Water Innovations and Lessons Learned From Water Recycling in Space

Michael Flynn NASA Ames Research Center

Historical Approach: Open Loop

International Space Station

Commercial Space

Commercial Space

<u>Inputs</u>

Water

Oxygen

Waste Collection

Temperature Control

Pressurized Environment

Energy

<u>Outputs</u>

Waste Water

Carbon Dioxide

Volatile Organics

Solid Wastes

Heat

MSFC/5-23920

ISS US Water Processing Assembly

Urine and condensate are recycled to drinking water.

Wastewater is recycled using distillation, adsorption, and oxidation.

ISS US Water Processing Assembly

Urine and condensate are recycled to drinking water.

Wastewater is recycled using distillation, adsorption, and oxidation.

Concept to Practice

It is one thing to talk about what could be done but entirely another to make it work

Lessons Learned From 3 Years Operation of ISS WPA

- Formation of calcium scale determines maximum recovery ratio.
- Trace contaminates build up.
- Maintenance requirements are high.
- Reliability matters. Especially for future long duration missions.