

1

Integrated System Modeling for Nuclear Thermal Propulsion (NTP)

Stephen W. Ryan, Stanley K. Borowski

NASA Glenn Research Center, Cleveland, OH, 44135

Nuclear thermal propulsion (NTP) has long been identified as a key enabling technology
for space exploration beyond LEO. From Wernher Von Braun’s early concepts for crewed
missions to the Moon and Mars to the current Mars Design Reference Architecture (DRA)
5.0 and recent lunar and asteroid mission studies, the high thrust and specific impulse of
NTP opens up possibilities such as reusability that are just not feasible with competing
approaches. Although NTP technology was proven in the Rover / NERVA projects in the
early days of the space program, an integrated spacecraft using NTP has never been
developed. Such a spacecraft presents a challenging multidisciplinary systems integration
problem. The disciplines that must come together include not only nuclear propulsion and
power, but also thermal management, power, structures, orbital dynamics, etc. Some of this
integration logic was incorporated into a vehicle sizing code developed at NASA’s Glenn
Research Center (GRC) in the early 1990s called MOMMA, and later into an Excel-based
tool called SIZER. Recently, a team at GRC has developed an open source framework for
solving Multidisciplinary Design, Analysis and Optimization (MDAO) problems called
OpenMDAO. A modeling approach is presented that builds on previous work in NTP
vehicle sizing and mission analysis by making use of the OpenMDAO framework to enable
modular and reconfigurable representations of various NTP vehicle configurations and
mission scenarios. This approach is currently applied to vehicle sizing, but is extensible to
optimization of vehicle and mission designs. The key features of the code will be discussed
and examples of NTP transfer vehicles and candidate missions will be presented.

Nomenclature
ASV = Asteroid Survey Vehicle
CEV = Crew Exploration Vehicle
DRA = Design Reference Architecture
FTD = Flight Technology Demonstrator
IMLEO = Initial Mass in Low Earth Orbit
Isp = Specific Impulse (seconds)
K = temperature (degrees Kelvin)
klbf = thrust (1000’s of pounds force)
LEO = Low Earth Orbit (= 407 km circular)
LH2 = Liquid Hydrogen
MET = Mission Elapsed Time
NERVA = Nuclear Engine for Rocket Vehicle Applications
NTP/NTR = Nuclear Thermal Propulsion/Nuclear Thermal Rocket
RCS = Reaction Control System
SLS = Space Launch System
t = metric ton (1 t = 1000 kg)
�V = velocity change increment (km/s)

I. Introduction and Background
N recent work, a number of scenarios for NTP enabled missions beyond LEO have been presented. Among
these are the Mars Design Reference Architecture (DRA 5.0), crewed missions to a near Earth asteroid (NEA),

the Earth-Moon Lagrange point (EML2) and lunar cargo and crew missions. [1, 2, 3, 4, 5, 6]

--
1LSC Branch, 21000 Brookpark Road, MS: 86-1, AIAA Member
2LTR Branch and Technical Lead, NTP Systems, 21000 Brookpark Road, MS: 86-4, AIAA Associate Fellow

I

2

In the early 1990s, a Fortran code was developed at NASA’s then Lewis Research Center (GRC) to provide mass
estimation for NTP vehicles. The code (designated MOMMA by its author, for Mark’s Optimizing Mission Mass
Allocator) organizes a mission as a series of phases where each phase has a duration and potentially a �V and/or a
change in mass due to jettison or pick up of payload. The initial mass is provided as a guess based on vehicle
structural and payload requirements and an estimated fuel load. Sizing rules are used for fuel tanks, cooling and
radiators. The program then solves the rocket equation for each of the �V maneuvers in sequence to determine a
final mass. Hydrogen fuel boil off and jettison/pickup are also accounted for at the appropriate times in the
sequence. The mission is repeated by iterating the initial guess until the final fuel load is zero, thus minimizing the
vehicle mass. See Figure 1 for a flowchart of the MOMMA code.

Figure 1 - MOMMA Flowchart

OpenMDAO is a software framework under development primarily at NASA GRC. It was conceived under the

Fundamental Aeronautics Program as a tool for the application of state of the art computational techniques for the
design of unconventional aircraft, but is architected such that it is applicable to the wide range of MDAO problems.
[7, 8] The key features of OpenMDAO are that it is a) open source b) object oriented and c) scriptable. The virtue of
being open source is that it is freely available and extensible. One can easily modify or extend aspects of the
framework to meet the needs of the problem. Contributions and plug-in extensions are also accepted from the user
community to further enhance its capabilities. Being object oriented further strengthens the extensibility of the
framework by enabling drop-in replacement for key modules as well as providing a flexible motif for model
development. Black box encapsulation and clearly defined interfaces are key to identifying the interactions between
subsystems and controlling complexity. Finally, the fact that OpenMDAO is implemented on top of the powerful
scripting language Python means not only that it is relatively quick and easy to develop with, but also that it is easy
to read, which is important for ensuring transparency and traceability in a model. Python is a popular tool for
scientific and engineering applications and is supported by a community that contributes powerful extensions like
NumPy and SciPy and a myriad of other open source modules. [9, 10, 11] Together, these attributes make
OpenMDAO an excellent platform on which to build a multidisciplinary system model.

