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Abstract. The National Aeronautics and Space Administration Global

Modeling and Assimilation Office (NASA/GMAO) observing system sim-

ulation experiment (OSSE) framework is used to explore the response of anal-

ysis error and forecast skill to observation quality. In an OSSE, synthetic ob-

servations may be created that have much smaller error than real observa-

tions, and precisely quantified error may be applied to these synthetic ob-

servations. Three experiments are performed in which synthetic observations

with magnitudes of applied observation error that vary from zero to twice

the estimated realistic error are ingested into the Goddard Earth Observ-

ing System Model (GEOS-5) with Gridpoint Statistical Interpolation (GSI)

data assimilation for a one-month period representing July. The analysis in-

crement and observation innovation are strongly impacted by observation

error, with much larger variances for increased observation error. The anal-

ysis quality is degraded by increased observation error, but the change in root-

mean-square error of the analysis state is small relative to the total analy-

sis error. Surprisingly, in the 120 hour forecast, increased observation error

only yields a slight decline in forecast skill in the extratropics and no dis-

cernible degradation of forecast skill in the tropics.
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1. Introduction

There are multiple sources of error in numerical weather analysis and prediction includ-

ing model error, observation instrument and representativeness error, errors introduced

by the data assimilation process itself, and physical-dynamical error growth. Because the

true state of the atmosphere remains unknown, it is not possible to directly assess these

errors or their impact on analysis quality or forecast skill. Many efforts have been made

to investigate the impact of initial condition errors on forecast skill, such as with idealized

identical or fraternal twin experiments (e.g. Tribbia and Baumhefner [2004]), but these

studies have not considered errors in the context of data assimilation systems.

Previous studies (e.g. Tyndall et al. [2010], Irvine et al. [2011]) have examined the role

of observation error in data assimilation, primarily in the form of the weighting of obser-

vational data versus the background. Changing the specified observation error variance

or background error variance in a data assimilation system (DAS) alters how closely the

analysis field draws to the observations compared to the background. This study instead is

focused primarily on how the observation errors themselves impact qualities of the model

analysis and forecast fields.

There are many unanswered quantitative and qualitative questions about how obser-

vation error impacts the errors of analysis and subsequent forecasts given that the DAS

is designed as an error filter and smoother (Daley [1991]). Modern DAS are based on

elegant mathematical theory, as oulined in the Appendix, that unfortunately offers only

limited insight into answers to these questions because of the many unsupported assump-

tions generally implied for their computationally efficent application. Answers are also
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not forthcoming when using real observations since in that context the true state being

analyzed is not sufficiently well known. In contrast, an Observing System Simulation

Experiment (OSSE) alleviates many of these difficulties since relevant errors can be di-

rectly calculated from the accurately known truth provided (Errico et al. [2013]). As long

as the OSSE is a faithful simulation of reality, it can provide valuable insight into these

questions.

An OSSE suitable for this problem has been developed at the National Aeronautics and

Space Administration (NASA) Global Modeling and Assimilation Office (GMAO; Errico

et al. [2013], Privé et al. [2013]). It provides a tool for investigating how errors in sources

of information or algorithms impact the analysis, background, and forecast errors. In

addition, the observation errors in an OSSE can be directly manipulated to explore the

impact of observation error on the analysis quality and forecast skill. In this work, a series

of experiments with varied observation error are performed using the GMAO OSSE to

explore the influence of observation error in an operational numerical weather forecasting

system.

The motivating factors for this study include both the design of OSSEs and the effects

of observation error when assimilating real observations. The development of realistic

observation errors for synthetic observations in OSSEs has been a challenging problem for

decades. Here, the importance of accurately representing observation errors is investigated

by testing the respsonse of the OSSE framework to a range of observation error magnitudes

from minimization of observation errors to gross overestimation of observation errors.

A variety of metrics are employed, including explicit measures of analysis error. The

importance of proper weighting of error covariance matrices is also explored.

c©2013 American Geophysical Union. All Rights Reserved.
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Details of the GMAO OSSE framework and the experimental setup are given in Sec-

tion 2. The influence of observation error on increment and error statistics of the data

assimilation products is described in Section 3. Likewise the effect of observation error on

forecast skill is presented in Section 4 and on observation impact metrics calculated with

an adjoint model in Section 5. Finally, the results will be discussed in Section 6.

2. Setup

The GMAO OSSE framework is used for all experiments. This system is described

in detail by Errico et al. [2013]; a brief synopsis will be given here. An OSSE consists

of several components: a long, free model integration called the Nature Run (NR) that

represents the ‘truth’; a set of synthetic observations produced from the Nature Run

fields for all data types currently assimilated to create initial conditions for numerical

weather prediction; an observation error algorithm to add otherwise missing instrument

and representativeness errors to observations; and a data assimilation system employing

a second forecast model for ingesting the synthetic observations.

The NR used for the GMAO OSSE was generated by the European Centre for Medium-

Range Weather Forecasts (ECMWF) using the c31r1 version of their operational forecast-

ing model. The model was freely run from 01 May 2005 to 31 May 2006 at T511 resolution

with 91 vertical levels and 3-hourly output. Prescribed boundary conditions included the

sea surface temperature and sea ice content observed during the NR period; all other

fields were generated by the ECMWF model. The NR has been evaluated to ensure that

the model characteristics are suitable for use in OSSEs (Reale et al. [2007], McCarty et al.

[2012]).

c©2013 American Geophysical Union. All Rights Reserved.
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Synthetic observations were created at the GMAO for both conventional and radiance

data types. Conventional data were computed by interpolating the NR fields according

to the temporal and spatial locations of archived observations from corresponding dates

during 2005-2006. Radiance observations were similarly generated using the Commu-

nity Radiative Transfer Model version 1.2 (CRTM, Han et al. [2006]) with a simplified

treatment of the clouds based on cloud fractions from the NR.

