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ABSTRACT

The goal of prognostics and health management (PHM) sys-

tems is to ensure system safety, and reduce downtime and

maintenance costs. It is important that a PHM system is ver-

ified and validated before it can be successfully deployed.

Prognostics algorithms are integral parts of PHM systems.

This paper investigates a systematic process of verification

of such prognostics algorithms. To this end, first, this paper

distinguishes between technology maturation and product de-

velopment. Then, the paper describes the verification process

for a prognostics algorithm as it moves up to higher maturity

levels. This process is shown to be an iterative process where

verification activities are interleaved with validation activities

at each maturation level. In this work, we adopt the concept

of technology readiness levels (TRLs) to represent the differ-

ent maturity levels of a prognostics algorithm. It is shown that

at each TRL, the verification of a prognostics algorithm de-

pends on verifying the different components of the algorithm

according to the requirements laid out by the PHM system

that adopts this prognostics algorithm. Finally, using simpli-

fied examples, the systematic process for verifying a prognos-

tics algorithm is demonstrated as the prognostics algorithm

moves up TRLs.

1. INTRODUCTION

Prognostics and health management (PHM) systems are im-

portant to ensure safe and correct operation of real-world en-

gineered systems, reduce their downtime, and reduce main-

tenance costs. Integral components of PHM systems include

diagnostics and prognostics algorithms, the associated diag-

nostics and prognostics models, sensors, and other hardware,
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and interfaces between these different components. Diagnos-

tics algorithms involve fault detection, isolation, and iden-

tification capabilities; and contribute towards system safety

by enabling fault mitigation steps. prognostics algorithms in-

volve prediction of how the system will evolve in the future,

thereby contributing towards system safety. Prognostics al-

gorithms also enable reduction of downtime and maintenance

costs by providing decision makers with predictions of future

system behavior so that decision makers can use this infor-

mation to either take preventative, fault mitigating, or main-

tenance actions, or modify mission operations to prolong sys-

tem use, and maximize mission utility.

Before a PHM system can be deployed in real-world scenar-

ios, it is critical that the PHM system undergoes verification

and validation. At the most general level, verification of a

product is the process where stakeholders answer the query

“are we building it right?”, while validation of a product is the

process where stakeholders answer the query “are we build-

ing the right thing?” Intuitively, verification is the quality

control process of evaluating whether or not a product, ser-

vice, or system complies with testable constraints imposed by

requirements at the start of the development process. In con-

trast, validation is the quality assurance process of evaluating

whether or not a product, service, or a system accomplishes

its intended function when fielded in the target application

domain.

A PHM system may include several hardware and software

components, including software implementations of diagnos-

tics and prognostics algorithms. While many publications

discuss the verification of hardware (Gupta, 1993; McMillan,

2000) and software verification (Bérard et al., 2010; Wallace

& Fujii, 1989) only, this paper focuses on the verification of

all the different components that constitute prognostics algo-

rithms. To this end, first, this paper distinguishes between

technology maturation and product development contexts to
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characterize various PHM verification and validation scenar-

ios often discussed in the literature, and then, proposes a pro-

cess that identifies specific steps that can facilitate verifica-

tion of prognostics algorithms. Specifically, the contributions

of this paper are as follows:

1. This paper describes the verification process for a prog-

nostics algorithm as it moves up to higher maturity lev-

els. In this work, the concept of technology readiness

levels (TRLs) is adopted to represent the different matu-

rity levels of a prognostics algorithm.

2. Next, it is shown that at each TRL, the verification of a

prognostics algorithm depends on verifying the different

components of the algorithm according to the require-

ments laid out by the PHM system that adopts this prog-

nostics algorithm.

3. Finally, using simplified examples, the systematic pro-

cess for verifying a prognostics algorithm is demon-

strated as the prognostics algorithm moves up TRLs.

2. VERIFICATION AND VALIDATION OF WHAT - A
PRODUCT OR A TECHNOLOGY?

In order to put our proposed view of the maturation process

into context, first we distinguish between developing a sys-

tem or a product1 versus maturing a technology2. The devel-

opment of a system/product is driven by the high level need

to accomplish a certain goal in a specific application, whereas

technology is understood to be more general and applicable

to more than one system when matured.

