

Advanced Exploration Systems Program

Large-Scale Spacecraft Fire Safety Experiments in ISS Resupply Vehicles.

Gary A. Ruff and David L. Urban NASA John H. Glenn Research Center Cleveland, OH

Nov 7, 2013

29th American Society for Gravitational and Space Research Orlando, Florida, USA, November 3 – 8, 2013

- Carlos Fernandez-Pello, UC Berkeley, Berkeley, CA, USA
- James S. T'ien , Case Western Reserve University, Cleveland, OH, USA
- Jose L. Torero, University of Queensland, Brisbane, Australia
- Guillaume Legros, Université Pierre et Marie Curie, Paris, France
- Christian Eigenbrod, University of Bremen (ZARM), Bremen, Germany
- Nickolay Smirnov, Moscow Lomonosov State University, Moscow, Russia
- Osamu Fujita, Hokkaido University, Sapporo, Japan
- Adam J. Cowlard, University of Edinburgh, Edinburgh, UK
- Sebastien Rouvreau, Belisama R&D, Toulouse, France
- Olivier Minster and Balazs Toth, ESA ESTEC, Noordwijk, Netherlands
- Grunde Jomaas, Technical University of Denmark, Kgs. Lyngby, Denmark

- Paul Ferkul
- Sandra Olson
- John Easton
- Justin Niehaus
- Daniel Dietrich
- Suleyman Gokoglu

- Overview of the Spacecraft Fire Safety Demonstration Project
- Science and Technology Demonstration Objectives
 - Details of Sample Selection
- Supporting Ground-based Research

• Level 1 Requirements

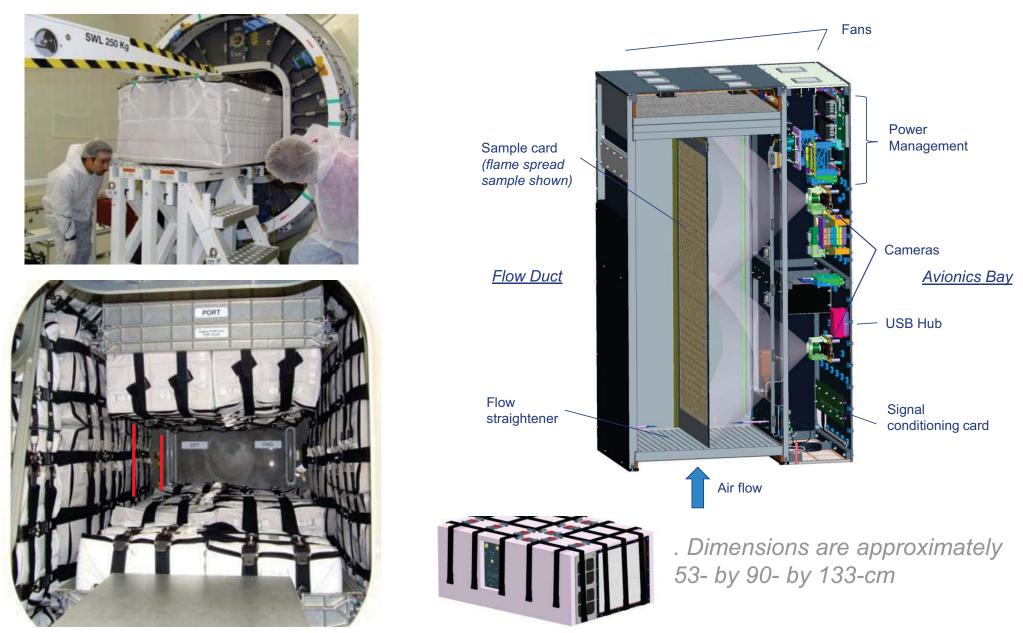
- The project shall conduct an experiment on an International Space Station resupply vehicle after it leaves the ISS and before it re-enters the Earth's atmosphere.
- The experiment performed on this vehicle shall meet a critical need for developing rational spacecraft fire safety strategy on future exploration vehicles.