A set of baseline observation errors were calibrated to match some assimilation statis-

tics of real data ingested into the same versions of GSI and GEOS-5. Uncorrelated errors

were added to all observation types and an additional component of correlated errors was

added to some types. Vertically correlated errors were added to conventional sounding

data types, horizontally correlated errors were added to AMSU, HIRS, and MSU observa-

tions, channel correlated errors were added to AIRS, and both vertically and horizontally

correlated errors were added to satellite wind observations. No correlation of errors was

applied between different data types, and no observation error bias was added. The obser-

vation errors were callibrated so that covariances of observation innovations and variances

of analysis increments in the OSSE matched corresponding statistics computed for the

DAS applied to real observations (Errico et al. [2013]). As a result of this tuning, the

added errors may contain compensations due to mismatches between the OSSE and real

observation results of actual background error covariances.

In addition to explicitly added errors, the synthetic observations contain a small but

unspecified quantity of implicit representativeness error. This error arises from differences

between interpolations used to create the synthetic observations applied on the NR and

DAS model grids. Errors are also introduced to the radiance observations through dif-
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ferences between treatments of cloud in the radiative transfer schemes applied to the NR

and DAS gridded fields.

The numerical weather prediction model used for the OSSE experiments is the Goddard

Earth Observing System Model, Version 5 (GEOS-5) with Gridpoint Statistical Interpo-

lation (GSI) data assimilation system (Kleist et al. [2009], Rienecker et al. [2008]). The

model resolution is 0.5◦ latitude and 0.625◦ longitude with 72 vertical levels. The behavior

of the OSSE forecasts has been validated in comparison to reality by Privé et al. [2013],

where it was found that the forecast skill of the OSSE is slightly better than for real data,

but the relative impact of different data types is well represented.

For these experiments, the OSSE is cycled from 15 June 2005 to 05 August 2006, with

120 hour forecasts launched daily at 0000 UTC. The first two weeks are discarded as a

spin-up period, and results are calculated only for the month of July. Three experimental

cases are tested: a Control case using the baseline set of synthetic observations with

calibrated observation errors described by Errico et al. [2013]; a Perfect case in which no

errors are added to the synthetic observations; and a case in which observation errors with

standard deviation twice the magnitude as the Control case are added to the synthetic

observations, called the Double case. The explicitly added errors in the Double case are

perfectly correlated to the errors in the Control case, with twice the magnitude. Table 1

displays the attributes of all of the experimental cases included in this study. These three

cases can be compared to show the progression of the effects of observation errors as the

errors are increased from near zero to large values.

For Perfect, Control, and Double cases, the background and observation error covari-

ances assumed by the GSI are not altered from the operational values. This preserves the

c©2013 American Geophysical Union. All Rights Reserved.
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GSI Kalman gain matrix and thus the weightings between observations and background.

For none of these three OSSE experiments is this Kalman gain truly optimal since the

assumed error covariances are not the actual ones. Even for assimilation of real observa-

tions, the specified background error covariance likely differs from the actual covariances

for some components and the specified observation error ignores significant correlations

known to exist for some observation types and instead grossly inflates the assumed er-

ror variances to partly compensate for this neglect. For the Perfect and Double cases,

the departures from optimality may be greater, but even in these cases more optimality

would require use of a retuned assumed background error covariance. Such retuning would

partly offset use of a more appropriate assumed observation error variance. For any of the

experiments, assumption of truly accurate error covariances would produce the optimal

analysis; i.e., analysis with minimum expected error variance given the observation and

background errors. Results from these experiments therefore provide an upper bound on

what the corresponding optimal error variances would be.

An additional experiment is performed using the added observation errors from the

Double case, but with the standard deviations of observation errors used by the GSI

increased by a factor of two, denoted as the ‘Double GSI Adjusted’ case. While this also

does not result in an identical match between the true observation error covariances and

the GSI error covariances, some underestimation of observation error covariances by the

GSI in the Double case should be relieved in this case. A case with greatly reduced GSI

error using the synthetic observations with no explicitly added error is not performed due

to concerns that the data assimilation algorithm would become ill-conditioned.

c©2013 American Geophysical Union. All Rights Reserved.
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For validation of certain analysis and forecast statistics, a parallel case is run using

archived real data from the same time period instead of the synthetic observations. This

case is designated as Real and is run using the same GEOS-5 and GSI version and settings

as deployed in the OSSE. The analog of the Real case in the OSSE environment is the

Control case, as the explicitly added observation errors in the Control case have been

calibrated to specifically match the observation innovations and analysis increments in

the Real case. A ‘Real Plus Error’ case is performed analogously to the Double case,

wherein errors of the real observations are increased by explicitly adding errors with the

same covariances used in the Control case to the real data. In this case, the observation

error covariances are not expected to be identical to those used in the Double case, but

the impacts of significantly increasing the observation error may be checked to ensure that

the OSSE results are not unrealistic.

The background error covariances used by the GSI are taken to be the operational

2011 GSI/GEOS-5 covariances for all experiments. Due to improvements in the observing

network between 2005 and 2011, these background error covariances may underestimate

the true background errors when working with the 2005 observational dataset. In addi-

tion, the true background error covariances may differ between experimental cases due to

ingestion of different qualities of observation errors.

