
National Aeronautics and Space Administration!

www.nasa.gov 1 

 

Space Telecommunications 
Radio System (STRS) 

Architecture 
 

Tutorial Part 2 - Detailed 

 
Glenn Research Center 

February 2014 



National Aeronautics and Space Administration!

www.nasa.gov 2 

STRS Tutorials (4009) 
1.  Roles (p. 2-9) 
2.  Operation (p. 10-12) 
3.  Hardware (p. 13-15) 
4.  Documentation & Repository (p. 16-20) 
5.  STRS C/C++ Header Files & Predefined Data (p. 21-30) 
6.  STRS Application-provided Application Control API (p. 31-39) 
7.  STRS Infrastructure-provided Application Control API (p. 40-44) 
8.  STRS Infrastructure Application Setup API (p. 45-51) 
9.  STRS Infrastructure Data Sink & Data Source (p. 52-55) 
10.  STRS Infrastructure Device Control API (p. 56-61) 
11.  STRS Infrastructure File Control API (p. 62-65) 
12.  STRS Infrastructure Messaging Control API (p. 66-69) 
13.  STRS Infrastructure Time Control API (p. 70-73) 
14.  POSIX (p. 74-80) 
15.  Application Configuration Files (p. 81-85) 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Tutorial – Roles & Responsibilities 

3 



National Aeronautics and Space Administration!

www.nasa.gov 4 

Roles Defined for STRS Requirements 

•  To abstract the responsible organizations. 
•  To promote vendor independence, scalability, 

flexibility, and extensibility, while specifying the 
smallest number of clearly defined roles possible.  

•  To obtain radios without restricting contracting or 
subcontracting for hardware and software. 

•  To allow clear responsibilities to be assigned by the 
project/mission. 

•  To allow separate entities to work together. 
•  To allow one entity to assume multiple roles. 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Roles: Providers & Integrators 

•  Each subsystem provider acquires or develops the subsystem 
to be provided to the corresponding integrator. 

•  Each integrator combines the subsystems to create a new 
subsystem. 

•  The integrator may provide the new subsystem to another 
integrator. 

•  The roles and corresponding organizations were often expected 
to change at different stages of the radio’s life cycle.   

 

5 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Roles Defined 

•  Platform provider delivers a platform upon which 
STRS applications could be executed. 
–  The platform provider could subcontract for hardware and 

software, but the responsibility for coordination, integration, 
and delivery of the infrastructure and related artifacts would 
reside in one platform provider organization.   

–  The platform provider would usually act as application 
developer and integrator for at least a sample application.   

•  Application developer provides the desired 
functionality in the form of an STRS application. 

•  Integrator gets the parts to work together. 

6 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Roles Simplified 

7 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Roles Illustrated 

8 



National Aeronautics and Space Administration!

www.nasa.gov 9 

STRS Roles Not Defined 

•  There are roles missing for: 
–  STRS Compliance Tester 
–  STRS Repository Manager 
–  STRS Configuration Manager 

 because these are internal to NASA and not 
necessary to the creation of the STRS radio 

•  There are roles missing for: 
–  Project Management 
–  Change Control Board 
–  Reviewers 

 because these are required by the project and  
 NPR 7150 but not required by STRS.   



National Aeronautics and Space Administration!

www.nasa.gov 10 

STRS Tutorial 2 

 
Operation 

 



National Aeronautics and Space Administration!

www.nasa.gov 

Operation 

11 

Requirement Description 
STRS-1 An STRS platform shall have a known state after completion of the 

power-up process. 
STRS-2 The STRS Operating Environment shall access each module’s 

diagnostic information via the STRS APIs. 
STRS-3 Self-diagnostic and fault-detection data shall be created for each 

module so that it is accessible to the STRS Operating Environment.  
STRS-13 If the STRS application has a component resident outside the GPM 

(e.g., in configurable hardware design), then the component shall be 
controllable from the STRS Operating Environment. 

STRS-94 An STRS platform shall accept, validate, and respond to external 
commands. 

STRS-95 An STRS platform shall execute external application control 
commands using the standardized STRS APIs. 

STRS-107 An STRS platform provider shall document the external commands 
describing their format, function, and any STRS methods invoked. 

STRS-96 The STRS infrastructure shall use the STRS_Query method to service 
external system requests for information from an STRS application. 



National Aeronautics and Space Administration!

www.nasa.gov 

Operation 

Rationale: 
•  Even if the method of commanding the radio is different for each 

radio, consistency in using the STRS architecture is necessary 
for an architecture to aid portability. 

12 



National Aeronautics and Space Administration!

www.nasa.gov 13 

STRS Tutorial 3 

 
Hardware & Hardware 

Abstraction Layer 



National Aeronautics and Space Administration!

www.nasa.gov 

Hardware & Hardware Abstraction Layer 

14 

Requirement Description 
STRS-109 An STRS platform shall have a GPM that contains and executes the STRS OE and the 

control portions of the STRS applications and services software. 



National Aeronautics and Space Administration!

www.nasa.gov 

Hardware & Hardware Abstraction Layer 

15 

Requirement Description 
STRS-14 The STRS SPM developer shall provide a platform-specific wrapper for each 

user-programmable FPGA, which performs the following functions: 
1)  Provides an interface for command and data from the GPM to the waveform 

application  
2)  Provides the platform-specific pinout for the application developer. This may be a 

complete abstraction of the actual FPGA pinouts with only waveform application 
signal names provided. 

STRS-11 The STRS infrastructure shall use the STRS Platform HAL APIs to communicate with 
application components on the platform specialized hardware via the physical interface 
defined by the platform developer. 

STRS-92  The STRS platform provider shall provide STRS platform HAL documentation that 
includes the following: 
1)  For each method or function, its calling sequence, return values, an explanation of 

its functionality, any preconditions for using the method or function, and the 
postconditions after using the method or function. 

2)  Information required to address the underlying hardware, including interrupt input 
and output, memory mapping, and other configuration data necessary to operate in 
the STRS platform environment. 