Examples of systems or products include PHM systems, such

as a health and usage monitoring system (HUMS) (Romero,

Summers, & Cronkhite, 1996), battery health management

system (BHMS) for an electric unmanned aerial vehicle (e-

UAV) (Saha et al., 2011), health management system for a

water recycling system (WRS) (Roychoudhury, Hafiychuk, &

Goebel, 2013), and so on. As shown in Figure 1, a PHM sys-

tem generally consists of several components, such as sensors

(including data acquisition (DAQ), signal conditioner, etc.),

technologies such as diagnostics and prognostics algorithms,

diagnostics and prognostics models, and other hardware (e.g.

communication channels, decision making, interfaces, data

storage, and displays, among others). Some of these com-

ponents, such as sensors, DAQ, etc., are often already ma-

tured technologies used in commercial off-the-shelf (COTS)

products while others such as prognostics algorithms may be

viewed as technologies that need to be matured before they

can be used in the PHM systems.

An example of a prognostics algorithm or technology is the

ComputeRUL algorithm, whose flowchart is shown in Fig-

ure 2. ComputeRUL consists of three main functions: (i)
current state estimation, (ii) future state prediction, and (iii)
1In this paper, we use the terms ‘system’ and ‘product’ interchangeably.
2We use the terms ‘algorithm’ and ‘technology’ interchangeably.
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Figure 1. Typical components of a PHM System.
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Figure 2. Flowchart of ComputeRUL, an example prognos-
tics algorithm.

remaining useful life (RUL) computation. The current state

estimation function takes as inputs the sensor readings and the

system input data and estimates the current state of the sys-

tem using a particle filtering scheme (Arulampalam, Maskell,

Gordon, & Clapp, 2002) that uses a prognostics model of the

system. The future state prediction function takes, as inputs,

estimated future operational and environmental profiles and

uses a Monte Carlo technique (Kalos & Whitlock, 2008) to

predict future system state using the prognostics model. Fi-

nally, the RUL computation function compares the predicted

values of system state to a predefined threshold and computes

RUL as the time remaining before the predicted system state

values cross this threshold (Daigle & Goebel, 2011).

Verification and validation are key steps in maturing both

products and technologies; however the specifics for each
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Figure 3. The technology maturation and product development paths.

case may differ. It is important to understand these dif-

ferences in order to clearly identify what involves verifi-

cation and validation of a prognostics technology. In the

PHM literature we identified that there are several efforts that

report verification and validation activities in their respec-

tive applications or products, however it was very confus-

ing to get a consistent understanding of what activities are

geared towards verification, and what activities enable vali-

dation, separately (Tang et al., 2007; Feather & Markosian,

2008). Many efforts combine verification and validation as

one task (Aguilar, Luu, Santi, & Sowers, 2005; Byington,

Roemer, Kalgren, & Vachtsevanos, 2005), while others use

similar methods but sometime refer to them by verification

and sometime by validation. Further, most of these reported

developments represent different levels of technical maturity,

or in other cases, different levels of system integration. Here

we attempt to describe a systematic process that allows us to

put most of these efforts into a common context and clearly

identify the nature of distinct verification and validation ac-

tivities.

But first, we distinguish between two related but different

contexts that influence the nature of verification and valida-

tion activities but often get confused with each other, i.e.

product development versus technology maturation (Hicks,

Larsson, Culley, & Larsson, 2009). While the steps for both

activities look similar there are some differences that are im-

portant to understand verification and validation for PHM

system development versus for prognostics technology matu-

ration.

Product development typically starts from a top level need

for a product (such as a PHM system) for which several ideas

may be evaluated at the concept stage. Based on a selection

process some ideas move forward with development. At that

point a system gets broken into its subsystems and compo-

nents and requirements flow down (Saxena et al., 2012) for in-

dividual component development and system integration. At

the lowest level some of these components may already ex-

ist as COTS components based on mature technologies. But

if there are gaps identified, new components may be devel-

oped using new technologies. It must be noted that in this

scenario the new technology is developed and matured with

an end product in mind and, therefore, most of the testing is

driven by the requirements flowed down from the top level

product. Once developed, these components are first tested

individually (quality control process) and then integrated into

a subsystem, which undergoes quality control again at the in-

tegrated level. At each level tests are designed to help ful-

fill higher level requirements. This process continues itera-

tively until the entire system has been integrated and tested as

a whole. The product can then be further certified for specific

use by domain-relevant certifying agencies.