3. Analysis Quality

The observation innovation, di , measures the differences between observations and the

background state,

di = yo
i −Hi[x

f (ti))] (1)

c©2013 American Geophysical Union. All Rights Reserved.
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where ti is the time, yo

i is the observation vector, xf is the forecast model state vector,

and H is an observation operator in standard notation [Ide et al., 1997]. Observation

innovation statistics are expected to be strongly affected by the magnitude of observation

errors, as yo
i is directly affected by observation error and xf (ti) is indirectly affected by

observation error that has been ingested in earlier cycles of the DAS.

The analysis increment, or analysis minus background (xa(ti) − xf (ti)), measures the

amount of ‘work’ done by the data assimilation system in generating an analysis state from

the initial background state. The root-mean-square-error (RMSE) of such a difference is

calculated as an areal and temporal mean

RMSEI =

√√√√√
∑N

i=1

∫ λe
λw

∫ φn

φs
(xa(ti)− xf (ti))2R2

e cosφdφdλ

N
∫ λe
λw

∫ φn

φs
R2

e cosφdφdλ
(2)

where xa is the analysis field and xf is the background field for N analysis states, Re is

the radius of the earth, φ is the latitude between φs and φn and λ is the longitude between

λw and λe.

Figure 1 shows a sampling of global variances of observation innovation for the Perfect,

Control, and Double experimental cases for rawinsonde (RAOB) temperature and wind,

GOES infrared (IR) cloud drift winds, and AMSU-A brightness temperatures. The vari-

ance of observation innovations for the Control case is intermediate to that seen for the

Perfect and Double cases.

If the true error covariances of the background, B, were the same for the three test cases,

and if the explicitly added observation errors are uncorrelated with the background errors,

then the difference in variances of observation innovation between each pair of cases is

simply the difference in the variances of the observation errors themselves. As the standard

deviation of the observation error in the Double case is twice the standard deviation of

c©2013 American Geophysical Union. All Rights Reserved.
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the observation error in the Control case, it would be expected that the difference in

variance of observation innovation between the Double and Perfect cases would be four

times as large as the difference between the Perfect and Control cases. This expected

relation between observation innovation variances in the three experimental cases is seen

for RAOB temperatures and winds and for AMSU-A in Figure 1, implying that changes

to the background error covariances are relatively small.

Results for GOES IR cloud drift winds show too large a difference between Perfect and

Double observation innovation variances compared to Control and Perfect in the lower

troposphere, and too small a difference in the middle and upper troposphere compared

to the expected ratio of differences. In the upper troposphere, the ingested observation

counts for the GOES cloud-drift winds are 20-30% smaller in the Double case than in the

Perfect case, indicating that the quality control of the GSI has acted to remove some of

the observations with very large observation errors. Thus, the observation error variance

of the accepted observations is smaller than the variance of the observation errors applied

to the entire dataset for the Double case, reducing the difference between the Perfect

and Double cases. In the lower troposphere, the larger than expected difference between

the observation innovation variance for the Perfect and Double cases indicates that the

background error of the Double case may have increased significantly between the Perfect

and Double cases in this region. Examination of the background error fields (not shown)

does indicate a significant increase in background error in the zonal wind field at low

levels.

When the observation error is increased, the spatial distribution of the analysis incre-

ment variance is retained as the magnitude of the variance increases. This is illustrated

c©2013 American Geophysical Union. All Rights Reserved.
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in Figures 2 and 3 for the square roots of the zonal means of the temporal variances of

analysis increments of temperature and zonal wind respectively. The analysis increment

variance of the Control case has been calibrated to emulate the Real analysis increments;

the Double case has greater variance than Real and the Perfect case significantly lower

variance than Real. The change in the variance of analysis increment between Perfect

and Double is on the order of 30-50% increase in the upper troposphere and 25-100% in-

crease in the lower troposphere. The relative impact of observation errors on the analysis

increment is considerably smaller than the impact seen on the observation innovation as

expected since the data assimilation algorithm acts as a filter and smoother of observation

errors [Daley , 1991].

The change in the error of the model state due to assimiliation of observations is mea-

sured by taking the difference of the absolute value of the analysis error and the absolute

value of the background error,

|Ae| − |Be| =
∫ λe
λw

∫ φn

φs

∑N
i=1(|xa(ti)− xt(ti)| − |xf (ti)− xt(ti)|)R2

e cosφdφdλ

N
∫ λe
λw

∫ φn

φs
R2

e cosφdφdλ
(3)

as in (2) where xt is the true Nature Run state. This metric is selected because it indicates

whether the change introduced by the data assimilation process works to improve the

analysis, to degrade the analysis, or if the net impact is neutral. Negative values indicate

an improvement of the state due to assimilation of observations, while positive values

indicate a degradation of the state.

The monthly mean of |Ae| − |Be| for July is shown in Figure 4. For the temperature

field, the assimilation improves upon the background state throughout the troposphere,

and the observation errors do not strongly affect the magnitude of improvement. However,

the wind fields show a much stronger response to the observation error, with significantly

c©2013 American Geophysical Union. All Rights Reserved.



A
cc

ep
te

d 
A

rti
cl

e
different results for the Perfect, Control, and Double cases. While the greatest improve-

ment in the model state is seen for the Perfect case, the Control case also shows overall

improvement due to observation assimilation. For the Double case however, the observa-

tions in the middle and lower troposphere tend to cause a degradation of the background

wind field, resulting in a lower quality analysis than if the observations had not been

assimilated; this is most notable in the Northern Hemisphere and the tropics. This degra-

dation of the background state ideally should not occur if the background and observation

error covariances used by the DAS were correct; in the Double case it is known that the

actual observation error variances are greater than the variances used by the GSI for some

data types.