The goal of this work is to build upon the mission mass optimization work done previously and to leverage the

power of the OpenMDAO framework to create a flexible and powerful tool for integrated system modeling of NTP
spacecraft and missions beyond low Earth orbit.

Estimate
Subsystems

Estimate Fuel
Required

Size
Subsystems

Simulate
Mission

Fuel > 0?

Done

Simulate Mission

For each phase:
- Pick up (e.g. samples)
- Expend consumables
- Expend fuel due to boil off
- Expend fuel for �V

maneuver
- Jettison (e.g. drop tanks)

Size subsystems

- Size fuel tanks
- Size cooling & radiators

3

II. NTP Vehicle Configurations
For human missions beyond low Earth orbit, it is important to minimize flight time in order to protect the health

of the crew against the long term effects of weightlessness as well as the radiation environment of deep space.
NASA’s Mars Design Reference Architecture (DRA) 5.0 study in 2009 evaluated multiple approaches to a manned
mission to the Mars surface and concluded that the optimal strategy in terms of a number of figures of merit
including crew safety, scientific return and affordability is a series of "fast-conjunction" mission in which the transit
times to and from Mars are minimized in exchange for long surface stay times. [1] The high thrust and a high
specific impulse of NTP along with its proven technology, flexibility and growth potential, made it the propulsion
system of choice for Mars DRA 5.0 and similarly make it well suited to a variety of missions from cis-lunar to
asteroid rendezvous.

The Mars DRA 5.0 mission is built on two vehicle configurations. The first, a cargo vehicle, is sent to Mars

ahead of the crew so as to provide a ready supply of provisions when they arrive. Two of these are employed to
deliver supplies to the Mars surface and a lander vehicle to Mars orbit. The cargo configuration is composed of a
core propulsion stage with a cluster of three 25klbf “Pewee” class engines, an in-line liquid hydrogen (LH2) fuel
tank and the aero-braked cargo module. The second configuration that carries the crew is based on the same core
propulsion stage as the cargo vehicle but has a larger in-line LH2 tank, an additional drop tank, a habitat module with
power and life support systems, and an Orion crew exploration vehicle (CEV). The cargo and crewed vehicle
configurations are both shown in Figure 2. This architecture is referred to as the “9-launch” architecture based on the
number of heavy lift launches required to deliver the components to LEO. Subsequent refinement has yielded a “7-
launch” architecture, eliminating the in-line LH2 tank. [2] In this scenario, the cargo vehicles are delivered in two
launches each (one for the core NTP stage and one for the cargo), while the crewed vehicle requires three launches
(one each for the core stage, the saddle truss and drop tank assembly, and the crewed payload). An illustration of
these configurations from the referenced report is shown in Figure 3. Variations on these basic configurations have
been envisioned for lunar and asteroid missions as well. [4, 5, 6]

Figure 2 - Mars DRA 5.0 NTP Vehicle Configurations

4

Figure 3 - "7-Launch" Mars NTP Vehicle Configurations

In Reference 4, the crewed MTV vehicle, called “Copernicus”, is adapted to function as a standalone Asteroid

Survey Vehicle (ASV) for a crewed expedition to a near Earth asteroid (NEA). For this configuration, dubbed
“Searcher”, a small 2-person pressurized excursion vehicle (MMSEV) is attached to the crewed payload element in
place of the contingency consumables canister in the Mars configuration. This excursion vehicle is used to approach
the asteroid and do proximity operations such as sample collection or even extravehicular activity (EVA). Variations
of the Searcher configuration were explored, starting with “Search Lite”, a fully reusable vehicle scaled down with
16 klbf engines and 7.6m diameter fuel tanks used for the low energy mission to the asteroid 2000 SG344.
Expendable and reusable options capable either of high energy missions to the asteroid Apophis or 1991 JW were
enabled using the baseline 25 klbf engines and 8.4 m or 10 m diameter tanks, and re-introducing the in-line tank
from Mars DRA 5.0. Finally, a small robotic flight technology demonstrator (FTD) spacecraft is envisioned based
on the Delta Cryogenic Second Stage (DCSS) but with an ~7.5 klbf NTP engine. Such a spacecraft could deliver a
science payload to an asteroid such as 2000 SG344 while serving as a stepping stone to development of the full scale
NTP vehicles.

In Reference 5, variations of the NTP vehicle are explored to enable fast-transit Mars missions and reusability by

adding a fourth engine and/or using oxygen “afterburner” nozzles to the basic NTR engine for augmented thrust. A
4-sided “Star Truss” design is also introduced; replacing the single drop tank with four laterally mounted tanks for
more fuel capacity (see Figure 4). Configurations were also developed for reusable lunar cargo and crew transport
missions. The crewed lunar transfer vehicle carries a lunar lander and Orion capsule in place of the short saddle truss
and TransHab module. The lander is attached via a common docking element at the front of the long saddle truss
that allows the Orion capsule to dock with it once the drop tank has been jettisoned, after which they can transfer to
the lander and descend to the lunar surface.