Project Goals

- Conduct a spacecraft fire safety experiment on three flights of Orbital Science's Cygnus vehicle that investigates large-scale flame spread and material flammability limits in long duration low-gravity.
 - Orb-5: February 2015 probable slip to December 2015
 - Orb-6: September 2015 probable slip to June 2016
 - Orb-7: February 2016 probable slip to October 2016
- Complete the major experiment development work no later than September 30, 2014.
- Needs:
 - Quantify the development and growth of a realistic fire for exploration vehicles
 - Determine low-g flammability limits for spacecraft materials

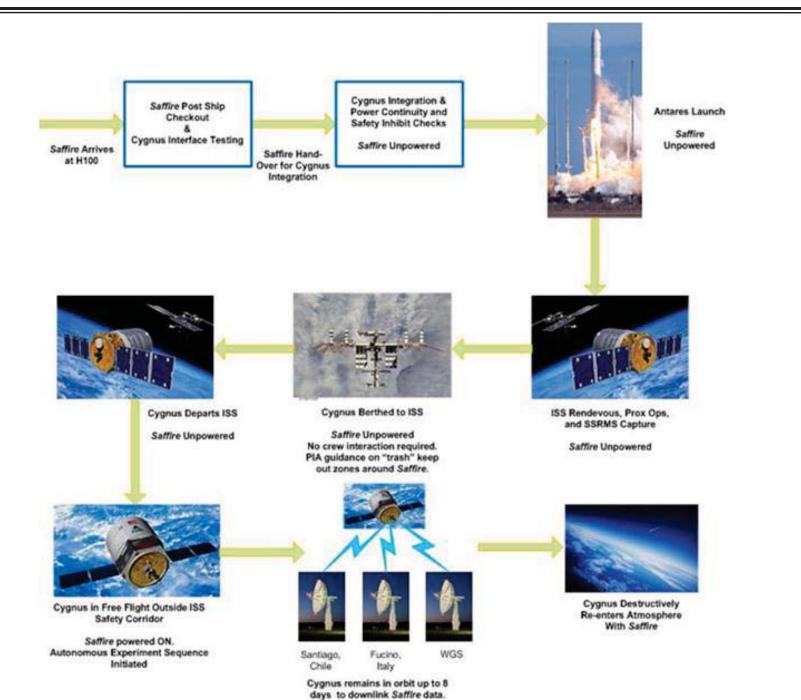
Objectives:

- Saffire-I:Assess flame spread of large-scale microgravity fire
- Saffire-II: Verify oxygen flammability limits in low gravity
- *Saffire-III*: Similar to Saffire–I at different air flow