The RMSE of the analysis is calculated for July

RMSEA =

√√√√√
∑N

i=1

∫ λe
λw

∫ φn

φs
(xa(ti)− xt(ti))2R2

e cosφdφdλ

N
∫ λe
λw

∫ φn

φs
R2

e cosφdφdλ
(4)

as in (3), plotted for temperature and zonal wind in Figure 5. Only a minor difference

(2-3%) is seen in this analysis error statistic between the Perfect and Control cases for

temperature, but a slightly larger increase in temperature error (5-10%) for the Double

case is noted, with similar levels of change in the tropics and extratropics. The analysis

error for zonal wind shows a larger spread between experiments, with a 5-10% increase

in error in the Control compared to the Perfect case, and a 10-30% increase in analysis

error between the Control and Double cases. The greatest percent change in error of the

analysis wind field is found in the Northern Hemisphere extratropics, and the least change

in the tropical mid and upper troposphere. The large change in the Northern Hemisphere

extratropical wind field error is consistent with the finding that the data assimilation

process acts to degrade the winds in this region for the Double case (Figure 4).

c©2013 American Geophysical Union. All Rights Reserved.



A
cc

ep
te

d 
A

rti
cl

e
As previously described, the Double Adjusted GSI case is performed with the same

observation errors used in the Double case, but with the standard deviations of observation

errors used by the GSI multiplied by two. The results from this case do not show a marked

improvment in analysis skill compared to the Double case; instead there is a small increase

in analysis error for wind and temperature in the Southern Hemisphere extratropics (thin

solid line in Figure 5). Comparing the dashed and thin solid lines in Figure 4 shows the

improvement of the analysis state compared to the background state is nearly the same

in the Double and Double Adjusted GSI cases.

A discussion of the impacts of mismatched true observation error and DAS-assumed

observation errors is given in the Appendix. One cause of the increased analysis error in

the Double Adjusted GSI case is persistent model error due to differences in the preferred

climatology of the ECMWF Nature Run and the GEOS-5 models. Because the assimi-

lation does not draw as strongly to the observations in the Double Adjusted GSI case,

in regions where there is a large difference in the model climatologies, the analysis state

retains more of this GEOS-5 model ‘bias’ than the Double case. The error covariances

for both background and observation errors are not ideal for either the Double or Double

Adjusted GSI cases. In the Double Adjusted GSI case in particular, the background error

covariances may be underestimated, resulting in an analysis that is drawn too strongly to

an erroneous background.

The spatially averaged monthly mean correlations r̂ of the analysis error fields between

the Control and Perfect, Control and Double, and Perfect and Double case pairs are

calculated as

Ae(φ, λ) = xa(φ, λ)− xt(φ, λ) (5)

c©2013 American Geophysical Union. All Rights Reserved.
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r1,2(φ, λ) =

∑N
i=1(Ae1(φ, λ)− Ae1(φ, λ))(Ae2(φ, λ)− Ae2(φ, λ))√∑N

i=1(Ae1(φ, λ)− Ae1(φ, λ))2
∑N

i=1(Ae2(φ, λ)− Ae2(φ, λ))2
(6)

r̂1,2 =

∫ λe
λw

∫ φn

φs
r1,2(φ, λ)R

2
e cosφdφdλ∫ λe

λw

∫ φn

φs
R2

e cosφdφdλ
(7)

with notation as in (4), with the overbar indicating a time mean. The correlations of the

analysis error fields shown in Figure 6 are fairly high overall, particularly near the surface

for temperature. This implies that model error growth contributes significantly to the

total analysis error field while the observation errors and their growth do not dominate

the total error. If the observation errors introduced in the current cycle were a large source

of analysis error, the correlation between the Control or Double cases would be expected

to be larger than the correlations between the Perfect case and either of the Control of

Double cases. This is because the added observation errors in the Control and Double

cases are identical except for a proportionality factor. The magnitude of the correlations

of the analyses for the Control versus Perfect and Control versus Double cases are very

similar, implying that the dominant differences in the analysis error fields are due to the

growth of observation and model errors from previous cycles, and that the immediate

contribution of observation error from the current cycle is modest. This is consistent with

the data assimilation design property that acts to filter spatially uncorrelated observation

errors, which are the dominant type of observation error.

4. Forecast Skill

Forecast skill in the midlatitudes is often measured by the anomaly correlation of 500

hPa geopotential. Anomaly correlation coefficients are calculated for the 120 hour fore-

casts starting at 0000 UTC from 02 July to 30 July 2005 for each experimental case. The

resulting monthly means and standard deviations of anomaly correlations are listed in

c©2013 American Geophysical Union. All Rights Reserved.
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Table 2. A Wilcoxon paired test p-value indicating the probability that the null hypoth-

esis is true is calculated to determine if the mean anomaly correlation of an experiment

is different from the Control case mean; values of p < 0.05 indicate significance at the

95% level. With once-daily forecasts on sequential days, the anomaly correlation scores

may be serially correlated in time. The autocorrelation r in Table 2 gives an indication of

the degree of serial correlation. For most comparisons that show statistically significant

results at the 95% level, the autocorrelation is small or even negative, indicating that the

results of the Wilcoxon paired test are valid [Yue and Wang , 2002].

The five-day anomaly correlations show an overall insensitivity of forecast skill to ob-

servation error. When the Perfect case is compared to the Control case, there is a slight

improvement in the Southern Hemisphere anomaly correlation that is statistically signifi-

cant, but no improvement is seen for the Northern Hemisphere skill. When the observation

error is increased further in the Double case, a reduction in anomaly correlation is seen

in both hemispheres, but the reduction is only significant at the 95% level in the North-

ern Hemisphere. The reduction in anomaly correlation compared to the Control for the

Double case is larger than the difference in anomaly correlation between the Perfect and

Control cases (range of 0.02-0.03 in comparison to 0-0.01).