National Aeronautics and Space Administration!

www.nasa.gov 16 

STRS Tutorial 4 

 
Documentation & Repository 

 



National Aeronautics and Space Administration!

www.nasa.gov 

HID Documentation & Wrapper 

17 

Requirement Document 
STRS-4 The STRS platform provider shall describe, in the HID document, the behavior and capability of 

each major functional device or resource available for use by waveforms, services, or other 
applications (e.g., FPGA, GPP, DSP, or memory), noting any operational limitations. 

STRS-5 The STRS platform provider shall describe, in the HID document, the reconfigurability behavior 
and capability of each reconfigurable component.  

STRS-6 The STRS platform provider shall describe, in the HID document, the behavior and performance of 
the RF modular component(s). 

STRS-7 The STRS platform provider shall describe, in the HID document, the interfaces that are provided to 
and from each modular component of the radio platform.  

STRS-8 The STRS platform provider shall describe, in the HID document, the control, telemetry, and data 
mechanisms of each modular component (i.e., how to program or control each modular component 
of the platform, and how to use or access each device or software component, noting any proprietary 
and nonstandard aspects).  

STRS-9 The STRS platform provider shall describe, in the HID document, the behavior and performance of 
any power supply or power converter modular component(s). 

STRS-108 The platform provider shall describe, in the HID document, the thermal and power limits of the 
hardware at the smallest modular level to which power is controlled. 



National Aeronautics and Space Administration!

www.nasa.gov 

HID Documentation & Wrapper 

18 

Requirement Document 
STRS-15 The STRS SPM developer shall provide documentation on the configurable hardware design 

interfaces of the platform-specific wrapper for each user-programmable FPGA, which describes the 
following: 
(1) Signal names and descriptions. 
(2) Signal polarity, format, and data type. 
(3) Signal direction. 
(4) Signal-timing constraints. 
(5) Clock generation and synchronization methods. 
(6) Signal-registering methods. 
(7) Identification of development tool set used. 
(8) Any included noninterface functionality.  



National Aeronautics and Space Administration!

www.nasa.gov 

Documentation & Repository 

19 

Requirement Document 
STRS-12 The following application development artifacts shall be submitted to the NASA STRS application 

repository.  
1)  High-level system or component software model. 
2)  Documentation of application configurable hardware design external interfaces (e.g., signal 

names, descriptions, polarity, format, data type, and timing constraints). 
3)  Documentation of STRS application behavior. 
4)  Application function sources (e.g., C, C++, header files, VHSIC VHDL, and Verilog). 
5)  Application libraries, if applicable (e.g., electronic design interchange format (EDIF) and 

Dynamic Link Library (DLL)). 
6)  Documentation of application development environment and tool suite. 

A.  Include application name, purpose, developer, version, and configuration specifics. 
B.  Include the hardware on which the application is executed, its OS, OS developer, OS 

version, and OS configuration specifics. 
C.  Include the infrastructure description, developer, version, and unique implementation 

items used for application development. 
7)  Test plans, procedures and results documentation. 
8)  Identification of software development standards used 
9)  Version of NASA-STD-4009. 
10)  Information, along with supporting documentation, required to make the appropriate decisions 

regarding ownership, distribution rights, and release (technology transfer) of the application 
and associated artifacts. 

 



National Aeronautics and Space Administration!

www.nasa.gov 

Documentation & Repository 

Rationale: 
•  Hardware behavior, capabilities, limitations, and identification  

need to be captured so that the software developers can use the 
hardware to advantage. 

•  Hardware and software needs to be inventoried to know when 
updates are needed or made. 

•  Software artifacts need to be captured and inventoried so that 
the platform and/or software can be reused and/or updated. 

•  Licensing and intellectual property issues need to be 
documented to avoid legal disputes. 

20 



National Aeronautics and Space Administration!

www.nasa.gov 21 

STRS Tutorial 5 

 
STRS C/C++ Header Files & 

Predefined Data 
 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS C/C++ Header Files 

22 

Requirement Description 
STRS-16 The STRS Application-provided Application Control API shall be 

implemented using ISO/IEC C or C++. 
STRS-17 The STRS infrastructure shall use the STRS Application-provided 

Application Control API  to control STRS applications. 
STRS-105 The STRS infrastructure APIs shall have an ISO/IEC C language 

compatible interface. 
STRS-18 The STRS Operating Environment shall support ISO/IEC C or C++, or 

both, language interfaces for the STRS Application-provided Application 
Control API at compile-time.  

STRS-19 The STRS Operating Environment shall support ISO/IEC C or C++, or 
both, language interfaces for the STRS Application-provided Application 
Control API at run-time.  



National Aeronautics and Space Administration!

www.nasa.gov 

STRS C/C++ Header Files 

23 

Requirement Description 
STRS-20 Each STRS application shall contain:  #include "STRS_ApplicationControl.h" 
STRS-21 The STRS platform provider shall provide an “STRS_ApplicationControl.h” that 

contains the method prototypes for each STRS application and, for C++, the class 
definition for the base class STRS_ApplicationControl. 

STRS-22 If the STRS Application-provided Application Control API is implemented in C++, the 
STRS application class shall be derived from the STRS_ApplicationControl base 
class.   

STRS-23 If the STRS application provides the APP_Write method, the STRS application shall 
contain: #include "STRS_Sink.h" 

STRS-24 The STRS platform developer shall provide an “STRS_Sink.h” that contains the 
method prototypes for APP_Write and, for C++, the class definition for the base 
class STRS_Sink. 

STRS-25 If the STRS Application-provided Application Control API is implemented in C++ 
AND the STRS application provides the APP_Write method, the STRS application 
class shall be derived from the STRS_Sink base class. 

STRS-26 If the STRS application provides the APP_Read method, the STRS application shall 
contain: #include "STRS_Source.h" 

STRS-27 The STRS platform developer shall provide an “STRS_Source.h” that contains the 
method prototypes for APP_Read and, for C++, the class definition for the base 
class STRS_Source. 