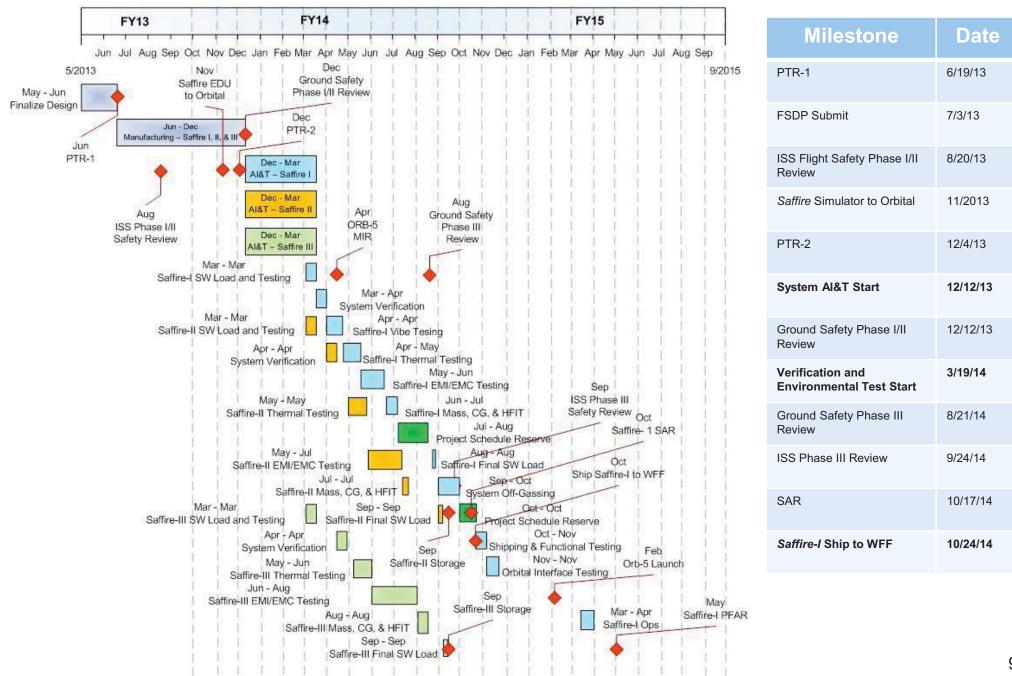

Data:

- Flame size, position, and spread rate (video)
- Flame intensity (radiometer)
- Flame stand-off distance (t/c)
- Flame/plume temperature (t/c)
- O₂, CO₂ concentrations
 - Data obtained from the experiment will be used to validate modeling of spacecraft fire response scenarios
 - Evaluate NASA's normal-gravity material flammability screening test for low-gravity conditions.

Experiment Layout



Operations Concept



Saffire-I, II, & III Schedule & Milestones

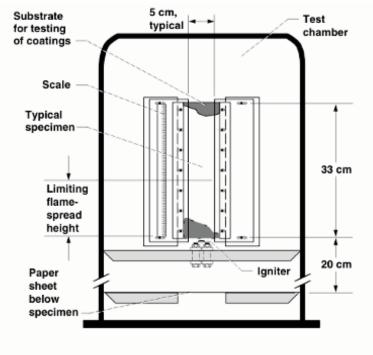
• Two major stakeholders in sample selection

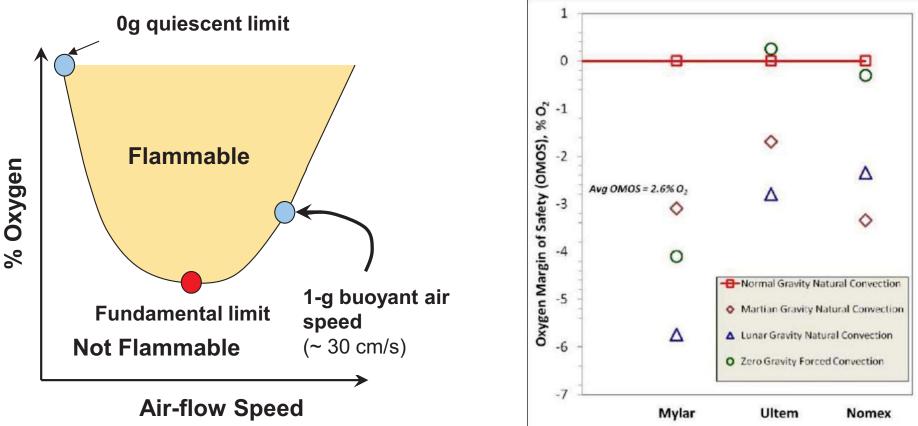
- Scientific community
 - Address both the "no ignition" and "no flame spread" criteria involved in passing standard material flammability testing
 - Materials can pass NASA-STD-6001 Test 1 because ignition energy is not sufficient to start the flame spread process
- NASA Materials and Processes
 - If a material passes NASA Test 1 on the ground, will it pass the test in microgravity? (i.e. is the ground test the worst case scenario)
- The long-term relevance to spacecraft fire safety applications depends on the careful and well-informed selection of the sample materials
 - Relevance requires:
 - Scalability
 - Amenable to modeling