The 120 hour forecast anomaly correlations for the Real and Real Plus Error cases are

also given in Table 2. A slight decrease in forecast skill is seen in the Northern Hemi-

sphere for the Real Plus Error compared to Real case, but this decrease is not statistically

significant. A larger decrease in forecast skill is seen in the Southern Hemisphere, statis-

tically significant at the 95% level, although the serial correlation is relatively high, which

may result in overinflated significance estimates. The influence of observation errors on

c©2013 American Geophysical Union. All Rights Reserved.
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forecast skill for the real data is similar to that seen in the OSSE; i.e., a relatively small

degradation of anomaly correlation scores between 0.01 and 0.03.

The root-mean-square forecast error at 120 hours verified against the Nature Run is

calculated for the month of July as with the analysis error:

RMSEF =

√√√√√
∑N

i=1

∫ λe
λw

∫ φn

φs
(xf (ti)− xt(ti))2R2

e cosφdφdλ

N
∫ λe
λw

∫ φn

φs
R2

e cosφdφdλ
(8)

where there are N forecasts, and other variables are as in (4). Forecast error is plotted as

a function of vertical level for temperature and zonal winds in Figure 7. In the tropics,

there is no discernable difference in the forecast skill between the Perfect, Control, or

Double cases. The Northern Hemisphere shows no difference in skill between the Perfect

and Control cases, but an increase in error of 5% for the Double case. Only in the

Southern Hemisphere is there a clear, but small, progression of forecast skill degradation

as the observation error increases 3-4% from the Perfect case to the Control case and then

increases an additional 4-8% from the Control to the Double case.

The spatial correlation of the 120 hour forecast error fields is calculated as in (5) but

using xf instead of xa as a function of model level for three pairings: Perfect and Control,

Control and Double, and Perfect and Double; the results are plotted in Figure 8. The

correlations between the pairing Perfect and Control and the pairing Control and Double

are generally in the range of 0.7 to 0.75 throughout the troposphere, while correlations

are lower, near 0.6, for the pairing Perfect and Double. To put this in perspective, a wave

that is forecast to be 53◦ out of phase will have a correlation of 0.6.

When the forecast error correlations are compared with the analysis error correlations

(Figure 6), several differences are noted. First, in the midlatitudes, the correlations in the

lower troposphere are smaller for the forecast error compared to the analysis error. At

c©2013 American Geophysical Union. All Rights Reserved.
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the analysis time, the near-surface error is likely to be dominated by representativeness

error and mismatches in model orography and boundary layer treatment between the

GEOS-5 and Nature Run, resulting in very high correlations between the three cases.

During forward model integration, some errors increase nonlinearly, resulting in smaller

correlations at the 5-day forecast time.

In the middle and upper troposphere, the 120 hour forecast errors have slightly higher

correlations between cases than the analysis error fields. At these levels, representativeness

errors play a smaller role at analysis time and random observational error a larger role.

During model integration, some errors are damped or destroyed by model processes, while

other errors project onto unstable modes of the atmospheric state and grow with time. It

is anticipated that as the forecast length is extended beyond 120 hours, the forecast error

correlations would eventually decline and asymptote to a small positive number.

The vertically integrated dry energy norm (DEN, Errico [2000]) is calculated for each

experimental case and plotted as a function of forecast time in Figure 9.

DEN =

∫ pt
ps

∫ λe
λw

∫ φn

φs

(
(u2 + v2) + cp

Tr
T 2

)
R2

ecos(φ)dλdφdp

2
∫ pt
ps

∫ λe
λw

∫ φn

φs
R2

ecos(φ)dλdφdp
(9)

as in (4), where u, v, and T are the perturbations of the wind and temperature fields from

the truth, ps is the surface pressure and pt is the pressure at the top of the chosen volume,

here taken to be the model level closest to 72 hPa, cp = 1005 J kg−1 K−1 is the specific

heat of dry air, and Tr = 286 K is a reference temperature. The small contribution to

DEN from surface pressure perturbations included in the more usual definition of the dry

energy norm is neglected from (9).

The error growth in the tropics (Figure 9e) shows initial rapid growth of error that then

flattens out after 48 hours before increasing again after 96 hours, while the extratropical
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error growth is initially slow and then accelerates with forecast time. Comparing the

Control and Perfect cases, the difference in DEN declines or remains steady as the forecast

progresses, with the Control case actually having lower DEN than the Perfect case by

96 hours in the Northern Hemisphere. The Control versus Double case shows greater

difference in DEN, but this difference likewise decreases with time. It is expected that if

the forecast period were lengthened, the DEN would eventually saturate and the difference

in DEN between cases would approach zero [Leith, 1974].

5. Observation Impact

One set of metrics that are often of great interest when performing an OSSE is the data

impacts of various observation types. For the GEOS-5 model, a dry adjoint is available

that can be used to efficiently determine estimates of these impacts on the 24-hour forecast

[Gelaro and Zhu, 2009] using DEN as the norm. Figure 10 compares the observation

impacts for a variety of observation types in the Perfect, Control, and Double cases.

A negative impact indicates a reduction in the 24 hour forecast error. The observation

impact is calculated using the Nature Run fields to verify the 24-hour forecasts, and not the

analysis fields that are often used for real observations. The differences between verifying

the observation impact against the Nature Run instead of the analyses are generally minor,

although with verification against the Nature Run rawinsonde temperature observations

have a significantly larger impact.

The overall observation impacts seen in Figure 10 show expected behavior, with a few

exceptions. Radiance observations dominate the impact for the Southern Hemisphere

extratropics, with conventional data playing a strong role in the Northern Hemisphere

extratropics. AMSU-B and conventional moisture observations show minimal impact
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due to the dry metric used for the adjoint calculations as well as the omission of moist

processes from the adjoint model itself. The anomalous finding of detrimental AMSU-A

impacts in the tropics is due to a known deficiency in this version of the GEOS-5, where

the geostrophic coupling implied by background error correlations is improperly specified

near the equator.