Also in Reference 5, some short round trip/short stay Mars mission options are outlined, including the innovative

approach of swapping the crewed payload element over to a previously positioned propulsion and drop stage for the
return trip. This mission would not land on Mars, but would enable a survey from orbit for up to 60 days.

5

Table 1 provides a summary of some of the various vehicle configurations under consideration. Abbreviations in
the table include STA for Short Truss Assembly, THAB for TransHab, TDM for T-Docking Module, LDAV for
Lunar Descent/Ascent Vehicle and MMSEV for Multi-Mission Space Excursion Vehicle.

Table 1 - Spacecraft Configurations

Vehicle Configuration Diameter Engines Inline Drop Payload

7 launch DRA5 Cargo 10m 3x25k @ 900s no no cargo lander/habitat module

7 launch DRA5 Crew 10m 3x25k @ 900s no saddle STA, THAB, TDM, Canister

Mars Split Mission (ERV) 10m 3x25k @ 906s no saddle Earth Return Vehicle

Mars Split Mission (MSV) 10m 3x25k @ 906s no saddle STA, THAB, TDM, Canister

Mars "All Up" 10m 3x25k @ 906s yes saddle STA, THAB, TDM, Canister

Reusable DRA5 #1 10m 3x25k LANTR @ 726/920s yes saddle STA, THAB, TDM, Canister

Reusable DRA5 #2 10m 4x25k @ 906s yes star with 4 tanks STA, THAB, TDM, Canister

Fast Transit 10m 4x25k @ 906s stretched star with 2 tanks STA, THAB, TDM, Canister

ASV1 Reusable SG344
"Search Lite #1" 7.6m 3x15k @ 906s no saddle STA, THAB, TDM, MMSEV,

4 crew

ASV2 Reusable SG344
"Search Lite #2" 8.4m 3x25k @ 906s no saddle STA, THAB, TDM, MMSEV,

4 crew

ASV3 Reusable SG344 8.4m 3x25k @ 906s no saddle STA, THAB, TDM, MMSEV,
6 crew

ASV4 Expendable Apophis 8.4m 3x25k @ 906s no saddle STA, THAB, TDM, MMSEV,
4 crew

ASV5 Reusable Apophis 8.4m 3x25k @ 906s yes saddle STA, THAB, TDM, MMSEV,
4 crew

ASV6 Reusable Apophis
"Searcher" 10m 3x25k @ 906s no saddle STA, THAB, TDM, MMSEV,

6 crew

Robotic FTD, 2000 SG344 4.8m 1x7k @ 905s no no Science

NTP Lunar transport Class-I 7.6m 3x15k @ 906s yes no STA, LDAV or THAB, MMSEV

NTP Lunar transport Class-II 8.4m 3x25k @ 906s yes no STA, LDAV or THAB, MMSEV

Prospector EML2 7.6m 3x16.7k @ 900s yes no THAB, MMSEV, lifting body

Commercial CPT 7.6m 3x16.7k @ 900s yes no THAB, lifting body

Reusable Lunar Cargo 7.6m 3x16.7k @ 900s no saddle,
docking port lunar habitat module

Reusable Lunar Crew 7.6m 3x16.7k @ 900s no saddle,
docking port lunar lander & Orion

Reusable Lunar Cargo 8.4m 3x25k @ 900s no saddle,
docking port 2x lunar habitat modules

Reusable Lunar Crew 8.4m 3x25k @ 900s no saddle,
docking port lunar lander & Orion

6

Figure 4 – Four Engine Configuration with Extra Fuel Tanks

III. Mission Descriptions and ��V Budgets
As discussed in the previous section, a variety of NTP vehicle configurations have been described, customized

for different missions to the Moon, cis-lunar space, NEAs, Mars and its moons. In this section, we provide a brief
summary of the mission profiles for these missions for the purpose of sizing the spacecraft and validating the
feasibility of the design for accomplishing the mission.

Figure 5 - Trajectory Details for Mission to 1991 JW

7

The most significant factor in sizing the vehicle for missions such as these is always the amount of fuel required;
therefore the missions are described in terms of the major maneuvers required of the main propulsion system. These
are described in terms of the change in velocity (�V) effected by the maneuver. Given this �V and the mass of the
spacecraft at the time of the maneuver, the fuel burn can be calculated via the rocket equation. Figure 5 is an
illustration of the major maneuvers for one such mission, to the asteroid 1991 JW.

See Table 2 for a sampling of some of the missions referenced in the previous section in terms of their major �V

maneuvers. The TDI and DOC columns indicate the �V required for the trans-destination injection maneuver and
destination orbit capture, respectively. The TEI and EOC columns similarly indicate the �V required for the trans-
Earth injection and Earth orbit capture maneuvers. In some cases, the TDI maneuver is split into two burns. Note
that the TEI and EOC maneuvers are not required for robotic science missions, and the EOC maneuver is not
required for non-reusable human missions.