STRS-28 If the STRS Application-provided Application Control API is implemented in C++ 
AND the STRS application provides the APP_Read method, the STRS application 
class shall be derived from the STRS_Source base class. 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS C/C++ Header Files 

Rationale: 
•  An open standard architecture and interfaces are used to 

support portability. 
•  Scalable, flexible, reliable, extensible, adaptable, portable. 

 

24 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS C/C++ Header Files 

Examples: 
Minimally, a C++ header file for the application or other component should contain a class 
definition of the form: 

 class MyWaveform : public STRS_ApplicationControl {…}; 
A sink is used for a push model of passing data by writing data to the component; i.e., 
implementing APP_Write.  Then, a header file should contain a class definition of the form: 

 class MyWaveform :  public STRS_ApplicationControl,  
    public STRS_Sink  
 {…}; 

A source is used for a pull model of passing data by reading data from the component; i.e. 
implementing APP_Read.  For example, a header file should contain a class definition of the 
form: 

 class MyWaveform :  public STRS_ApplicationControl, 
    public STRS_Source  
 {…}; 

If both APP_Read and APP_Write are provided in the same waveform, the C++ class will be 
derived from all three base classes named in requirements (STRS-22, STRS-25, and STRS-28).  
For example, a header file should contain a class definition of the form: 

 class MyWaveform :  public STRS_ApplicationControl, 
    public STRS_Sink,  
    public STRS_Source 
 {…}; 

25 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS C/C++ Predefined Data 

26 

Requirement Description 
STRS-89 The STRS platform provider shall provide an STRS.h file 

containing the STRS predefined data shown in table 58, 
STRS Predefined Data. 

STRS-106 An STRS application shall use the appropriate constant, 
typedef, or struct defined in table 58, STRS Predefined Data 
when the data are used to interact with the STRS APIs. 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS C/C++ Predefined Data 

27 

Typedef Name Description 
STRS_Access   a type of number used to indicate how reading and/or writing of a file or queue is done. 
STRS_Buffer_Size   a type of number used to represent a buffer size in bytes.   
STRS_Clock_Kind   a type of number used to represent a kind of clock or timer.   
STRS_File_Size   a type of number used to represent a size in bytes.   
STRS_HandleID   a type of number used to represent an STRS application, device, file, or queue.  
STRS_int8   an 8-bit signed integer     
STRS_int16   a 16-bit signed integer    
STRS_int32   a 32-bit signed integer 
STRS_int64   a 64-bit signed integer 
STRS_ISR_Function   used to define static C-style function pointers passed to the STRS_SetISR() method.       
STRS_Message   a char array pointer used for messages. 
STRS_NumberOfProperties   a type of number used to represent the number of properties in a Properties structure. 
STRS_Queue_Type   a type of number used to represent the queue type.. 
STRS_Priority   a type of number used to represent the priority of a queue.   
STRS_Properties   shorthand for  “struct Properties”  
STRS_Property   shorthand for  “struct Property” 
STRS_Result   a type of number used to represent a return value, where negative indicates an error.   
STRS_TestID   a type of number used to represent the built-in test or ground test to be performed by 

APP_RunTest or APP_GroundTest, respectively.   
STRS_TimeWarp   a representation of a time delay.   
STRS_Type   a type of number used to indicate whether a file is text or binary.   
STRS_uint8   an 8-bit unsigned integer  
STRS_uint16   a 16-bit unsigned integer 
STRS_uint32   a 32-bit unsigned integer 
STRS_uint64   a 64-bit unsigned integer 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS C/C++ Predefined Data 

28 

Constant Name Description 
STRS_ACCESS_APPEND  writing is allowed preserving previous data written.  Corresponds to fopen mode “a”. 
STRS_ACCESS_BOTH  both reading and writing are allowed.  Corresponds to fopen mode “r+”. 
STRS_ACCESS_READ  reading is allowed.  Corresponds to fopen mode “r”. 
STRS_ACCESS_WRITE  writing is allowed.  Corresponds to fopen mode “w”. 
STRS_OK  the STRS_Result is valid.   
STRS_ERROR  the STRS_Result is invalid such that the component is still usable.   
STRS_ERROR_QUEUE  the STRS_HandleID indicates that the log queue is for error messages.   
STRS_FATAL  the STRS_Result is invalid such that the component is not usable.   
STRS_FATAL_QUEUE  the STRS_HandleID indicates that the log queue is for fatal messages.   
STRS_PRIORITY_HIGH  a number representing a high priority queue. 
STRS_PRIORITY_MEDIUM  a number representing a medium priority queue. 
STRS_PRIORITY_LOW  a number representing a low priority queue. 
STRS_QUEUE_PUBSUB  a number representing a Publish/Subscribe queue type. 
STRS_QUEUE_SIMPLE  a number representing a simple queue type. 
STRS_TELEMETRY_QUEUE  the STRS_HandleID indicates that the log queue is for telemetry data.  
STRS_TEST_STATUS  value of type STRS_TestID used as the argument to APP_RunTest and STRS_RunTest so that the 

state of the STRS application is returned.  
STRS_TEST_USER_BASE  value of type STRS_TestID for the lowest numbered user-defined test.  Any STRS_TestID values 

lower than STRS_TEST_USER_BASE are reserved arguments to APP_RunTest.  An example of a 
test type lower than STRS_TEST_USER_BASE is STRS_TEST_STATUS. 

STRS_TYPE_BINARY  the value indicating that a file is a binary file. 
STRS_TYPE_TEXT  the value indicating that a file is a text file. 
STRS_WARNING  the STRS_Result is invalid  such that there may be little or no effect on the operation of the 

component.     
STRS_WARNING_QUEUE  the STRS_HandleID is for warning messages.   
STRS_APP_FATAL  state indicating that a nonrecoverable error has occurred.   
STRS_APP_ERROR state indicating that a recoverable error has occurred.   
STRS_APP_INSTANTIATED  state indicating that the object is instantiated and ready to accept messages.      
STRS_APP_RUNNING  state indicating that STRS_Start() has been called.  
STRS_APP_STOPPED  state indicating that STRS_Initialize() or STRS_Stop() has been called.      