- Dimensions and energy release
 - 1 or 2 flame spread (large) samples (0.5 m x 1.0 m)
 - 9 or 18 material flammability samples (5 cm x 30 cm)
 - Thickness can be a maximum of 10mm
 - Total energy released can be a maximum of 54 grams of fuel (cellulose equivalent)
- Data Acquisition
 - Thermocouples (6 total shared by all 9 samples)
 - Radiometer (two sides)
 - Camera (front view)
 - Maximum run time of 6 minutes
- Flow
 - Flow rate range is 10-30 cm/s
 - Concurrent or opposed
- Ignition power and system
- Long-term sample storage

Large-Scale Flame Spread Test

- Upward flame spread test on a fabric sample
 - Solid Inflammability Boundary at Low Speed (SIBAL)
 - Cotton on a fiberglass substrate
 - 75% cotton by weight (18.05 mg/cm²)
 - 0.4 m x 0.94 m
 - Saffire-I: 20 cm/s air flow
 - Saffire-III: 30 cm/s air flow


Normal gravity test conducted in the VF-13 facility at NASA GRC.


- NASA-STD-6001 describes the test methods used to qualify materials for use in space vehicles.
- The primary test to assess material flammability is Test 1: Upward Flame Propagation
- Materials "pass" this test if the flame self-extinguishes before it propagates 15 cm
- Maximum oxygen concentration (MOC) is defined as the highest O₂ at which material passes Test 1

- Flammability limits determined by this test are strongly influenced by natural convection
 - Normal gravity flames induce a natural convective flow that transports oxygen to the flame *but also removes heat*
 - Forced convection in low-g transports oxygen to the flame but rate of heat removal is reduced

Ferkul, P.V. and Olson, S.L., "Zero-gravity Centrifuge Used for the Evaluation of material Flammability in Lunar-Gravity," AIAA 2010-6260, 40th International Conference on Environmental Systems, Barcelona, Spain, July 11-15, 2010.

- Build data sets on scalability of low-g fires
 - Materials that have been tested in low-g at different length scales
- Amenable to modeling
 - Large, vehicle scale fire modeling
 - Impact on vehicle
 - Real-time modeling of fire response
 - Details of low-g flame spread
- Conclusive low-g flammability limit (Maximum Oxygen Concentration) data
 - Flammability limit sample materials must cross the flammability limit in 21% O₂
 - Requires approaches to alter flammability including: material thickness, heat loss (metal backing/matrix), radiative feedback (surface variation (grooves), inert (non-flammable) coatings

Three-dimensional, time

Burning and Suppression of Solids (BASS)

2cm and 1cm Flat Samples

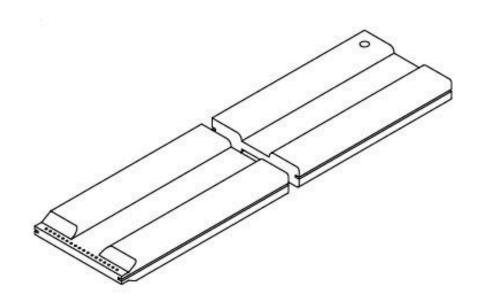
- SIBAL- cotton-fiberglass
 fabric
- Nomex- flame resistant material related to nylon
- Ultem thermoplastic resins

used in medical and chemical instrumentation

dependent upward flame spread in buoyant flows

- Nomex (HT90-40, Combo)
- Mylar
- Ultem
- SIBAL cloth
 - Solid Inflammability Boundary at Low Speed (SIBAL)
 - Cotton on a fiberglass substrate
 - 75% cotton by weight (18.05 mg/cm²)
- Silicone (2-3 thicknesses, concurrent/ opposed spread)
- PMMA
 - Straight, tapered, or structured
- Cellulose (with backing/metal matrix)
- Fire-resistant coating
- Wires

PMMA-samples shaped at University of Bremen with grooves parallel or perpendicular to the flame propagation direction