The technology maturation, on the other hand, typically starts

at the very low level where a technological concept is consid-

ered potentially useful. Prototypes and simulations are de-

veloped and tested on simpler cases. Feedback is used to re-

fine the implementation and retest. It is desirable to apply

and demonstrate the technology to a variety of applications

for establishing its generality. This is often accomplished by
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proof-of-concept developments for various use cases. Note

that each of these proof-of-concept use cases can be con-

sidered as a product with its own product development cy-

cle, and a successful development of each of these products

helps in placing increased trust in the new technology as a

whole (see Figure 3), consequently also increasing the ma-

turity level. Conversely, the technology can also be matured

without any specific product in mind, or rather with several

potential products in mind. As a technology matures through

demonstrations and testing it may be adopted for a specific

use case for which a directed and dedicated product devel-

opment cycle is usually followed. Specific verification and

validation activities, may be pursued in order to integrate this

technology into that product. Note that although the tech-

nology at this point can be claimed as matured to be used

in that particular product, the generality of technology may

allow it to be usable for other products, often with required

customization.

2.1. Technology Maturation

We realize that from our research-perspective, maturation of a

prognostics algorithm as a technology falls under the general

technology maturation category. There are several efforts,

currently undergoing, to integrate prognostics algorithms into

specific PHM system products such as BHMS for an e-UAV,

health management of a WRS, and so on. Therefore, from

here on we will describe what prognostics technology mat-

uration would look like and what the verification and vali-

dation specific steps are for this maturation. In this work,

we adopt NASA’s Technology Readiness Level (TRL) con-

cept (Mankins, 1995) to describe various maturity levels for a

prognostics technology with no particular preference. Other

similar concepts can be used just as well. With this un-

derstanding, a technology moves up the TRL as it matures,

whereas a product moves up a system integration ladder as it

gets developed.

NASA TRLs are defined from TRL 1 through 9 (Mankins,

1995). TRL 1 describes a technology at its very concept

or first level of maturation, where only basic principles are

observed and reported. TRL 2 describes the stage when a

technology concept and/or application is formulated. At TRL

3, analytical and experimental critical function and/or char-

acteristic proof of concept of the technology has been per-

formed. Component and/or breadboard validation in labo-

ratory environment is performed in TRL 4. TRL 5 repre-

sents the stage when the component and/or breadboard val-

idation is performed in a relevant environment, while TRL

6 indicates the maturation stage when the system/subsystem

model or prototype demonstration is performed in a relevant

environment (either ground or space). When the technology

reaches TRL 7, the system prototype demonstrations are per-

formed in a space environment. TRL 8 represents the stage

when the actual system gets completed and flight qualified

through test and demonstration (either ground or space), and

finally, TRL 9 represents the stage when the actual system is

‘flight proven’ through successful mission operations. Note

that while an OEM component has reached TRL 8 or 9, it

may be integrated into a larger system (product) which is at a

lower integration level, i.e. not a full system on its own.

From the technology’s point of view, Figure 4 illustrates that

at each TRL of a technology, such as prognostics, both ver-

ification and validation activities must be performed. It is

expected that at low TRLs (TRL 1-2), more effort would be

on validation of the concepts than verification because the

goal at these TRLs is to ensure that the prognostics technol-

ogy is indeed useful in accomplishing system level perfor-

mance, safety, and cost goals. In these stages, the technology

is still being developed and is adopted in less mature proto-

types and products. At middle TRLs (TRL 3-7), more effort

is expected on verification activities than validation, since at

these TRLs, the emphasis is on adopting and implementing a

particular prognostics technology (already verified and vali-

dated at lower TRLs) in different PHM systems (at different

maturation levels). At high TRLs (TRL 8-9), relatively more

effort is again on validation than verification, since by now

it is established that the implementations of the prognostics

technology (in middle TRLs) are verified and validated to be

‘working’, and the emphasis at higher TRLs is to ensure that

the intended functions of the target PHM system that adopts

this prognostics algorithm is fulfilled successfully. As we can

see in the above description, it is clear that verification and

validation of a prognostics technology at any TRL assumes

completion of verification and validation at previous TRLs.