National Aeronautics and Space Administration!

www.nasa.gov 

STRS C/C++ Predefined Data 

29 

Struct Name Description 
Property  a struct with two character pointer variables: name and value.   

Properties  a struct with two variables (nProps and mProps) of type 
STRS_NumberOfProperties, and an array of Property structures 
(vProps). The variable nProps contains the number of items in the 
vProps array.  The variable mProps contains the maximum number of 
items in the vProps array.   



National Aeronautics and Space Administration!

www.nasa.gov 

STRS C/C++ Predefined Data 

Rationale: 
•  For portability, standard names are defined for 

various constants and data types, but the 
implementation of these definitions is mission 
dependent.  

30 



National Aeronautics and Space Administration!

www.nasa.gov 31 

STRS Tutorial 6 

 
 

STRS Application-provided 
Application Control API 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Application-provided Application 
Control API 

Rationale 
•  Need methods to control the actions of a waveform or other 

application, devices, etc. 
•  Leverage state-of-the-art standards and experience. 
•  An open standard architecture and interfaces are used to 

support portability. 
•  JTRS/SCA and OMG/SWRADIO define similarly named 

methods.  Allows a similar PIM (platform-independent model), 
with a different PIM to PSM (platform-specific model) 
transformation. 

•  Scalable, flexible, reliable, extensible, adaptable, portable. 
•  Layered architecture used to isolate waveform applications from 

hardware specific implementations. 

32 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Application-provided Application 
Control API 

Methods: 
•  STRS-29  APP_Configure 
•  STRS-30  APP_GroundTest 
•  STRS-31  APP_Initialize 
•  STRS-32  APP_Instance 
•  STRS-33  APP_Query 
•  STRS-34  APP_Read 
•  STRS-35  APP_ReleaseObject 
•  STRS-36  APP_RunTest 
•  STRS-37  APP_Start 
•  STRS-38  APP_Stop 
•  STRS-39  APP_Write 

33 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Application-provided API 

•  STRS-29  APP_Configure 
–  Prototype: 

•  STRS_Result APP_Configure(STRS_Properties * propList) 
–  Description: 

•  Set values for one or more properties in the application (or 
device or other entity that is configurable). 

•  STRS-33  APP_Query 
–  Prototype: 

•  STRS_Result APP_Query(Properties *propList) 
–  Description: 

•  Obtain values for one or more properties in the application (or 
device or other entity that is queryable).  

 

34 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Application-provided API 

•  STRS-31  APP_Initialize 
–  Prototype: 

•  STRS_Result APP_Initialize()  
–  Description: 

•  Initialize the application (or device) to a known initial state based 
on what has been configured previously. 

•  STRS-32  APP_Instance 
–  Prototype: 

•  ThisSTRSApplication *APP_Instance(STRS_HandleID 
handleID, char *name) 

–  Description: 
•  Set the handle name and identifier (ID). In C++, it is a static 

method used to call the class constructor for C++. 

 

35 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Application-provided API 

•  STRS-35  APP_ReleaseObject 
–  Prototype: 

•  STRS_Result APP_ReleaseObject() 
–  Description: 

•  Free any resources the application (or device) has acquired. An 
example would be to close any open files or devices. 

•  STRS-36  APP_RunTest 
–  Prototype: 

•  STRS_Result APP_RunTest(STRS testID, STRS_Properties 
*propList) 

–  Description: 
•  Test the application (or device or other entity that is testable).  
•  The tests provide aid in isolating faults within the 

application. 

36 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Application-provided API 
•  STRS-30  APP_GroundTest 

–  Prototype: 
•  STRS_Result APP_GroundTest(STRS_TestID testID, 

STRS_Properties *propList)  
–  Description: 

•  Perform unit and system testing usually done on ground before 
deployment.   The testing may include calibration.  

 

37 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Application-provided API 

•  STRS-37  APP_Start 
–  Prototype: 

•  STRS_Result APP_Start() 
–  Description: 

•  Begin normal application processing.  

•  STRS-38  APP_Stop 
–  Prototype: 

•  STRS_Result APP_Stop() 
–  Description: 

•  End normal application processing.  
 

38 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Application-provided API 

•  STRS-34  APP_Read 
–  Prototype: 

•  STRS_Result APP_Read(STRS_Message buffer,  
STRS_Buffer_Size nb) 

–  Description: 
•  Method is used to obtain data from the application (or device or 

other entity) that is a source of data to the infrastructure.  

•  STRS-39  APP_Write 
–  Prototype: 

•  STRS_Result APP_Write(STRS_Message buffer, 
STRS_Buffer_Size nb) 

–  Description: 
•  Method used to send data to the application (or device or other 

entity) that is a sink receiving data from the infrastructure. 
 

39 



National Aeronautics and Space Administration!

www.nasa.gov 40 

STRS Tutorial 7 

 
 

STRS Infrastructure-provided 
Application Control API 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Infrastructure-provided 
Application Control API 

41 

Requirement Method Description 

STRS-40 STRS_Configure  Set values for one or more properties in the 
application (or device). 

STRS-41 STRS_GroundTest  Perform unit and system testing usually 
done on the ground before deployment.  
The testing may include calibration. 

STRS-42 STRS_Initialize  Initialize the target component. 

STRS-43 STRS_Query  Obtain values for one or more properties in 
the target component. 

STRS-44 STRS_ReleaseObject  Free any resources the application has 
acquired. 

STRS-45 STRS_RunTest  Test the target component. 

STRS-46 STRS_Start  Begin normal application processing. 

STRS-47 STRS_Stop  End normal application processing. 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Infrastructure-provided 
Application Control API 

Rationale 
•  Need methods to control the actions of a waveform or other 

application, devices, etc. 
•  Because a C language compatible interface was required, the 

corresponding methods had a different calling sequence from 
the STRS Application-provided Application Control API. 

•  An open standard architecture and interfaces are used to 
support portability. 

•  JTRS/SCA and OMG/SWRADIO define similarly named 
methods.  Allows a similar PIM (platform-independent model), 
with a different PIM to PSM (platform-specific model) 
transformation. 