		МОС	ULOI			
Composites and Laminates						
	Epoxy/Glass laminate NEMA G-11, H-23842	23	23.6			
Rigid Plastics						
	P1700 polysulfone	25	27.5			
	Zytel 42 from 93-27463	24.1	24.5			
Fabrics						
	Nomex HT 90-40, L/N 7254	24	24.8			
	Nylon Tricot ST11N791-01	23	24.3			
	TCU Bottom, P/N SKD38114488-01	21	22.8			
	Nomex Webbing P/N 9981	22	23.4			
Foams						
	L-200 Minicel Foam	20	21.7			
	TA-301 Polyimide foam	25	27.3			
Films						
	Ultem 1000 Film, P/N DLI1648	21	22.1			
	PEEK Victrex Film, 10-mil	21.1	22			
	Kapton HN Film	26	27.2			
	SSP-M823 Silicone membrane, 0.004"	17	17.5			
	SSP-M823 Silicone membrane, 0.010"	18	19.7			
	SSP-M823 Silicone membrane, 0.014"	19	21			
	SSP-M823 Silicone membrane, 0.024"	20	22.8			
	SSP-M823 Silicone membrane, 0.040"	22	23.4			

- Nomex (HT90-40) with PMMA promoter (1 sample)
- SIBAL cloth (2 samples at the same flow rates as Saffire 1 & 3)
- Silicone (3 thicknesses for concurrent spread and 1 thickness for opposed spread)
- **PMMA** 10 mm thick
- Flat sample
- Structured sample



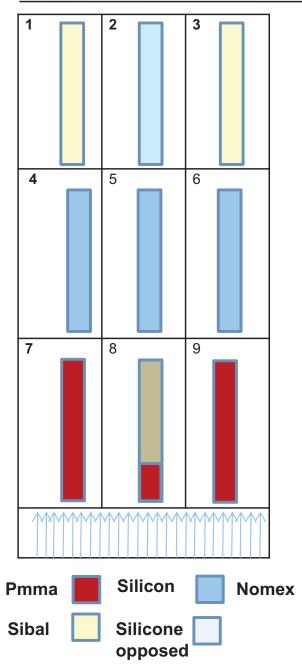
Top view of PMMA sample -edges have different radii

- Example with 4 inch SIBAL cloth promoter
- 8 inch Nomex

After Igniter is off

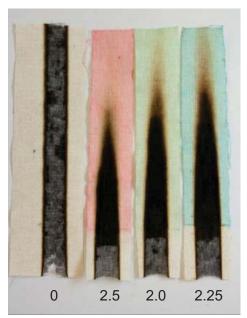
Flame Out

- Average ~ 5 minutes to burn 30 cm
- 0.014" thick Silicone will burn downward but not upward

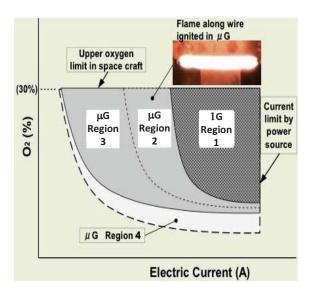


.01" down burn

Flight 2 Sample Selection

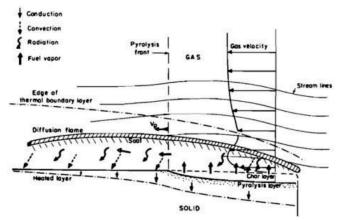


Sample #	Material	Sample	Flow (cm/s)	Igniter
·		Thickness		Position
Saffire-2-S1	SIBAL	N/A	20	Bottom
Saffire-2-S2	Silicone down	0.36 mm	20	Тор
		(0.014")		
		Silicone		
Saffire-2-S3	SIBAL	N/A	30	Bottom
Saffire-2-S4	Flam limit 1	0.25 mm	20	Bottom
	Silicone	(0.010")		
		Silicone		
Saffire-2-S5	Flam limit 2	0.36 mm	20	Bottom
	Silicone	(0.014")		
		Silicone		
Saffire-2-S6	Flam limit 3	0.61 mm	20	Bottom
	Silicone	(0.024")		
		Silicone		
Saffire-2-S7	РММА	10 mm with	20	Bottom
	2 sided burning	tapered edge		
		for ignition		
Saffire-2-S8	Transition 1: PMMA	N/A	20	Bottom
	to NOMEX			
Saffire-2-S9	РММА	10 mm with	30	Bottom
	2 sided burning	tapered edge		
		for ignition		