Figure 4 also points out that the scope of the products (e.g.

PHM systems) that adopt this technology gets more focused

as the prognostics technology development proceeds from

low TRLs to high TRLs, e.g., from less-mature PHM systems

implemented on breadboards to mature BHMS for the partic-

ular Lithium-Ion batteries used in the e-UAV. Moreover, as

the prognostics technology matures to higher TRLs, they get

integrated into PHM systems that are part of progressively

larger systems.

2.2. Product Development

From a products point of view, verification and validation

steps are performed for the product (PHM system in our case)

by verifying and validating each of its components, the inter-

faces between these components, and their interactions. The

individual components of a product, however, follow their

own maturation cycle and integrate into the main product

life-cycle when they have matured to a certain degree within

their own maturation scale. For example, the prognostics al-

gorithm, like other components of the PHM system, follows

its own maturation (TRL development) stages and gets inte-

grated into a product when a minimum TRL is achieved. Typ-
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Figure 4. Verification and validation activities across different
TRLs.

ically technologies demonstrated to be at TRL 6 or higher are

considered a candidate to be integrated into a product ready

for use. Once integrated into a product, the prognostics al-

gorithm gets verified and validated together with other inte-

grated components, as a subsystem for that product. Note that

other components of the PHM system, e.g. original equip-

ment manufacturer (OEM) components such as sensors may

be at very high maturation level, but the product, i.e., the

PHM system, as a whole may not be considered fully mature.

In the remainder of this paper, we focus our attention specifi-

cally on the verification of the prognostics algorithms, which

is the main topic in this paper. The validation of prognos-

tics algorithms is beyond the scope of this work, and will be

investigated as part of future work. However, for the sake

of highlighting how both verification and validation activities

are performed at different TRLs (shown in Figure 4), we will

describe some specific validation activities while discussing

the case study (in Section 4). The illustrated examples of

validation activities also help in drawing a contrast with spe-

cific verification activities at various TRLs, especially since,

in literature, these validation activities are often included as

verification that leads to confusion.

3. VERIFICATION OF PROGNOSTICS ALGORITHMS

Before we describe the verification process for prognostics

algorithms, we first have to define what constitutes a prog-

nostics algorithm. Figure 5 shows the different components

of a prognostics algorithm when adopted by a product, such

as a PHM system. The components of a prognostics algo-

rithm, according to our understanding, are:

• The core prognostics algorithm (CPA) is a high-level ab-

straction of the prognostics approach which can be rep-

resented in terms of a system block diagram, a flowchart,

or pseudocode. It is not implemented code. Figure 2

presents an example of the CPA for the ComputeRUL
prognostics algorithm.

• The implementation specific aspects (ISA) relate to a

particular implementation of the core prognostics algo-

rithm (denoted by CPA) in a particular coding language

and a particular computational processing architecture

and hardware.

• The domain specific entities (DSEs) of a prognostics al-

gorithm when the prognostics algorithm gets adopted in

a particular product. The DSE will typically include

domain-specific models. We note that every diagnos-

tics and prognostics algorithm is based on a correspond-

ing underlying model. For instance, in classical model-

based prognostics algorithms, the models may be state-

space models or some other mathematical construct or

abstraction that represent or describe physical behavior

of the system under consideration. These models can be

built upon the use of physics first principles or empiri-

cally by observing the physical behavior. For data-driven

prognostics algorithms, DSEs consists of domain spe-

cific feature extraction methods along with structures for

different mathematical abstractions. These abstractions

are typically built by observing and extracting the infor-

mation available in the data often without explicit use of

physical phenomena knowledge. As a result, in the data-

driven prognostics context, features and abstractions as

part of the DSEs are typically equivalent to the concept of

features and models in statistical learning. For example,

in case of data driven diagnostics and prognostics algo-

rithms, mathematical constructs such as Artificial Neu-

ral Network (Yegnanarayana, 2004), Gaussian Process

Regression (GPR) (Seo, Wallat, Graepel, & Obermayer,

2000), etc. are trained using data by learning parame-

ters and fixing a structure (topology, covariance struc-

ture, etc.) to develop models that can be regressed to

make predictions.