•  Scalable, flexible, reliable, extensible, adaptable, portable. 
•  Layered architecture used to isolate waveform applications from 

hardware specific implementations. 

42 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Infrastructure-provided 
Application Control API 

•  Many of these methods are implemented as shown 
below for STRS_Configure (and corresponding 
APP_Configure): 

43 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Infrastructure-provided 
Application Control API 

•  Example of use: 
struct { 

    STRS_NumberOfProperties nProps; 

    STRS_NumberOfProperties mProps; 

    STRS_Property  vProps[MAX_PROPS]; 

} propList; 

propList.nProps = 2; 

propList.mProps = MAX_PROPS; 

propList.vProps[0].name  = "A"; 

propList.vProps[0].value = "5";  /* Set A=5. */ 

propList.vProps[1].name  = "B"; 

propList.vProps[1].value = "27"; /* Set B=27. */ 

STRS_Result rtn = STRS_Configure(fromWF,toWF,  

(STRS_Properties *) &propList); 

if ( ! STRS_IsOK(rtn)) { 

STRS_Buffer_Size nb = strlen(  "STRS_Configure fails."); 

STRS_Log(fromWF, STRS_ERROR_QUEUE, "STRS_Configure fails.", nb); 

} 

44 



National Aeronautics and Space Administration!

www.nasa.gov 45 

STRS Tutorial 8 

 
STRS Infrastructure  

Application Setup API 
 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Infrastructure  
Application Setup API 

46 

Requirement Method Description 
STRS-48  STRS_AbortApp  Abort an application or service. 
STRS-49  STRS_GetErrorQueue  Transform an error status into an error queue. 
STRS-50  STRS_HandleRequest  The table of object names is searched for the given name 

and an index is returned as a handle ID.     
STRS-51  STRS_InstantiateApp  Instantiate an application, service or device and perform any 

operations by the configuration file. 

STRS-52  STRS_IsOK  Return true, if return value of previous call is not an error 
status. 

STRS-53  STRS_Log  Send log message for distribution as appropriate.  Time 
stamp is added automatically.    

STRS-54  STRS_Log  When an STRS application has a non-fatal error, the STRS 
application shall use the STRS_Log method with a target 
handle ID of constant STRS_ERROR_QUEUE. 

STRS-55  STRS_Log  When an STRS application has a fatal error, the STRS 
application shall use the STRS_Log method with a target 
handle ID of constant STRS_FATAL_QUEUE. 

STRS-56  STRS_Log  When an STRS application has a warning condition, the 
STRS application shall use the STRS_Log method with a 
target handle ID of constant STRS_WARNING_QUEUE. 

STRS-57  STRS_Log  When an STRS application needs to send telemetry, the 
STRS application shall use the STRS_Log method with a 
target handle ID of constant STRS_TELEMETRY_QUEUE. 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Infrastructure  
Application Setup API 

Rationale: 
•  The methods for these requirements are used to support the 

STRS Infrastructure-provided Application Control API. 
•  An open standard architecture and interfaces are used to 

support portability. 
•  Scalable, flexible, reliable, extensible, adaptable, portable. 
•  Layered architecture used to isolate waveform applications from 

hardware specific implementations. 

47 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS-48  STRS_AbortApp  

48 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS-51  STRS_InstantiateApp 

49 

First part, instantiation:	




National Aeronautics and Space Administration!

www.nasa.gov 

STRS-51  STRS_InstantiateApp 

50 

Second part, 
configuration:	


(Configuration)	


(State: STOPPED)	


(State: RUNNING)	




National Aeronautics and Space Administration!

www.nasa.gov 

STRS-51  STRS_InstantiateApp 

Example: 
char toWF[MAX_PATH_LENGTH]; 

strcpy(toWF,"/path/STRS_WFxxx.cfg"); 

STRS_HandleID wfID = STRS_InstantiateApp(fromWF,toWF); 

if (wfID < 0) { 

 STRS_Buffer_Size nb = strlen( 

"InstantiateApp fails."); 

 STRS_Log(fromWF,  

  STRS_GetErrorQueue((STRS_Result)wfID),  

  "InstantiateApp fails.", nb); 

}  else { 

 cout << "Successful instantiation for " << toWF  
   << ": " << wfID << std::endl; 

} 

 

51 



National Aeronautics and Space Administration!

www.nasa.gov 52 

STRS Tutorial 9 

 
STRS Infrastructure  

Data Sink & Data Source 
 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Infrastructure  
Data Sink & Data Source 

53 

Requirement	   Method	   Description	  
(STRS-58) 	   STRS_Write	   Method used to send data to a sink 

(application, device, queue, or file). 
APP_Write is implemented within a 
sink application when data is to be 
sent to and used by that application.	  

(STRS-59) 	   STRS_Read	   Method used to obtain data from a 
source or supplier (application, device, 
queue, or file). APP_Read is 
implemented within a source 
application when data is to be 
obtained from that application and 
used elsewhere.	  



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Infrastructure  
Data Sink & Data Source 

Rationale 
•  Sinks and sources are needed to allow a generic interface for I/O. 
•  An open standard architecture and interfaces are used to support 

portability. 
•  Scalable, flexible, reliable, extensible, adaptable, portable. 
•  Layered architecture used to isolate waveform applications from 

hardware specific implementations. 