Table 2 - Mission Description by Major Maneuvers

Mission
TDI1

(km/s)
TDI2

(km/s)
DOC

(km/s)
TEI

(km/s)
EOC

(km/s)
Total ��V
(km/s)

7-Launch DRA5 Cargo, Propulsive Capture 3.662 1.341 5.003

7-Launch DRA5 Cargo, Aero-capture 3.839 3.839

7-Launch DRA5 Crew 3.992 1.771 1.562 7.325

Mars Crewed 3.212 1.07 1.806 1.593 7.681

Mars 600day 2.9734 0.9166 1.47 3.08 8.44

Mars 900day 2.321 2.00 1.0393 1.4898 6.8501

2009 HC, Robotic 3.419 1.924 5.343

2009 HC, Crew 3.678 0.338 0.54 4.556

2000 SG344, Robotic 3.26 1.655 4.915

2000 SG344, Crew, 4/27/28 3.254 0.144 0.392 3.79

2000 SG344 Crew, 4/28/28 3.254 0.142 0.399 3.795

2000 SG344 Crew, 4/28/28 3.252 0.154 0.408 3.814

2000 SG344 Crew, 4/28/28 3.252 0.169 0.417 3.838

2000 SG344 Crew Reusable, 327d 1.693 1.627 0.144 0.392 1.711 5.567

2000 SG344 Crew Reusable, 319d 2.293 1.084 0.169 0.417 1.711 5.674

2008 EV5 Robotic, 12/25/21 4.127 2.354 6.481

2008 EV5 Crew, 6/22/24 3.81 1.203 2.766 7.779

Apophis Robotic, 10/17/21 4.429 0.356 4.785

Apophis Crewed, 5/8/28 3.783 1.542 0.342 5.667

Apophis Expendable, 344d 2.6593 1.2367 1.542 0.342 5.78

Apophis Reusable, 344d 2.799 1.237 1.542 0.342 1.711 7.631

1991 JW 5/27 4.014 0.851 0.612 1.711 7.188

Mars Split Mission (ERV) 12/30 3.662 1.34 5.002

Mars Split Mission (MSV) 5/33 3.83 1.53 3.12 8.48

Mars "All-Up" Mission 5/33 3.83 1.53 3.12 8.48

Reusable Lunar Cargo 3.3 0.915 0.915 1.7 6.83

Reusable Lunar Crew 3.3 0.915 0.915 1.7 6.83

8

In addition to the major maneuvers, each mission will also require several smaller maneuvers such as mid-course
corrections, rendezvous and docking, station keeping, etc. These would normally be performed using the vehicle’s
reaction control system (RCS) rather than the main propulsion system, but must be included in the mission scenario
to fully validate the mission.

There are a number of other constraints that must be satisfied to successfully complete the mission besides the

main propulsion and RCS fuel requirements. For example the burn time and number of restarts on the NTP engines
must be kept within the limits demonstrated in testing. The NERVA experimental engine (NRX-XE) was tested to
approximately two hours of burn time and twenty seven restarts in 1969. [12] Another set of constraints is levied by
the launch system which must deliver the spacecraft stages to low Earth orbit. Most of the missions under
consideration assume some variant of the Space Launch System (SLS) currently under development by NASA. The
Block-I version of this vehicle is expected to lift approximately 70 metric tons. [13] This is sufficient to launch the
smaller scale “Search Lite” class NTP vehicles, such as those described for some of the 2000 SG344 missions and
for the lunar missions. An upgraded Block-IA version of SLS with a lift capability of approximately 110 tons
enables the more challenging NEA missions, including those targeting the asteroid Apophis. The ultimate Block-II
SLS, which is planned to be able to lift approximately 130 tons to low Earth orbit, supports the larger vehicles,
including the 10 meter tank variations, for the Mars missions. Note that the available volume of the launch vehicle’s
payload shroud is also a key constraint, in relation to both the diameter and the length of the stages of the NTP
spacecraft.

IV. Spacecraft Model Architecture
In OpenMDAO, a model is composed of Components and Assemblies. A Component defines a simple object

that has a set of input variables, a set of output variables and an ‘execute’ function that calculates the values of the
output variables based on the values of the input variables. An Assembly is a special type of Component that can
contain one or more child Components or Assemblies. The input and output variables of an Assembly are typically
connected to those of its children. In addition, there may be connections between the child components, such that
the output of one component’s calculation will be the input to another. Instead of an execute function, the Assembly
has another special type of Component called a Driver. The Driver is responsible for invoking the execution of the
assembly’s child components in the proper sequence, which is called the Workflow. There are many types of
drivers available, but most commonly a solver or an optimizer is used. With a solver, you can set parameters based
on the components input variables and constraints based on their outputs and the solver will drive the model to a
valid solution. An optimizing driver adds the ability to specify an expression (objective) to be minimized. See
Figure 6 for an illustration from the OpenMDAO documentation.