• The data sources (DS) consist of sensor measurements

of physical variables. These data are typically assumed

to be part of a modern instrumentation system in which

a transducer is used to measure a physical quantity and

its output is processed through a signal conditioner and

DAQ in order to obtain a digital representation of such

measurement that can be logged for future usage, or use

immediately by the algorithm. There are cases in which

a physical quantity is not directly measured by a physical

sensor but it is estimated from other physical sensors.

By making distinctions between the different components, we

identify separate pieces of a prognostics technology that can

be verified in parts. This decomposition, to our understand-

ing, makes it easier to verify if something changes, since, in

this way, whoever makes a change to a particular component
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Figure 5. Components of a prognostics algorithm adopted by
a PHM System.

must also verify that (updated) component at that level. Typ-

ically, low TRL technologies get developed by different con-

tractors and do not get adopted in a product until verified and

validated at that level. So from a high TRL, system integra-

tors’ point of view, they are not tasked with the verification of

low-level components. But, if a component changes at a high

TRL, the component will have to undergo verification at that

high TRL again.

As an example, consider the ComputeRUL algorithm whose

CPA is described using the flowchart in Figure 2. It is possible

that ISA, DSE, and DS may all change at different maturation

levels of ComputeRUL, but the CPA may remain the same.

The ISA, DSE, and DS change because through the course of

maturation of the CPA, several systems or products employ-

ing such technology are going to be developed at different

points in time and likely by different parties with different

target application domains.

For example, at TRL 4, the ISA could be in Matlab on a labo-

ratory computer, while at a higher TRL (say, TRL 8), perhaps

the ISA would be an assembly language implementation run-

ning on embedded processors onboard the e-UAV. Similarly,

at TRL 3, DS could be a simulated data, while at TRL 8, the

DS could be the actual system sensors onboard the e-UAV as

its data sources. Similarly the DSE for TRLs 3 and 8 could be

the model of a generic COTS battery cell, and a high fidelity

model of the specific Lithium-Ion battery used on board the

e-UAV, respectively.

At each TRL, the verification of the prognostics technology

implies the verification of ISA with respect to requirements

defined using the corresponding DSE and DS. As the prog-

nostics technology moves from one TRL to the next, if any

of the DSE, DS, or ISA of the prognostics algorithm at the

higher TRL differs from those at the lower TRL, all three

components need to be verified again at the higher TRL. Typ-

ically, at higher TRLs, the ISA and corresponding DSE may

be the same from one TRL to the other, but the DS usually

changes.

Recall that verification is the quality control process of eval-

uating whether or not a product, service, or system complies

with testable constraints imposed by requirements at the start

of the development process. Therefore, requirements play

an integral part in verification efforts, and, verification, in a

way, can only be as good as the requirements (Saxena et al.,

2012; Rajamani et al., 2013; Saxena, Roychoudhury, Lin, &

Goebel, 2013). Several publications list various attributes that

characterize the goodness of individual requirements, as well

as the set of requirements (Firesmith, 2003; Sommerville &

Sawyer, 1997). For the sake of brevity, we will discuss here

only the most important of these attributes good requirements

must fulfill to enable verification:

1. Each requirement must be verifiable, i.e., a finite, cost-

effective process has been defined to check that the re-

quirement has been attained.

2. Each requirement must be attainable (or, feasible), i.e,

solutions exist within performance, cost, and schedule

constraints and the requirement can be satisfied within

the constraints of the project.

3. Each requirement must be unambiguous (or, understand-
able), i.e., it expresses objective facts, not subjective

opinions, and it is subject to one and only one interpreta-

tion.

4. Each requirement must be design independent, i.e., each

requirement does not specify a particular solution or a

portion of a particular solution. Stating implementation

instead of requirements can lead to major issues, such as

forcing a design where it is not intended, or leading the

authors of these requirements to believe that all require-

ments are covered.

5. Each requirement must be traceable to an originating

high-level requirement. Traceability refers to relation-

ships between parent and child requirements, and be-

tween requirements and other design goals. Every re-

quirement should be traceable to the needs, goals, objec-

tives, and constraints of the target application.