54 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Infrastructure  
Data Sink & Data Source 

Example: 
char buffer[32]; 
STRS_Buffer_Size nb = 32; 
STRS_Result rtn = STRS_Read(fromWF,pullID,buffer,nb); 
if (STRS_IsOK(rtn)) { 

 cout << "Read " << rtn << " bytes." << std::endl; 
 nb = rtn; 
 STRS_Result rtn = STRS_Write(fromWF,toID,buffer,nb); 
 if (STRS_IsOK(rtn)) { 
  cout << "Wrote " << rtn << " bytes." << std::endl; 
 } else { 
  nb = strlen("Error writing."); 
  STRS_Log(fromWF, STRS_GetErrorQueue(wfID), "Error writing.", nb); 
 } 

} else { 
 nb = strlen("Error reading."); 
 STRS_Log(fromWF, STRS_GetErrorQueue(wfID), "Error reading.", nb); 

} 
55 



National Aeronautics and Space Administration!

www.nasa.gov 56 

STRS Tutorial 10 

 
STRS Infrastructure  
Device Control API 

 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Infrastructure Device Control API 

57 

Requirements Method Description 
STRS-60 (many) The STRS applications shall use the 

methods in the STRS infrastructure Device 
Control API, STRS infrastructure-provided 
Application Control API, Infrastructure Data 
Source API (if appropriate), and 
Infrastructure Data Sink API (if appropriate) 
to control the STRS Devices. 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Infrastructure Device Control API 

58 

Requirements Method Description 
STRS-61 STRS_DeviceClose  Close the device. 
STRS-62 STRS_DeviceFlush  Send any buffered data immediately to the 

underlying hardware and clear the buffers. 
STRS-63 STRS_DeviceLoad  Load a binary image to the device. 
STRS-64 STRS_DeviceOpen  Open the device. 
STRS-65 STRS_DeviceReset  Reinitialize the device.   
STRS-66 STRS_DeviceStart  Start the device.  This is recommended to 

keep the device from only starting when it is 
loaded. 

STRS-67 STRS_DeviceStop  Stop the device.  This is recommended to 
keep the device from being unloaded to just 
pause since most devices stop when they 
are unloaded or there is no data to process. 

STRS-68 STRS_DeviceUnload  Unload the device. 
STRS-69 STRS_SetISR  Set the Interrupt Service Routine for the 

device. 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Infrastructure Device Control API 

Rationale: 
•  STRS Device Control methods are needed to add additional 

functionality to an STRS application. 
•  An open standard architecture and interfaces are used to 

support portability. 
•  Scalable, flexible, reliable, extensible, adaptable, portable. 
•  Layered architecture used to isolate waveform applications from 

hardware specific implementations. 

59 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Infrastructure Device Control API 
•  Example: 
char *msg; = NULL 
STRS_Result rtn = STRS_DeviceLoad(fromWF,toDev, "/path/WF1.FPGA.bit"); 
if ( ! STRS_IsOK(rtn)) {  msg = "DeviceLoad fails."; 
} else { 
 STRS_Result rtn = STRS_DeviceOpen(fromWF,toDev); 
 if ( ! STRS_IsOK(rtn)) { msg = "DeviceOpen fails."; 
 } else { 
  STRS_Result rtn = STRS_DeviceStart(fromWF,toDev); 
  if ( ! STRS_IsOK(rtn)) {  msg = "DeviceStart fails."; 
  } else { . . . }}} 
 . . . 
STRS_Result rtn = STRS_DeviceStop(fromWF,toDev); 
if ( ! STRS_IsOK(rtn)) {  msg = "DeviceStop fails."; 
} else { 
 STRS_Result rtn = STRS_DeviceClose(fromWF,toDev); 
 if ( ! STRS_IsOK(rtn)) { msg = "DeviceClose fails."; 
 } else { 
  STRS_Result rtn = STRS_DeviceUnload(fromWF,toDev); 
  if ( ! STRS_IsOK(rtn)) {  msg = "DeviceUnload fails."; 
  } else { . . . }}} 

 

60 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Infrastructure Device Control API 

Notes: 
•  The use of the device functions is not well defined since STRS 

Devices are not required.  This is a potential problem. 
•  Is the usual order:  

–  open/load/start/stop/unload/close 
–  load/open/start/stop/close/unload 

•  STRS_DeviceStart = STRS_Start? 
•  STRS_DeviceStop = STRS_Stop? 

61 



National Aeronautics and Space Administration!

www.nasa.gov 62 

STRS Tutorial 11 

 
STRS Infrastructure  

File Control API 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Infrastructure File Control API 

63 

Requirement Method Description 
STRS-70 STRS_FileClose  Close the file.  STRS_FileClose is used to 

close a file that has been opened by 
STRS_FileOpen. 

STRS-71 STRS_FileGetFreeSpace  Get total size of free space available for file 
storage. 

STRS-72 STRS_FileGetSize  Get the size of the specified file. 
STRS-73 STRS_FileGetStreamPointer  Get the file stream pointer for the file 

associated with the STRS handle ID.  This is 
normally not used because either the common 
functions are build in to STRS or the entire file 
manipulation is local to one application or 
device.  

STRS-74 STRS_FileOpen  Open the file.  This method is used to obtain 
an STRS handle ID when the file manipulation 
is either built in to STRS or distributed over 
more than one application or device or the 
STRS infrastructure. 

STRS-75 STRS_FileRemove  Remove the file. 
STRS-76 STRS_FileRename  Rename the file. 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Infrastructure File Control API 

Rationale: 
•  Since a space platform may or may not have a file system, the 

word “file” was abstracted to mean a named storage area 
regardless of the existence of a file system.  

•  An open standard architecture and interfaces are used to 
support portability. 

•  Scalable, flexible, reliable, extensible, adaptable, portable. 
•  Layered architecture used to isolate waveform applications from 

hardware specific implementations. 

64 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Infrastructure File Control API 
Example: 
STRS_Buffer_Size nb; 
char* msg = NULL; 
STRS_File_Size size = STRS_FileGetSize(fromWF,"/path/WF1.FPGA.bit"); 
if (size <= 0) { 

 nb = strlen("FileGetSize fails."); 
 STRS_Log(fromWF, STRS_ERROR_QUEUE, "FileGetSize fails.", nb); 

} 
STRS_HandleID frd = STRS_FileOpen(fromWF,filename,    

   STRS_ACCESS_READ, STRS_TYPE_TEXT); 
if (frd < 0) { msg = "FileOpen fails."; 
} else { 
 STRS_Result rtn; 
 char buffer[32]; 
 nb = 32; 
 rtn = STRS_Read(fromWF,frd, buffer,nb); 
 if ( ! STRS_IsOK(rtn)) {   msg = "Read fails."; 
 } else { 
  rtn = STRS_FileClose(fromWF,frd); 
  if ( ! STRS_IsOK(rtn)) {   msg = "FileClose fails."; 
  } else { . . .  
  }}} 

65 



National Aeronautics and Space Administration!

www.nasa.gov 66 

STRS Tutorial 12 

 
STRS Infrastructure  

Messaging Control API 
 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Infrastructure Messaging Control API 

67 

Requirements Method Description 
STRS-77  (many) The STRS applications shall use the STRS 

Infrastructure Messaging, STRS 
Infrastructure Data Source, and STRS 
Infrastructure Data Sink methods to establish 
queues to send messages between 
components.. 