Figure 6 - OpenMDAO Assembly Structure

9

This hierarchical, object-oriented structure of OpenMDAO lends itself to systematic break down of a spacecraft
into its constituent subsystems. To that end, a base class called Subsystem has been created for assemblies used to
build the spacecraft model. A basic Subsystem assembly contains the logic to calculate the dry mass and the wet
mass of the subsystem it represents. A MassItem component has been defined to represent the mass properties of the
individual pieces of equipment that makes up a subsystem. In addition, as described above, a Subsystem may have
additional child subsystems. The base functionality of a Subsystem is simply to roll up the mass properties of its
children.

To implement specific types of subsystems, additional attributes and behaviors are added to the Subsystem

component via Interface specifications. For example, a propulsion subsystem has two additional outputs: thrust and
specific impulse (Isp). These attributes are specified by the IPropulsion interface. A rocket engine component can
then be created as a Subsystem component that implements the IPropulsion interface. The implementation of
RocketEngine must then provide or calculate the thrust and Isp attributes in addition to its mass.

Many subsystems have attributes that are dependent on other subsystems. For example, many of the structural

components, including the saddle truss, are sized around the diameter of the fuel tanks. As mentioned previously,
this is generally a constraint of the launch vehicle and available fairing size. Here again we can make use of the
capabilities of the OpenMDAO framework to link attributes of one subsystem to another. Looking at a
FuelSubsystem as an example, we know that the mass of the MMOD and TPS subsystems both depend of the
surface area of the fuel tank. We can make connections between those attributes as depicted in Figure 7.

Figure 7 - Fuel Subsystem and ZBO Subsystem

A more complex example can be found in the Zero Boil-off Subsystem, also shown in Figure 7. This component

represents the subsystem that maintains the liquid Hydrogen (LH2) propellant at cryogenic temperatures and is based
on previous sizing analysis at NASA GRC. There are three components in this subsystem: the cryocooler, the
thermal radiator and the controller. The inputs to the CryoCooler component come from FuelSubsystem and include
the volume and surface area of the tank as well as the fluid temperature. These are used to estimate the heat leaks
that need to be addressed and thus the size and mass of the cryocooler. The electrical power to run the cryocooler is
added to the heat leak to calculate the total heat that needs to be rejected by the radiator, which is another output
value. The radiator component takes the total heat as an input and calculates the cooled temperature in addition to
the radiator mass. As can be seen in the figure, this creates a circular dependency between the cryocooler and the
radiator that must be solved, so a solver (FixedPointIterator) is included in the assembly to accomplish this. The
relevant portion of the code showing the structure of the ZBOSubsystem module is shown in Figure 8.

10

Figure 8 - Zero Boil-Off Subsystem Definition

In some cases the mass of a subsystem is dependent on the mission it is intended to be used for. A simple

example would be the TransHab module that provides living quarters and life support for crew members of a
manned mission. Clearly the size and mass of this module will depend on how many crew members need to be
accommodated and for how long. In this case ‘crew size’, ‘duration’ and ‘consumable rate’ would all be inputs to
the TransHab Subsystem component and are used to calculate its mass. Solar power systems are also a prime
example of being sized based on the destination, with missions to distances farther from the sun requiring larger
photovoltaic arrays.

class CryoCooler(Equipment):
 """ calculate total heat generated and mass of cryocoolers
 """

inputs
n = Int(2, iotype='in', desc='number of cryocoolers')

temperature = Float(302.0, iotype='in', units='K', desc='temperature')
tank_area = Float(0.0, iotype='in', units='m**2',desc='surface area of tank')
tank_volume = Float(0.0, iotype='in', units='m**3', desc='volume of tank')
redundancy = Float(0.25, iotype='in',desc='redundancy factor')

outputs
total_heat = Float(iotype='out', units='W',desc='total heat')
power = Float(iotype='out', units='kg',desc='electrical power required')
mass = Float(iotype='out', units='kg',desc='cryocooler mass')

class Radiator(Equipment):
""" calculate the temperature and mass of a radiator given the area and
 the total heat to be radiated
"""

inputs
area = Float(49.84, iotype='in', units='m**2', desc='radiator area')
total_heat = Float(0.0, iotype='in', units='W',desc='heat to be radiated')
Tenv = Float(270.0, iotype='in', units='K', desc='equilibrium temperature')
emmissivity = Float(0.85, iotype='in', desc='emmissivity')

outputs
mass = Float(iotype='out', units='kg', desc='radiator mass')
temperature = Float(iotype='out', units='K', desc='radiator temperature')

class ZBOSubsystem(Subsystem):
 """ calculate mass of Zero Boil-Off Cryocooler subsystem
 """

 # inputs
 tank_area = Float(0.0, iotype='in', units='m**2', desc='surface area of tank')
 tank_volume = Float(0.0, iotype='in', units='m**3', desc='volume of tank')
 redundancy = Float(0.25, iotype='in', desc='redundancy factor')

 def configure(self):
 self.add('cryocooler', CryoCooler())
 self.add('radiator', Radiator())
 self.add('controller', Controller())

 self.connect('tank_area', 'cryocooler.tank_area')
 self.connect('tank_volume', 'cryocooler.tank_volume')
 self.connect('redundancy', 'cryocooler.redundancy')

 self.connect('cryocooler.total_heat', 'radiator.total_heat')
 self.connect('radiator.temperature', 'cryocooler.temperature')

 self.connect('cryocooler.power', 'controller.power')
 self.connect('redundancy', 'controller.redundancy')

 self.add('solver', FixedPointIterator())
 self.solver.workflow.add('cryocooler')
 self.solver.workflow.add('radiator')
 self.solver.workflow.add('controller')

 self.driver.workflow.add('solver')