6. The set of requirements must be complete, i.e., every-

thing the system is required to do throughout the systems

life cycle is included. Completeness is a desired property

but cannot be proven at the time of requirements devel-

opment, or perhaps ever.

6
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The property of traceability is very important. This is be-

cause, a PHM system by design is almost always a part of a

larger target system, and typically, PHM system requirements

are derived from high level performance, cost, and schedule

requirements of these target systems (Saxena et al., 2012).

Such high level requirements are typically generated by the

customer (the stakeholder who concerns with getting the sys-

tem built), and often times, the vendor (the stakeholder who

concerns with building the system to the customer’s satisfac-

tion) must flow down the requirements from the high level

customer-requirements to low-level testable requirements.

As part of previous work, in (Saxena et al., 2012), we devel-

oped a process to flow down high level functional require-

ments to low level prognostics performance metrics parame-

ters and illustrated this process using an e-UAV scenario. The

low level prognostics metrics take into account several per-

formance factors such as precision, timeliness, accuracy, and

prediction confidence, e.g. the α-λ and β metrics developed

in (Saxena et al., 2012).

4. CASE STUDY: VERIFICATION OF COMPUTERUL

This section presents a procedure for verification of the prog-

nostics algorithm ComputeRUL. As mentioned in Section 3

above, a prognostics algorithm consists of four distinct com-

ponents, namely CPA, ISA, DS, and DSE based on the prod-

uct that has adopted the prognostics technology at a particu-

lar TRL. For this particular example, as the prognostics algo-

rithm moves to a higher TRL, the CPA is assumed to remain

unchanged, although this is not always the case. However, the

other three components, i.e., ISA, DS, and DSE, may change

as the prognostics algorithm moves to higher TRLs, requiring

that the prognostics algorithm is verified again.

Table 1 presents the four components of a prognostics algo-

rithm at different TRLs along with a list of verification and

validation testing activities at each TRL. At TRL 1, the prog-

nostics algorithm ComputeRUL is in a concept form, and ex-

ists as a flowchart (shown in Figure 2). Recall that verification

tests involve checking the implementation correctness while

validation tests involve checking for functional correctness.

Since there is no ‘real’ implementation, there are no DSE and

DS for this algorithm at this TRL, and the testing activities in-

volve evaluation of the applicability of the ComputeRUL to-

wards predictive life estimation towards health management.

At such a low TRL, therefore, the nature of the testing of this

algorithm is more of validation than verification.

In TRL 2, ComputeRUL is implemented on paper us-

ing the detailed mathematical abstractions for particle fil-

ter (Arulampalam et al., 2002) and Monte Carlo meth-

ods (Kalos & Whitlock, 2008). The DSE at this stage in-

volves representative nonlinear state-space equations of bat-

teries, and the DS involved ‘made-up’ synthesized data from

general battery dataset. The goal of testing activities at this

stage is still more validation-oriented, and involves determin-

ing if the ComputeRUL algorithm can be applied to battery

discharge prediction using current and voltage data. It is also

important to study the battery data and ensure that features

are available that correlate monotonically to measure fault

growth in batteries.

At TRL 3, ComputeRUL is implemented using C++ on a

generic computer. The DSE include equations of battery of

arbitrary chemistry, and the DS used involve damage progres-

sion battery data obtained from simulations. The test activi-

ties at this stage include both verification and validation activ-

ities. The verification activities involve ensuring that uncer-

tainty quantification error, modeling and discretization errors

are within allowed limits. Validation activities involve ensur-

ing that α-λ performance, prediction horizon, convergence,

confidence interval, statistical hypothesis testing, reliability

metric etc. are within allowed limits.

At TRL 4, ComputeRUL is implemented in C++ on the

computer in the battery testbed in the laboratory. The DSE

includes equations of Lithium-Ion batteries similar to those

on-board the e-UAV. The DS at this TRL involves data from

Lithium-Ion batteries in the environmental chamber (in lab-

oratory setting) with constant load profiles. Both verifica-

tion and validation activities make up the test activities at

this TRL. The verification activities involve ensuring that

measurement errors are within allowed limits; the algorithm

works correctly in the presence of manufacturing variability;

the channel biases are kept at a minimum; and that the algo-

rithm works for constant load profiles. Validation activities

involve ensuring that α-λ performance, prediction horizon,

convergence, confidence interval, statistical hypothesis test-

ing, reliability metric etc. are within allowed limits.

