclockwise. The LBV primary is to the left and the companion to the right at apastron In each simulation there is a "collapse" of the WWC zone between the stars. The hottest gas near the WWC apex vanishes during this time. The
higher the primary mass-loss rate, the sooner the collapse occurs before periastron, and the later the recovery of the hot gas after periastron. The