STRS-78 STRS_QueueCreate  Create a queue (FIFO).   
STRS-79 STRS_QueueDelete  Delete a queue.   
STRS-80 STRS_Register  Register an association between a publisher 

and subscriber.  Disallow adding an 
association such that the subscriber has 
another association back to the publisher 
because this would cause an infinite loop. 

STRS-81 STRS_Unregister  Remove an association between a publisher 
and subscriber. 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Infrastructure Messaging Control API 

Rationale: 
•  The STRS Infrastructure Messaging methods are used to send 

messages between components with a single queue handle ID.  
•  The ability for applications, services, devices, or files to 

communicate with other STRS applications, services, devices, 
or files is crucial for the separation of radio functionality among 
independent asynchronous components.  

–  For example, the receive and transmit telecommunication functionality can 
be separated between two applications where the final destination of a 
message is not necessarily known to the producer of the message.. 

–  Another example is when commands or log messages come from several 
independent sources and have to be merged appropriately.   

•  An open standard architecture and interfaces are used to 
support portability. 

•  Scalable, flexible, reliable, extensible, adaptable, portable. 
•  Layered architecture used to isolate waveform applications from 

hardware specific implementations. 

68 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Infrastructure Messaging Control API 

Example: 
STRS_HandleID qX = STRS_QueueCreate(myQ, "QX",  
        STRS_QUEUE_SIMPLE, STRS_PRIORITY_MEDIUM); 
if (qX < 0) { 
    STRS_Buffer_Size nb = strlen("Can’t create queue."); 
    STRS_Log(fromWF,STRS_ERROR_QUEUE, "Can't create queue.", nb). 
    return STRS_ERROR; 
} 
rtn = STRS_Write(myQ, qX, "This is the message.", strlen("This is the message.")); 
if (! STRS_IsOK(rtn)) { 
    STRS_Buffer_Size nb = strlen("Can't write queue."); 
    STRS_Log(fromWF,STRS_ERROR_QUEUE, "Can’t write queue.", nb); 
} 
. . . 
STRS_Result rtn = STRS_QueueDelete(myQ,qX); 
if (! STRS_IsOK(rtn)) { 
    STRS_Buffer_Size nb = strlen("Can't delete queue."); 
    STRS_Log(fromWF,STRS_ERROR_QUEUE, "Can’t delete queue.", nb); 
} 
 

69 



National Aeronautics and Space Administration!

www.nasa.gov 70 

STRS Tutorial 13 

 
STRS Infrastructure  

Time Control API 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Infrastructure Time Control API 

71 

Requirement Method Description 

STRS-82 Any portion of the STRS Applications on the GPP needing time 
control shall use the STRS Infrastructure Time Control methods 
to access the hardware and software timers.   

STRS-83 STRS_GetNanoseconds  Get the number of nanoseconds from the STRS_TimeWarp 
object. 

STRS-84 STRS_GetSeconds  Get the number of seconds from the STRS_TimeWarp object. 
STRS-85 STRS_GetTime  Get the current base time and the corresponding time of a 

specified type.  The base clock/timer is a hardware timer. The 
interval between two non-base times of different kinds only 
makes sense if they are in the same frame of reference. To 
compute the interval between two non-base times in the same 
frame of reference, the function is called twice and the interval 
is modified by the difference between the two base times. 

STRS-86 STRS_GetTimewarp  Get the STRS_TimeWarp object containing the number of 
seconds and nanoseconds in the time interval. 

STRS-87 STRS_SetTime  Set the current time in the specified clock/timer by adjusting the 
time offset. 

STRS-88 STRS_Synch  Synchronize clocks.  The action depends on whether the clocks 
to be synchronized are internal or external. 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Infrastructure Time Control API 

Rationale: 
•  The STRS Infrastructure Time Control methods are used to 

access the hardware and software timers.  
•  These methods include conversion of time between seconds 

and nanoseconds and some implementation-specific object.  
–  Although nanoseconds are specified, that does not imply that the resolution 

is nanoseconds, nor that the underlying STRS_TimeWarp object contains 
its data in nanoseconds.   

–  These timers are expected to be used for relatively low accuracy timing 
such as time stamps, timed events, and time constraints.   

–  The timers are expected to be used for signal processing in the GPP when 
the GPP becomes fast enough.   

•  An open standard architecture and interfaces are used to 
support portability. 

•  Scalable, flexible, reliable, extensible, adaptable, portable. 
•  Layered architecture used to isolate waveform applications from 

hardware specific implementations. 

 
72 



National Aeronautics and Space Administration!

www.nasa.gov 

STRS Infrastructure Time Control API 

Example: 
STRS_TimeWarp b1,b2,t1,t2,diff; 
STRS_int32 isec,nsec; 
STRS_Result rtn; 
STRS_Clock_Kind k1 = 1; 
STRS_Clock_Kind k2 = 2; 
rtn = STRS_GetTime(fromWF,toDev,*b1,k1,*t1); 
rtn = STRS_GetTime(fromWF,toDev,*b2,k2,*t2); 
/* The time difference between timer k1 and timer k2 is computed by obtaining 
 *  the two times, t1 and t2, and adjusting for the time difference between  
 *  the two base times, b2 and b1:  */ 
isec =  STRS_GetSeconds(t2) -  
        (STRS_GetSeconds(t1) + 
        (STRS_GetSeconds(b2) - 
         STRS_GetSeconds(b1))); 
nsec = STRS_GetNanoseconds(t2) -  
        (STRS_GetNanoseconds(t1) + 
        (STRS_GetNanoseconds(b2) -  
         STRS_GetNanoseconds(b1))); 
diff = STRS_GetTimeWarp(isec,nsec); 
 

73 



National Aeronautics and Space Administration!

www.nasa.gov 74 

STRS Tutorial 14 

 
POSIX 

Portable Operating System Interface 



National Aeronautics and Space Administration!

www.nasa.gov 

POSIX 

•  (STRS-10) An STRS application shall use the infrastructure 
STRS API and POSIX API for access to platform resources. 