At TRL 5, the ISA and DSE of ComputeRUL remains the

same as in TRL 4. However the DS now involves data from

Lithium-Ion batteries in the environmental chamber (in lab-

oratory setting) with varying load profiles, and hence the

prognostics technology will have to be verified and validated

again. The verification and validation testing activities at

TRL 5 are similar to that of TRL 4.

The ISA for ComputeRUL at TRL 6 involves MATLAB im-

plementation of the CPA running on computers similar to

those on-board the e-UAV. The DSE include equations of

exact type of Lithium-Ion batteries used on-board e-UAV.

The DS at this TRL includes played-back data from ac-

tual Lithium-Ion batteries onboard the e-UAV from multi-

ple ground tests. Verification tests at this TRL include en-

suring that the no coding errors are made; discretization and

sampling rate errors are avoided; and no communication er-

rors occur. Validation tests include ensuring that prognostic

horizon, computation time, α-λ performance, robustness to

system noise, prediction update rate, etc. are within require-

ments.

7
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At TRL 7, ComputeRUL is implemented in MATLAB run-

ning on the actual computers on-board the e-UAV. The DSE

are equations of exact type of Lithium-Ion batteries used on-

board the e-UAV and the DS consists of real-time data from

actual Lithium-Ion battery sensors onboard the e-UAV from

multiple flight tests with simplistic (safe) flight profiles.

Since the CPA, ISA and DSE of ComputeRUL does not

change from TRL 7 - 9, once the ISA, DSE, and the inter-

faces are verified in TRL 7, they do not need to be re-verified

in TRL 8 and 9. But, since DS changes from real-time data

from actual Lithium-Ion batteries onboard the e-UAV from

multiple flight tests with complex flight profiles in TRL 8 to

real-time data from actual Lithium-Ion batteries onboard the

e-UAV from actual science flight missions, validation activ-

ities are performed again at both TRL 8 and 9, and involve

ensuring that prognostic horizon, computation time, α-λ per-

formance, robustness to system noise, prediction update rate,

etc. are still within requirements.

In our case study, we use an example that used BHMS prod-

ucts at each TRL to demonstrate how the prognostics algo-

rithm matures to higher TRLs. But, as is shown in Figure 3,

maturation can also be done through different products or sys-

tems (e.g., PHM of Water Recycling System, HUMS of rotor-

crafts, etc.) with necessary customization and testing.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a systematic process of verifica-

tion of prognostics algorithms. We distinguished between

technology maturation and product development processes,

and described the systematic process of verification of a prog-

nostics algorithm as it moves up to higher maturity levels.

This process is iterative where verification activities are in-

terleaved with validation activities at each maturation level.

It was shown that at each maturation level, verification of

a prognostics algorithm depends on verifying the different

components of the algorithm according to the requirements

laid out by the PHM system that adopts this prognostics al-

gorithm. Finally, using simplified examples (mostly from the

battery health management domain), the systematic process

for verifying a prognostics algorithm was demonstrated.

In reality, verification and validation of prognostics technol-

ogy is not trivial. These challenges arise from use of non-

deterministic approaches to account for uncertainty in prog-

nostics and the self-evolving nature of these algorithms ex-

hibiting learning behaviors both of which result in an infinite

testing space from an exhaustive verification point of view,

which is practically impossible to cover. Apart from mathe-

matical or theoretical limitations, prognostics methods suffer

from acausality limitations towards their validation as they re-

quire ground truth information about actual time of failure for

failures that have not happened yet. As part of future work,

we will investigate how to address these challenges. We will

also investigate the process for validation of PHM systems.
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Table 1. Verification of ComputeRUL prognostics technology: an example.

