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TECHNICAL PUBLICATION

ON THE RELATIONSHIP BETWEEN THE LENGTH OF SEASON  
AND TROPICAL CYCLONE ACTIVITY IN THE NORTH ATLANTIC BASIN 

DURING THE WEATHER SATELLITE ERA, 1960–2013

1.  INTRODUCTION

 Officially, the North Atlantic basin tropical cyclone season runs from June 1 through Novem-
ber 30 of each year. During this 183-day interval, the vast majority of tropical cyclone onsets are 
found to occur. For example, in a study of the 715 tropical cyclones that occurred in the North 
Atlantic basin during the interval 1945–2010, it was found that about 97% of them had their onsets 
during the conventional hurricane season, with the bulk (78%) having had onset during the late 
summer-early fall months of August, September, and October and with none having had onset in 
the month of March.1 For the 2014 hurricane season, it already has had the onset of its first named 
storm on July 1 (day of year (DOY) 182), Arthur, which formed off  the east coast of Florida, rapidly 
growing into a category-2 hurricane with peak 1-minute sustained wind speed of about 90 kt and 
striking the coast of North Carolina as a category-2 hurricane on July 3. Arthur is the first hurricane 
larger than category-1 to strike the United States (U.S.) since the year 2008 when Ike struck Texas as 
a category-2 hurricane and there has not been a major hurricane (category-3 or larger) to strike the 
U.S. since Wilma struck Florida as a category-3 hurricane in 2005. Only two category-1 hurricanes 
struck the U.S. in the year 2012 (Isaac and Sandy, striking Louisiana and New York, respectively) 
and there were no U.S. land-falling hurricanes in 2013 (also true for the years 1962, 1973, 1978, 1981, 
1982, 1990, 1994, 2000, 2001, 2006, 2009, and 2010).2

 In recent years it has been argued that the length of season (LOS), determined as the inclusive 
elapsed time between the first storm day (FSD) and the last storm day (LSD) of the yearly hurricane 
season (i.e., when peak 1-minute sustained wind speed of at least 34 kt occurred and the tropical 
cyclone was not classified as ‘extratropical’), has increased in length with the lengthening believed 
to be due to the FSD occurring sooner and the LSD occurring later and with both being related 
to global warming.3–5 In this study, the relationship between the LOS and tropical cyclone activity 
and climate is examined for the weather satellite era, 1960–2013.6–8 Estimates are also given for the 
LOS and LSD, as well as for the expected number of tropical cyclones (NTC), the total number of 
storm days (NSD), the total accumulated cyclone energy (ACE), and the net tropical cyclone activity 
(NTCA) index for the 2014 hurricane season.
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2.  RESULTS AND DISCUSSION

 Figure 1 displays the yearly variation of the (a) LOS, (b) first-difference of the 10-year mov-
ing average (fd(10-yma)) of the LOS, and (c) distribution of the fd(10-yma) values for the weather 
satellite era, 1960–2013. In figure 1(a), the thin jagged line is the yearly seasonal value of the LOS; 
the thick smoothed line is the 10-yma of the LOS; and the letters E and L simply identify those years 
when the Oceanic Niño Index (ONI) was of value 0.5 ºC or higher and –0.5 ºC or lower, respectively, 
for at least 6 months of the year, used here as an indicator for classifying the year as being either an 
El Niño year (ENY) or a La Niña year (LNY). Years not identified with an E or L represent El Niño 
neutral years (NYs). The overall mean for the LOS is 133 days, having a standard deviation (sd) 
of 42 days. The longest LOS measures 235 days in 2003, an NY, while the shortest LOS measures 
47 days in 1983, an ENY. Based on the E and L classification as employed in this study, 14 years are 
classified as ENY, 15 years as LNY, and 25 years as NY. On average, the 14 ENYs have a mean LOS 
of 110 days (sd = 41 days); the 15 LNYs have a mean LOS of 137 days (sd = 25 days); and the 25 NYs 
have a mean of 143 days (sd = 48 days). The difference in the means between those years classified as 
ENY and LNY is found to be statistically important (t = –2.16, confidence level cl > 95%). Hence, if   
a year is predicted to be an ENY, one probably should expect its LOS to be shorter than the mean LOS  
(= 133 days), whereas if  a year is predicted to be a non-ENY, one probably should expect its LOS to 
be ≥133 days. For the 14 ENYs, 12 of the 14 years (86%) have had LOS <133 days, with the 2 years 
having LOS ≥133 days being the years 1972 (163 days) and 1997 (139 days). Twenty-five of the forty 
years (63%) not being classified as ENY have LOS ≥133 days.

 Concerning the yearly variation of the LOS as described by its 10-yma, one finds that it 
appears to be trending upwards since about 1987, increasing from 118 days in 1987 to 157 days 
in 2008 (the last year having a 10-yma entry). Furthermore, a comparison of the two subintervals 
1960–1994 and 1995–2013 indicates that the mean LOS has increased in length from about 122 days 
during the earlier subinterval to about 152 days in the more recent subinterval, with the difference 
in the means being statistically important (t = –2.60, cl > 98%). Hence, the more recent subinterval 
is found to have an LOS about 30 days longer, on average, than the earlier subinterval. For the year 
2013, its LOS measured 186 days. (The division of the overall interval 1960–2013 into two subinter-
vals is predicated on the observation that the more recent subinterval is associated with the return 
of the warm phase as measured by the Atlantic Multidecadal Oscillation (AMO) index, a descriptor 
for the Atlantic Meridional Overturning Circulation, a density-driven, global circulation pattern of 
about 65–70 years in length that involves the movement of warm, salty equatorial waters to higher 
latitudes and the subsequent cooling and sinking of those waters into the deep ocean.9–14)
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Figure 1.  Variation of yearly (a) LOS, (b) fd(10-yma), and (c) distribution of fd(10-yma) 
 for the interval 1960–2013.