11

Typically for the missions under study, spacecraft are assembled in stages. A Copernicus-type crew transport
vehicle, for example, is composed of a core propulsion stage, a saddle truss and drop tank assembly stage, and a
crew/payload stage. The core stage is composed of the NTP propulsion system, fuel tanks and supporting
subsystems. The drop stage is predominately a jettisonable fuel tank with supporting subsystems. The crew stage is
a collection of crew support systems. Spacecraft and Stage components have been defined based on the Subsystem
component to model this structure. As an example, the three stage Asteroid Survey Vehicle (ASV) has been
modeled with the structure shown in Table 3.

Table 3 - Subsystem Structure for Asteroid Survey Vehicle (ASV)

ASV (Spacecraft)
core_stage (Stage) drop_stage (Stage) crew_stage (Stage)
- ntp (NTPSubsystem)

o engine (NERVA_25klbf)
o tvc (TVCSubsystem)

- rcs (RCSSubsystem)
- fuel_sys (FuelSubsystem)

o tank (Tank)
o mmod (MMOD)
o tps (TPS)
o structures (Subsystem)

- mps (MPSSubsystem)
- zbo (ZBOSubsystem)
- hds (HeliumSubsytem)
- avc (Subsystem)

o avionics (Equipment)
o comm (Equipment)

- eps (Subsystem)
o pva (SolarArraySubsystem)
o batteries (BatterySubsystem)
o pmad (Equipment)

- docking (DockingSubsystem)

- truss (Subsystem)
- fuel_sys (FuelSubsystem)

o tank (Tank)
o mmod (MMOD)
o tps (TPS)
o structures (Subsystem)

- mps (MPSSubsystem)
- hds (HeliumSubsystem)
- eps (Subsystem)

o batteries
(BatterySubsystem)

o pmad (Equipment)
- avc (Subsystem)

o avionics (Equipment)
o comm (Equipment)

- gyros (Subsystem)
- docking (DockingSubsystem)

- mmsev (Subsystem)
- TransHab (Subsystem)
- cev (Subsystem)
- food (Subsystem)
- crew (Subsystem)
- truss (Subsystem)
- tdm (Subsystem)
- rcs (RCSSubsystem)
- eps (ElectricalPowerSubsystem)
- avionics (Subsystem)

There are several advantages to the modular structure of this spacecraft model. The first is that it provides the

ability to easily set up a model to capture the various vehicle configurations discussed previously. It also allows for a
component to be implemented as simple equipment item with a rough mass estimate, as a basic Subsystem
component that calculates its mass based on a scaling law, or as a multi-component assembly that does a more
complex solution or optimization. Given this flexibility, a full spacecraft model can be constructed quickly with
fixed mass estimates for each subsystem. The details for each subsystem can then be filled in as higher fidelity
models become available by simply replacing that component with an updated version.

V. Mission Simulation
Given a spacecraft model such as the ASV shown above, the goal is to size the vehicle to accomplish a given

mission. To this end, a structure has been devised that follows the example of the MOMMA code in specifying a
mission in terms of a sequence of phases. Each phase encapsulates a part of the mission that impacts the spacecraft
in some way.

The most significant phases involve a maneuver, which imparts a change in velocity (�V) to the spacecraft via

the burning of fuel. The ASV, for example will perform several major maneuvers as shown in Table 2: Earth
departure (TDI1/2), asteroid orbit capture (DOC) and trans-Earth injection (TEI1/2). These large maneuvers are
performed using the core propulsion system. In addition, there are numerous smaller ‘burns’ for purposes such as
rendezvous and docking, attitude control, station keeping and propellant settling. These are accomplished via
reaction control systems in the core and crew stages. To encapsulate the concept of a maneuver, a Maneuver class
has been implemented. An instance of this class specifies one of a number of known maneuver types. If a �V is
specified, the maneuver will simply request the spacecraft to perform a burn sufficient to affect that change in
velocity. As an example, the asteroid orbit capture burn is captured as a mission phase with the syntax shown in
Figure 9.

12

Figure 9 - Phase Definition for a Maneuver

Alternatively, there are a number of orbital maneuvers that can be specified for which the �V will be calculated

based on the initial and desired orbit. The following orbital maneuvers are available, given a solar system body and
the current orbit: 'Departure from Apoapsis', 'Departure from Periapsis', 'Capture at Apoapsis', 'Capture at Periapsis',
'Circularize at Apoapsis', 'Circularize at Periapsis' and 'Plane Change'.