TRL CPA ISA DSE DS Testing Activities

1 ComputeRUL Flowchart N/A N/A Evaluate applicability of predictive life esti-
mation towards health management (Valida-
tion)

2 ComputeRUL Mathematically
instantiating the dif-
ferent components in
CPA and simulating
these analytically

Representative nonlin-
ear equations

Synthesized data 1. Determine that battery discharge can be
predicted using available current and voltage
data. (Validation)
2. Verify that features are available that cor-
relate monotonically to measure fault growth
in batteries (Validation)
3. Quantify errors and confidence in com-
puted features correlated to fault ground truth
data (Validation)

3 ComputeRUL CPA implemented in
C++ on a generic lap-
top

Equations of battery
of any arbitrary chem-
istry

Damage progression
data obtained from
simulations

1. Ensure that uncertainty quantification er-
ror, modeling error, discretization error are
within allowed limits (Verification)
2. Ensure that α-λ Performance, prediction
horizon, convergence, etc. metrics from the
ISA are within allowed limits (Validation)

4 ComputeRUL CPA implemented in
C++ on the computer
in the battery testbed
in the laboratory

Equations of battery of
Lithium-Ion chemistry
similar to those on-
board the e-UAV

Data from Lithium-
Ion batteries in the
environmental cham-
ber (in laboratory
setting) with constant
load profiles

1. Ensure that measurement errors, manufac-
turing variability, channel biases, load pro-
files are all within allowed limits. (Verifica-
tion)
2. Ensure that α-λ Performance, predic-
tion horizon, convergence, confidence inter-
val, statistical hypothesis testing, reliability
metric etc. are within allowed limits. (Val-
idation)

5 ComputeRUL CPA implemented in
C++ on the computer
in the battery testbed
in the laboratory

Equations of battery of
Lithium-Ion chemistry
similar to those on-
board the e-UAV

Data from Lithium-
Ion batteries in the en-
vironmental chamber
(in laboratory setting)
with varying load pro-
files

1. Ensure that measurement errors, manufac-
turing variability, channel biases, load pro-
files are all within allowed limits. (Verifica-
tion)
2. Ensure that α-λ performance, predic-
tion horizon, convergence, confidence inter-
val, statistical hypothesis testing, reliability
metric etc. are within allowed limits. (Val-
idation)

6 ComputeRUL CPA implemented in
MATLAB running on
the computers similar
to that on-board the e-
UAV

Equations of exact
type of batteries of
Lithium-Ion chem-
istry on-board the
e-UAV

Played-back data from
actual Lithium-Ion
battery sensors on-
board the e-UAV from
multiple ground tests

1. Ensure no coding errors; discretization and
sampling rate errors; and communication er-
rors occur. (Verification)
2. Ensure that prognostic horizon, compu-
tation time, α-λ performance, robustness to
system noise, prediction update rate, etc. are
within requirements. (Validation)

7 ComputeRUL CPA implemented in
MATLAB running on
the actual computers
on-board the e-UAV

Equations of exact
type of batteries of
Lithium-Ion chem-
istry on-board the
e-UAV

Real-time data from
actual Lithium-Ion
battery sensors on-
board the e-UAV from
multiple flight tests
with simplistic (safe)
flight profiles

1. Ensure that communication errors and de-
lays, code verification, race conditions are all
within allowed limits. (Verification)
2. Ensure that prognostic horizon, compu-
tation time, α-λ performance, robustness to
system noise, prediction update rate, etc. are
within requirements. (Validation)

8 ComputeRUL CPA implemented in
MATLAB running on
the actual computers
on-board the e-UAV

Equations of exact
type of batteries of
Lithium-Ion chem-
istry on-board the
e-UAV

Real-time data from
actual Lithium-Ion
battery sensors on-
board the e-UAV from
multiple flight tests
with complex flight
profiles and different
operating conditions

1. Ensure that prognostic horizon, compu-
tation time, α-λ performance, robustness to
system noise, prediction update rate, etc. are
within requirements. (Validation)

9 ComputeRUL CPA implemented in
MATLAB running on
the actual computers
on-board the e-UAV

Equations of exact
type of batteries of
Lithium-Ion chem-
istry on-board the
e-UAV

Real-time data from
actual Lithium-Ion
battery sensors on-
board the e-UAV
during multiple actual
science missions

1. Ensure that prognostic horizon, compu-
tation time, α-λ performance, robustness to
system noise, prediction update rate, etc. are
within requirements. (Validation)
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