75 



National Aeronautics and Space Administration!

www.nasa.gov 

POSIX 

•  (STRS-90)  The STRS Operating Environment shall 
provide the interfaces described in POSIX IEEE 
Standard 1003.13-2003 profile PSE51.   

76 

 

PSE51 

PSE52 

PSE53 

PSE54 



National Aeronautics and Space Administration!

www.nasa.gov 

POSIX 
•  (STRS-91) STRS Applications shall use POSIX methods except 

for the unsafe functions listed in table 59, Replacements for 
Unsafe Functions. 

 

77 

Unsafe Function 
- Do Not Use! 

Reentrant Counterpart 
- OK to Use. 

abort STRS_AbortApp 
asctime  asctime_r 
atexit - 
calloc - 
ctermid  ctermid_r 
ctime  ctime_r 
exit STRS_AbortApp 
free - 
getlogin  getlogin_r 
gmtime  gmtime_r 
localtime  localtime_r 
malloc - 
rand  rand_r 
readdir  readdir_r 
realloc - 
strtok  strtok_r 
tmpnam  tmpnam_r 

Table 59 Replacements for Unsafe Functions	




National Aeronautics and Space Administration!

www.nasa.gov 

POSIX 

Rationale: 
•  A POSIX interface was selected because: 

–  most operating systems implement POSIX 
–  most additional methods needed were available in POSIX 
–  POSIX was already an IEEE standard (1003.x) 

•  An open standard architecture and interfaces are used to 
support portability. 

•  Scalable, flexible, reliable, extensible, adaptable, portable. 
•  Layered architecture used to isolate waveform applications from 

hardware specific implementations. 

78 



National Aeronautics and Space Administration!

www.nasa.gov 

POSIX Abstraction Layer 

79 

An STRS operating environment can either use an OS that conforms with 1003.13 PSE51 
or provide a POSIX abstraction layer that provides missing PSE51 interfaces.  For 
constrained resource platforms, the POSIX requirement is based on waveform 
requirements so that the waveforms are upward compatible (require POSIX methods). 	




National Aeronautics and Space Administration!

www.nasa.gov 

POSIX Tailoring 
•  If a POSIX implementation does not have some required methods, a 

POSIX abstraction layer should be implemented in the infrastructure for 
those methods. 

•  For large platforms, try to stick with PSE51, if possible. 
•  For constrained resource platforms, with limited software evolutionary 

capability, where the waveform signal processing is implemented in 
specialized hardware, the supplier may request a waiver to only 
implement a subset of POSIX PSE51 as required by the portion of the 
waveforms residing on the GPP.  The applications created for this 
platform must be upward compatible to a larger platform containing 
POSIX PSE51.  The POSIX API is grouped into units of functionality.  If 
none of the applications for a constrained resource platform use any of 
the interfaces in a unit of functionality, then the supplier may request a 
waiver to eliminate that entire unit of functionality. 

80 



National Aeronautics and Space Administration!

www.nasa.gov 81 

STRS Tutorial 15 

 
Application Configuration Files 



National Aeronautics and Space Administration!

www.nasa.gov 

Application Configuration Files 

XML + Schema + XSL Relationship 

82 

Schema

XML XSL

XSLT

S-Expressions

Schema is used to validate 
XML.  XML follows Schema.

XSL is used to 
transform XML.



National Aeronautics and Space Administration!

www.nasa.gov 

Application Configuration Files 

83 

Requirement Who Shall 
STRS-98 Platform provider  Document the necessary platform information (including a sample file) to 

develop a predeployed application configuration file in XML 1.0.  
STRS-99 Application 

developer 
Document the necessary application information to develop a predeployed 
application configuration file in XML 1.0.  

STRS-100 STRS integrator Provide a predeployed application configuration file in XML 1.0. 

STRS-101 Platform provider & 
integrator 

The predeployed STRS application configuration file shall identify the following 
application attributes and default values: 
1)  Identification. 

A.  Unique STRS handle name for the application. 
B.  Class name (if applicable). 

2)  State after processing the configuration file. 
3)  Any resources to be loaded separately. 

A.  Filename of loadable image. 
B.  Target on which to put loadable image file. 
C.  Target memory in bytes, number of gates, or logic elements. 

4)  Initial or default values for all distinct operationally configurable parameters. 

STRS-102 Platform provider  Provide an XML 1.0 schema definition (XSD) file to validate the format and data 
for predeployed STRS application configuration files, including the order of the 
tags, the number of occurrences of each tag, and the values or attributes.  

STRS-103 Platform provider  Document the transformation (if any) from a predeployed application 
configuration file in XML into a deployed application configuration file and 
provide the tools to perform such transformation. 

STRS-104 STRS integrator Provide a deployed STRS application configuration file for the STRS 
infrastructure to place the STRS application in the specified state. 



National Aeronautics and Space Administration!

www.nasa.gov 

Application Configuration Files 

Rationale: 
•  The use of XML (Extensible Markup Language) version 1.0 allows STRS 

application developers to have the ability to identify configuration information in 
a standard (see http://www.w3.org/XML/ ), human-legible, precise, flexible, and 
adaptable method.  

•  The XML configuration file is expected to be pre-parsed, with additional error 
checking  performed prior to transmission.   

•  Scalable, flexible, reliable, extensible, adaptable, portable. 

84 



National Aeronautics and Space Administration!

www.nasa.gov 

Application Configuration Files 

85 

Configuration File Development Process: 
Application Information	


Platform/Infrastructure Information	




National Aeronautics and Space Administration!

www.nasa.gov 86 