In addition to a maneuver, a mission phase may also have a number of other possible impacts. If a phase has a

duration greater than zero, this will trigger the expending of crew consumables and boil off of cryogenic fuels. It is
also possible to add or remove mass to the vehicle by the dropping of subsystems (e.g. the fuel tank from the drop
stage of the ASV) or by picking up scientific samples. Figure 10 illustrates the mission phase definition for
jettisoning the drop stage fuel tank:

Figure 10 - Phase Definition for a Jettison Event

Once all the phases of the mission have been specified, a complete mission profile is then implemented via the

Mission class. A Mission is an Assembly with a workflow that first executes the spacecraft and then each of mission
phases. The initial execution of the Spacecraft performs all of the sizing and mass calculations, resulting in a model
of the fully fueled vehicle at the beginning of the mission. As each subsequent Phase is executed, the spacecraft is
called upon to perform the specified action. For example, if the mission phase includes a maneuver the spacecraft
will be called on to perform the necessary burn to implement the specified or calculated �V. The spacecraft will
determine the appropriate propulsion system and calculate the burn time and fuel consumed via the rocket equation,
using its current mass and applying the appropriate margins and cool-down factor. The mass of the expended fuel is
then removed. For jettison events, the mass of an entire subsystem can be removed. The mission is configured such
that the spacecraft mass and fuel levels as well as the Mission Elapsed Time (MET) at the end of each phase are
provided as inputs to the next phase as shown in Figure 11.

Figure 11 – Subset of Apophis Mission with ASV

 # orbit capture at asteroid using core propulsion
 phase = Phase()
 phase.description = 'Asteroid Orbit Capture'
 phase.duration = 0
 maneuver = Maneuver()
 maneuver.dV = 1.542
 maneuver.other_reserve = 0.03
 phase.add maneuver(maneuver)

 # drop the fuel tank from the drop stage
 phase = Phase()
 phase.description = 'Tank Drop & Residuals'
 phase.duration = 0
 phase.drop subsystem = 'drop stage.fuel sys'

13

To close a mission design, the Mission assembly is put under the control of a solver, which has the ability to vary
the fuel capacities (for both the core stage propulsion and RCS) in order to size the spacecraft such that it has just
enough fuel to accomplish the mission. For example, the Apophis mission problem statement shown in Figure 12.

Figure 12 - Apophis Mission Problem Statement

In this example, we are assuming a common fuel tank capacity for the ASV’s core and drop stages. We then

provide initial guesses for the fuel and RCS propellant requirements and constrain the end of mission to have zero
remaining fuel and propellant. Upon execution, the simulation provides a snapshot of the state of the spacecraft at
every phase of the mission, updating the propellant masses and adjusting for the jettisoning of subsystems and pick
up of cargo. A simple plot of the mission mass profile, generated from one such execution of the model, is shown in
Figure 13. Upon successful solution, the initial state of the spacecraft reflects the total launch mass (IMLEO). The
IMLEO breakdown of the ASV for the Apophis mission solution is shown in Figure 14.

Figure 13 - Apophis Spacecraft Mass during Mission Simulation

 # Apophis mission simulation
 self.add('driver', BroydenSolver())
 self.add('mission', Apophis())
 self.driver.workflow.add('mission')

 # with ATV spacecraft
 self.mission.replace('spacecraft', ATV())

 # parameters:
 # H2 fuel tank capacity (assuming common H2 tank size)
 # RCS propellant capacity for core and crew stages
 self.driver.add_parameter('mission.spacecraft.fuel_capacity',
 low=10000., high=100000.)
 self.driver.add_parameter('mission.spacecraft.core_rcs_capacity',
 low=10000., high=100000., scaler=.10)
 self.driver.add_parameter('mission.spacecraft.crew_rcs_capacity',
 low=10000., high=100000., scaler=.10)

 # initial guesses
 self.mission.spacecraft.fuel_capacity = 50000
 self.mission.spacecraft.core_rcs_capacity = 5000
 self.mission.spacecraft.crew_rcs_capacity = 5000

 # constraints:
 # no fuel or RCS propellant left at end of mission
 self.driver.add_constraint('mission.end_fuel = 0.')
 self.driver.add_constraint('mission.end_prop[0] = 0.')
 self.driver.add constraint('mission.end prop[2] = 0.')

14

Figure 14 - IMLEO Solution for Apophis Asteroid Survey Vehicle (ASV)