The observation impact is a noisy metric, and with only a one-month cycling period, the

differences between individual observation impacts for the three cases are not statistically

significant at the 95% levels. The total impact of all data types is also calculated for each

of the three cases and shown in Table 3. In the Northern Hemisphere extratropics and

tropics, there is not a statistically significant difference between the three cases, but the

Southern Hemisphere has a statistically significant greater total observation impact for

the Double case compared to the Control and Perfect cases.

Observation impacts can be increased by two causes. One is that an observation has

less error or is better utilized so that the expected reduction of analysis error is greater.

Another is that the background error is greater so that the observation is allowed to cor-

rect more. Greater background error can result from an increase of observation error,

especially when all observation errors are increased simultaneously. This last relationship

may mitigate the reduction of beneficial impacts by worsening observations in this way

because observations are thereby allowed to do more ‘work’. Since the background is

affected by forecast model error in addition to observation errors, a portion of the back-

ground error covariance will remain unchanged as observation errors are altered. Thus the

mitigation effect as described should itself be reduced by the presence of model error. If

the observation error characteristics of a single observation type were changed while keep-
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ing the error characteristics of all other observtion types unchanged, the relative impact

of different observation types might undergo significant changes.

6. Discussion

Observation errors have a notable impact on the amount of ‘work’ done by the data

assimilation system. Unsurprisingly, the observation innovations and (to a lesser degree)

analysis increments show significantly increased variance when observation error variances

are increased. Observation innovation d is changed both directly by the observation error

ingested in the current cycle and indirectly by alterations to the forecast skill from the

previous cycle, as

〈ddT〉 ∼ R̃+HB̃HT (10)

where R̃ and B̃ are, respectively, the actual observation and background error covariances

that may differ from the corresponding matrices used by the DAS. One notable result of

these experiments is that changes to the forecast xf are relatively small when R is altered

by a large fraction. In the OSSE, the observation errors are not temporally correlated,

so the forecast error that evolves from the previous assimilation cycle is not correlated

with the observation error of the following cycle. In reality, some observation errors may

be temporally correlated [Daley , 1992], although this is not accounted for by the GSI.

The data assimilation process tends to damp out observation errors, particularly spatially

uncorrelated errors.

The analysis increment statistics show significant influence from observation error. How-

ever, the impact of observation error on the analysis increment is considerably smaller than

the impact on observation innovation, due to the very effective filtering of spatially un-
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correlated observation errors by the GSI algorithm. The effect of observation errors on

the analysis error is smaller than the effect on analysis increment since the increment is

designed to only reduce the error in a statistical sense; i.e., not everywhere at every time.

If only a single data type is available in a region, the portion of the observation error

that is correlated will have the greatest impact on the analysis quality. If multiple data

types are available and the observation error is not correlated between data types, as in

the OSSE, then the impact of spatially correlated error will also be reduced. As the data

network becomes more sparse, the role of uncorrelated error increases, as there is less

opportunity for uncorrelated errors from nearby observations to compete.

In a statistically stable assimilation system, an equilibrium must be obtained that bal-

ances the competing effects of model error, assimilated observation error, error growth or

damping between cycle times, and the ingestion of useful information from observations.

Usually this implies that the improvement to the analysis by ingesting observations is

balanced by the subsequent error growth during the forecast that creates the next back-

ground [Daley and Menard , 1993]. In the Double case, this equilibrium is apparently

more complex since the analysis increments for some fields in some regions of the globe

actually increase the analysis error with respect to the background error on average.

The wind and temperature analysis fields show different responses to observation er-

ror, with a considerably stronger response to increased observation errors in the wind

analysis field. While the conventional data types have fairly similar temporal and spa-

tial distributions of temperature and wind observations (with the exception of satellite

winds), the distributions of satellite radiances differ significantly from that of satellite

winds. Satellite winds are associated with clouds or water vapor features but infrared ra-
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diance observations for channels that peak low in the atmosphere are absent from cloudy

regions. Data impacts can be greater in the Southern Hemisphere both because it is winter

during the experimental period, implying greater variances and synoptic-scale baroclinic-

ity and therefore greater error variances, and because there are fewer strongly-weighted

conventional observations.

As the model integrates forward in time, only a small portion of the initial errors

experience growth. Some errors, particularly those with small spatial scales, may be

effectively filtered out by the model. Most errors will project onto modes that are damped

or that experience only very slow growth, but a fraction of errors will project onto modes

that grow rapidly [Ehrendorfer and Errico, 1995]. Regional variation is seen for the impact

of observation errors on the forecast skill, reflecting the differences in both the dynamics

of error growth and the nature of the observational network around the globe. In the

tropics, the initial error growth rate is very high due to convective processes [Hodyss and

Majumdar , 2007] but these errors saturate quickly on a local scale. Thus, the forecast

skill in the tropics is almost completely insensitive to observation errors, as these errors

are rapidly overwhelmed by those in the model physics.

In the midlatitudes, error growth is modest and localized during the first day of the

forecast, but the rate of error growth then increases during the second and third day as

the errors spread into the mesoscale and synoptic scales. Errors in the midlatitudes do

not saturate within the five day forecast [Hodyss and Majumdar , 2007]. The significant

differences seen in the extratropical analysis error in the three test cases are muted in the

120 hour forecast error fields.
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There are several factors that influence the observation impact when observation errors

are increased. The magnitude of the observation impact indicates the amount of ‘work’

done by the observations when adjusting the background field. If the background field

had no error, there would be no possible improvement, and the observation impact would

be zero or detrimental to the model state. In a properly functioning data assimilation

system, the net (average) influence of observations should be to improve the quality of

the analysis compared to the background field, although many of the observations may

have a neutral or detrimental effect on the analysis state [Gelaro et al., 2010].