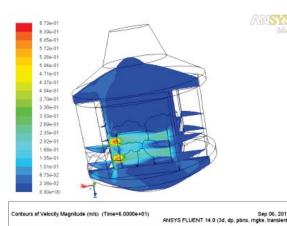


- The outcomes of this experiment are multiplied by tasks performed by contributing team members (and the funding from other organizations)
 - Sample Selection
 - Structured materials:
 - Nickolay Smirnov, Moscow Lomonosov State University, Moscow, Russia
 - Christian Eigenbrod, University of Bremen (ZARM), Bremen, Germany
 - Wires: Osamu Fujita, Hokkaido University, Sapporo, Japan
 - Coated materials: James S. T'ien , Case Western Reserve University, Cleveland, OH, USA
 - Nomex: Carlos Fernandez-Pello, UC Berkeley, Berkeley, CA, USA

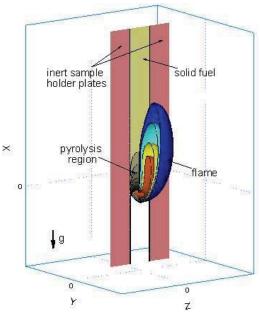
Guanylurea Phosphate (GUP) (g) in 25 mL water (samples are 2 cm x 18 cm)



Ignition map of overloaded wire. Region 1: Ignition limit in 1-g. Region 2: Ignition limit in short-term μg tests. Region 3: Ignition limit in long-term μg tests. Region 4: Ignition but no sustained flame.



- The outcomes of this experiment are multiplied by tasks performed by contributing team members (and the funding from other organizations)
 - Modeling
 - Low-g Fire Dynamics
 - James S. T'ien , Case Western Reserve University, Cleveland, OH, USA
 - Real-time fire response:
 - Jose L. Torero, University of Queensland, Brisbane, Australia
 - Adam J. Cowlard, University of Edinburgh, Edinburgh, UK
 - Vehicle-scale fire scenario modeling
 - Sebastien Rouvreau, Belisama R&D, Toulouse, France
 - Dan Dietrich, NASA GRC, Cleveland, OH
 - Suleyman Gokoglu, NASA GRC, Cleveland, OH



Schematic for a concurrent spread over the flat surface of a solid combustible

: Fluent model calculation of velocity magnitude in ATV configuration after 1 minute of heat release.

Three-dimensional, time dependent upward flame spread in buoyant flows

- The outcomes of this experiment are multiplied by tasks performed by contributing team members (and the funding from other organizations)
 - Diagnostics
 - Fuel Characteristics: Adam J. Cowlard, University of Edinburgh, Edinburgh, UK
 - Flame Propagation Apparatus: Heat release rate of materials to support detailed modeling of fire response
 - Soot Volume Fraction in Low-g: Guillaume Legros, Université Pierre et Marie Curie, Paris, France
 - Laser extinction technique to measure soot volume fraction in large-scale normal- and low-g flames

- The Saffire experiment (Spacecraft Fire Safety Demonstration Project) is in development to address knowledge gaps in low-g material flammability
- Sample were selected to meet stakeholder requirements and to ensure the long-term impact of the project on the spacecraft fire safety protocol.
- Samples will address both flame spread and material flammability understanding.
- Recent studies and analyses have confirmed the fire safety needs for long-term exploration missions. Spacecraft fire safety technologies have been identified as enabling for some exploration missions, enhancing for others
 - The Saffire experiments address several of these but lack fire detection, suppression, and post-fire cleanup
- An end-to-end demonstration of a fire detection, suppression, and clean-up scenario would verify hardware and the ability to properly size fire response hardware