spacecraft dry: 106365.19 wet: 223594.77
 core_stage dry: 33779.58 wet: 90190.64 (56411.07)
 mps 524.38
 zbo dry: 871.34 wet: 871.34
 cryocooler 513.98
 radiator 274.12
 controller 83.24
 docking dry: 649.94 wet: 649.94
 docking_adapter 649.94
 rcs dry: 1009.21 wet: 1926.40 (917.19)
 reactant 917.19
 hardware 1009.21
 fuel_sys dry: 9968.05 wet: 65366.85 (55398.80)
 mmod 1388.47
 tps 777.54
 tank dry: 7583.83 wet: 62982.63 (55398.80)
 fuel 55398.80
 shell 7583.83
 structures dry: 218.20 wet: 218.20
 aft_ring 57.70
 forward_ring 57.70
 fwd_adap_skirt 102.80
 avc dry: 434.24 wet: 434.24
 communications 42.09
 avionics 392.15
 ntp dry: 17950.40 wet: 17950.40
 thrust_structure 878.70
 EMA_control 620.10
 base_shield 1492.06
 tvc 338.10
 engine_cntlrs 232.28
 ext_rad_shield 6037.50
 engine1 2670.15
 engine3 2670.15
 engine2 2670.15
 turbopump 341.20
 eps dry: 1536.08 wet: 1536.08
 pva 565.80
 pmad 287.44
 batteries 682.84
 hds dry: 835.94 wet: 931.01 (95.08)
 helium 95.08
 hardware 835.94
 drop_stage dry: 19184.74 wet: 74678.62 (55493.87)
 truss 5820.96
 gyros 625.60
 mps 524.38
 docking dry: 0.15 wet: 0.15
 docking_adapter 0.15
 fuel_sys dry: 9968.05 wet: 65366.85 (55398.80)
 mmod 1388.47
 tps 777.54
 tank dry: 7583.83 wet: 62982.63 (55398.80)
 fuel 55398.80
 shell 7583.83
 structures dry: 218.20 wet: 218.20
 aft_ring 57.70
 forward_ring 57.70
 fwd_adap_skirt 102.80
 avc dry: 837.20 wet: 837.20
 communications 732.55
 avionics 104.65
 eps dry: 572.47 wet: 572.47
 pmad 261.97
 batteries 310.50
 hds dry: 835.94 wet: 931.01 (95.08)
 helium 95.08
 hardware 835.94
 crew_stage dry: 53400.87 wet: 58725.51 (5324.64)
 crew 400.00
 truss 3554.52
 transhab 22700.00
 communications 241.04
 arm_Tdock 1759.50
 mmsev 6700.00
 food 3440.00
 cev 13500.00
 eps dry: 96.60 wet: 96.60
 pmad 96.60
 rcs dry: 1009.21 wet: 6333.85 (5324.64)
 reactant 5324.64
 hardware 1009.21

15

VI. Summary
We have described the development of a tool for integrated system modeling of spacecraft and missions. The

tool has been used to develop models of a number of different NTP spacecraft configurations and mission scenarios,
which have been used for validation of NTP vehicle studies. The modular nature of the tool, built on the
OpenMDAO Framework, has enabled development of the spacecraft models in an incremental manner, with the
ability to increase the fidelity of each subsystem analysis independently and asynchronously. The ability to link the
key parameters of the spacecraft subsystems enables a truly integrated system model. In the future we expect to
more fully take advantage of the optimization capabilities of the OpenMDAO Framework to perform more
sophisticated analysis.

VII. Acknowledgments
The authors express their thanks to John Warren and Chris Moore (NASA/HQ), Mike Houts (MSFC), also John

Taylor, Joe Roche, Dennis Rohn and Mark Klem (GRC) for their interest in this work and funding support through
the Advanced Exploration Systems’ Nuclear Cryogenic Propulsion Stage (NCPS) project.

VIII. References
[1] Human Exploration of Mars Design Reference Architecture 5.0, Drake, Bret G., ed., National Aeronautics and

Space Administration, NASA-SP-2009-566, Washington, DC, July 2009.
[2] Borowski, S. K., McCurdy, D. R., and Packard, T. W., “7-Launch NTR Space Transportation System for

NASA’s Mars Design Reference Architecture (DRA) 5.0”, AIAA-2009-5308, August 2009.
[3] Borowski, S. K., McCurdy, D. R., and Packard, T. W., “Nuclear Thermal Propulsion (NTP): A Proven, Growth

Technology for “Fast Transit” Human Missions to Mars”, AIAA-2013-5354, September 2013
[4] Borowski, S. K., McCurdy, D. R., and Packard, T. W., “Near Earth Asteroid Human Missions Possibilities

Using Nuclear Thermal Rocket (NTR) Propulsion”, AIAA-2012-4209, July 2012.
[5] Borowski, S. K., McCurdy, D. R., and Packard, T. W., “Modular Growth NTR Space Transportation System for

Future NASA Human Lunar, NEA and Mars Exploration Missions”, AIAA-2012-5144, September 2012.
[6] Borowski, S.K., McCurdy, D.R and Burke, L. B., “The Nuclear Thermal Propulsion Stage (NTPS): A Key Space

Asset for Human Exploration and Commercial Missions to the Moon”, AIAA-2013-5465, September 2013
[7] Moore, K. T, Naylor, B. A. and Gray, J. T., “The Development of an Open Source Framework for

Multidisciplinary Analysis and Optimization”, AIAA-2008-6069, September 2008
[8] http://openmdao.org
[9] https://www.python.org/
[10] http://www.numpy.org/
[11] http://scipy.org/
[12] Koeing, D. R., “Experience Gained from the Space Nuclear Rocket Programs (Rover / NERVA),” Los Alamos

National Laboratory, Report LA-10062-H, Los Alamos, NM, May 1986.
[13] http://www.nasa.gov/pdf/664158main_sls_fs_master.pdf, Space Launch System Fact Sheet