When the analysis error is increased due to ingestion of greater observation errors, these

additional errors grow during forward integration and increase error in the background

field of the following cycle time. The total observation impact may then be increased

as there is more ‘work’ to be done to correct the background field, even though the

observations themselves are degraded by larger observation error variance. The increase

in observation impact seen in the Southern Hemisphere extratropics as the observation

error is increased is an example of this effect. Although the analysis error is also increased

in the Northern Hemisphere and tropical regions, the total observation impact is not

significantly affected in these regions. It is speculated that this may be due to the more

nonlinear growth of errors where convective processes play a strong role in the tropics and

summer hemisphere.

Although the OSSE framework allows for direct manipulation of the observation errors,

there are some limitations of the system. One caveat of the Perfect observation case is that

the observations are not completely free of error. While the observations in the Perfect

case are drawn directly from the ‘truth’, there are intrinsic errors of representativeness due
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to the difference in model resolution, and due to temporal interpolation that introduces

errors. It is expected that these errors are much smaller than observation errors that

occur in the real world because the spatial resolutions of the Nature Run and assimilation

grids are not so very different.

When the observation and background error covariances specified in the GSI are not

the true covariances, the DAS results are sub-optimal. The specified covariances are

only approximations to the true ones whether the GSI is applied to real observations or

the OSSE context (e.g., the true observation error covariace is definitely not diagonal as

assumed by GSI). Although the degrees of approximation may differ, for the OSSE Control

case, the added observation errors were tuned in an attempt to make various performance

statstics similar to those for the Real case, and thus the degrees of sub-optimality of those

two cases may be similar. For the other experimental cases, including the Double GSI

Adjusted case, this is likely not true. In any case, however, the skill metrics obtained

should be considered simply as upper-bounds on what their values would be were GSI

tuning truly optimal.

A caveat of these experiments is that the added observation errors may not have com-

pletely realistic characteristics. Although the synthetic observation errors have been ex-

tensively calibrated, it is possible that some errors have been adjusted in ways that are not

realistic in order to compensate for other deficiencies of the OSSE. For example, synthetic

bias has not been added to the observations because the portion of bias that is assumed

by the DAS is removed by its bias correction algorithm. However, bias that is less well

known likely exists in reality, but this bias is difficult to simulate precisely because it is

not well observed or understood.
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One motivation of this study was to determine if it is possible to manipulate the obser-

vation errors in order to ‘calibrate’ the forecast skill statistics of the OSSE system. The

results show that unrealistically large increases in the observation error would be neces-

sary in order to appreciably change the forecast skill of the OSSE. In fact, one implication

is that if the only metrics of interest for a particular OSSE are the forecast skill and ob-

servation impacts, the synthetic errors may be eliminated entirely with little effect on the

experimental results. However, if the analysis quality, observation innovation, or analysis

increments are of concern, the observation errors must be carefully calibrated. This result

may depend on the amount of model error in the OSSE system, and it is possible that

observation error may play a stronger role in the forecast skill of a fraternal or identical

twin experiment, where model error is minimal.

This work also quantifies the effects of significant mismatches between the actual ob-

servation error covariances and the error covariances assumed by the data assimilation

system. Decreasing the actual observation error covariances while holding the DAS ob-

servation error covariances constant results in modest reductions in the total error of the

analysis state, but the effects on the forecast skill are minimal.

Appendix A: Theoretical relationships among errors

Some simple relations between the analysis error and the errors of the background state

and the ingested observations can be found both for the ‘ideal’ case in which the error

covariances employed by the DAS are accurate, and for the more realistic case in which

there is a mismatch between the true error covariances and the covariances assumed by

the DAS.
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The analysis state xa can be expressed as

xa = xb +K [yo −H(xb)] (A1)

where the background state xb is adjusted by the ingestion of observations yo using the

operation operator H and the Kalman gain K. The gain is expressed as

K =
(
B−1 +HTR−1H

)−1
HTR−1 = BHT

(
HBHT +R

)−1
(A2)

where B and R are the specified, but not necessarily true, background error and obser-

vation error covariance matrices and H is a linearized form of H.

Define errors of the analysis state, ea, the background state, eb, and the observation

errors, eo in relation to the true state xt as defined in the analysis subspace.

ea = xa − xt (A3)

eb = xb − xt (A4)

eo = yo −H(xt) (A5)

Note that eo includes both instrument and representativeness errors and has a different

length (is defined in a different mathematical space) than the vectors ea or eb.

ea = eb +K [eo −Heb] (A6)

Assuming that observation and background errors are uncorrelated, and noting that KH

is symmetric, covariances of the analysis error can be constructed as

〈eaeTa 〉 = (I−KH)〈ebeTb 〉(I−KH) +K〈eoeTo 〉KT (A7)

where the angle brackets indicates a sample mean or expectation based on that sample.

If the B and R assumed by the DAS are the true ones, then the K employed is the

optimal one, yielding the optimal analysis error covariance A. The true covariances
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corresponding to these prescibed ones will be denoted by a tilde:

〈eaeTa 〉 = Ã (A8)

〈ebeTb 〉 = B̃ (A9)

〈eoeTo 〉 = R̃ (A10)

These are related by

A =
(
B−1 +HTR−1H

)−1
(A11)

Ã = A
[
B−1B̃B−1 +HTR−1R̃R−1H

]
A (A12)

It can be seen that if B̃ = B and R̃ = R, then Ã = A.

First, consider the ideal case where B̃ = B and R̃ = R, for which the data assimilation

system performance is expected to be optimal [Daley , 1991]. In a cycling data assimilation

procedure such as GSI, B̃ is actually an implicit function of R̃ since it depends on the

quality of the previous analysis. Thus, increasing R̃ is expected to increase B̃ and thereby

further increase Ã to some degree. If B̃ also reflects a sizeable contribution by forecast

model error, as it generally does in practice, then the additional influence on Ã through

B̃ changes will be diminished.
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Figure 1. Variance of observation innovation for July 2005. a) rawinsonde temperature obser-

vations; b) rawinsonde zonal wind observations; c) GOES IR cloud drift zonal wind observations;

d) AMSU-A NOAA-15 observations. Stars, Perfect case; circles, Control case; triangles, Double

case.
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Figure 2. Square root of the zonal mean of temporal variance of analysis minus background

T, K for July 2005. a) Perfect, b) Control, c) Double, d) Real.

Table 1. List of experimentsa

Data Added Obs Err σ GSI Obs Err σ
Control synthetic standard operational
Perfect synthetic none operational
Double synthetic 2x standard operational
Double GSI Adjusted synthetic 2x standard 2x operational
Real real none operational
Real Plus Error real standard operational

a Description of all OSSE cases included in this manuscript. Data types are synthetic (OSSE)

or real (archived observations). “Added Obs Err σ” refers to the standard deviation of synthetic

observation error explicitly applied to either real or synthetic observations, with “standard” the

calibrated observation error standard deviations calculated as in Errico et al. [2013]. “GSI Obs

Err σ” refers to the standard deviations of observation errors used by the GSI data assimilation

system, with “operational” the values used in the operational version of the GSI from 2011.
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Figure 3. Square root of the zonal mean of temporal variance of analysis minus background

zonal wind, m s−1 for July 2005. a) Perfect, b) Control, c) Double, d) Real.

Table 2. 500 hPa geopotential anomaly correlations at 5 daysb

Northern Hemisphere Southern Hemisphere
Mean σ p r Mean σ p r

Control 0.81 0.06 0.81 0.10
Perfect 0.81 0.06 0.84 0.30 0.82 0.10 0.01 -0.36
Double 0.78 0.08 0.00 0.13 0.79 0.09 0.08 0.27
Real 0.78 0.06 0.77 0.09
Real Plus Error 0.77 0.05 0.28 0.39 0.74 0.09 0.02 0.37

b July 2005 monthly mean and standard deviation (σ) 500 hPa geopotential anomaly corre-

lation coefficients at the 120 hour forecast. Wilcoxon paired rank test p indicating significance

level that the mean anomaly correlation is different from the Control case mean (for Perfect and

Double) or different from the Real case mean (for Real Plus Error). Autocorrelation r of the

difference between the Control case mean and experimental case mean (for Perfect and Double)

or between the Real and Real Plus Error cases.
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Figure 4. |Ae|−|Be| for T, K (top) and u, m s−1 (bottom) for July 2005. Dot-dash line, Perfect

case; thick solid line, Control case; dashed line, Double case; thin solid line, Double Adjusted

GSI case. a), d) 30N-90N; b), e) 30S-90S; c), f) 30S-30N.

Table 3. Monthly mean observation impactc

NH SH Tropics
Control -0.49 -0.51 -0.17
Perfect -0.49 -0.53 -0.18
Double -0.47 -0.60 -0.17

c July 2005 monthly mean total observation impact for all data types, calculated for the dry

energy norm estimated by a dry adjoint. 20N-90N (NH), 20S-90S (SH), and 20S-20N (Tropics).
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Figure 5. Root-mean-square analysis error for T, K (top) and u, m s−1 (bottom) for July

2005. Dot-dash line, Perfect case; thick solid line, Control case; dashed line, Double case; thin

solid line, Double Adjusted GSI case. a), d) 30N-90N; b), e) 30S-90S; c), f) 30S-30N.
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Figure 6. Spatial correlation of analysis error fields for T (top) and zonal wind u (bottom) for

July 2005. Dot-dash line, Perfect and Double cases; solid line, Control and Perfect cases; dashed

line, Control and Double cases. a), d) 30N-90N; b), e) 30S-90S; c), f) 30S-30N.
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Figure 7. Root-mean-square 120 hour forecast error for T, K (top) and u, m s−1 (bottom) for

July 2005. Dot-dash line, Perfect case; solid line, Control case; dashed line, Double case. a), d)

30N-90N; b), e) 30S-90S; c), f) 30S-30N.
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Figure 8. Spatial correlation of 120 hour forecast error fields for T (top) and zonal wind u

(bottom) for July 2005. Dot-dash line, Perfect and Double cases; solid line, Control and Perfect

cases; dashed line, Control and Double cases. a), d) 30N-90N; b), e) 30S-90S; c), f) 30S-30N.
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Figure 9. Left, Dry energy norm as a function of forecast hour, dashed line, Double case; solid

line, Control case; dot-dash line, Perfect case. Right, difference in dry energy norm between cases

as a function of forecast hour normalized by Control case, dot-dash line, Control minus Perfect

cases; dashed line, Double minus Control cases. a), b) 30N-90N; c), d) 30S-90S; e), f) 30S-30N.
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Figure 10. Adjoint calculations of observation impact on dry energy norm. White bars,

Perfect case; grey bars, Control case; black bars, Double case; lines indicate 95% confidence

intervals. Note reversed direction of x-axis. Left, Northern Hemisphere extratropics; center,

Southern Hemisphere extratropics; right, tropics.
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