 In figure 1, (b) and (c), one observes that the fd(10-yma) values of the LOS has varied between 
fd(10-yma) = –5 and 7, having a central spread of about 0 ± 2 that captures 30 of the 43 yearly  
fd(10-yma) values (70%). Hence, one expects the next fd(10-yma) value for the year 2009 likely to 
be about 157 ± 2 days, which suggests that the LOS for the year 2014 should be expected to be about 
176 ± 40 days, or LOS(2014) ≥ 136 days. Only 3 of the 43 years (7%) have had fd(10-yma) ≤ –3. Thus, 
one expects the LSD for the 2014 hurricane season to occur no earlier than DOY 318, or about 
November 14, 2014, based on the distribution of fd(10-yma) values. However, if  fd(10-yma) = –3 for 
2009, then the LOS for 2014 equals 176 ± 60 days, or LOS(2014) ≥ 116 days and the LSD would occur 
no earlier than DOY 298, or about October 25, 2014.

 Figure 2 depicts the yearly variation of (a) FSD and (b) the Mauna Loa CO2 (<MLCO2>) 
index for the overall interval 1960–2013. These particular parameters have previously been shown to 
have some predictive ability regarding determination of the LOS.4,5,7,8 In figure 2(a), the thin jagged 
line is the yearly seasonal FSD; the thick smoothed line is the 10-yma of the FSD; and the letters 
E and L have the same meanings as in figure 1(a). The overall mean of the FSD is DOY 180 (about 
June 29) and the sd = 33 days. The latest FSD occurred in 1967 (DOY 242), an NY, and in 1977 (DOY 
242), an ENY, while the earliest FSD occurred in 2003 (DOY 110), an NY. On average, the years clas-
sified as ENY have an FSD occurring about DOY 190 (about July 9), while those years classified as 
LNY or NY have an FSD occurring about DOY 180 (about June 29) or DOY 174 (about June 23), 
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Figure 2.  Variation of yearly (a) FSD and (b) <MLCO2> for the interval 1960–2013.

respectively. Statistically speaking, the difference in the means between ENY and LNY is not statisti-
cally important (t = 0.85, cl < 90%). Also, the difference between the means for the two subintervals 
1960–1994 and 1995–2013 is found not to be statistically important (t = 1.60, cl < 90%). Hence, while 
the FSD for the more recent subinterval is about 15 days, on average, earlier than that for the earlier 
subinterval, the difference is not statistically meaningful. Also, the mere observation that the FSD 
occurs either later or earlier than the mean provides no definitive information for classifying the 
year as ENY, LNY, or NY, although 25 of the 30 years (83%) having FSD <DOY 180 are noted to 
be classified as non-ENY. (Of the 24 years having FSD ≥ DOY 180, 9 years were ENY, 7 years were 
LNY, and 8 years were NY; of the 30 years having FSD < DOY 180, 5 years were ENY, 8 years were 
LNY, and 17 years were NY.)

 Based on the distribution of the fd(10-yma) values of FSD (not shown), one finds that 27 of 
43 years (63%) had fd(10-yma) = 0 ± 2 and 36 of 43 years (84%) had fd(10-yma) = 0 ± 3, suggesting 
that the 10-yma value of FSD for 2009 should be about DOY 167 ± 2 or 3, respectively, and that the 
FSD for the year 2014 should be about DOY 169 ± 40 or 60, respectively. Arthur, the first named 
storm of the 2014 hurricane season, had its FSD on July 1 (DOY 182), thereby setting the 10-yma 
value of FSD for 2009 to be DOY 168.

 Figure 2(b) shows the yearly variation of the <MLCO2>, which is observed to be continu-
ally rising from year to year. It measured 316.91 ppm in 1960 and 396.48 ppm in 2013, suggesting 
an average rate of increase in the <MLCO2> of about 1.5 ppm yr–1. However, the rate of increase 
actually has been higher of late than earlier, being about 1.98 ppm yr–1 since 1995 as compared to 
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about 1.25 ppm yr–1 between 1960 and 1995 (a rate of increase about 58% faster since 1995 than 
before 1995). Hence, one expects the <MLCO2> for 2014 to measure about 398.46 ppm and to 
exceed 400 ppm in 2015. (The Mauna Loa CO2 index is a measure of the amount of atmospheric 
concentration of CO2, as determined by the Mauna Loa Observatory in Hawaii, located in a barren 
lava field of an active volcano at an altitude of 3,397 m above mean sea level.15–21)

 Figure 3 depicts the scatterplots of LOS versus (a) <MLCO2> and (b) FSD. From figure 3(a), 
one finds that the LOS is inferred to be directly related to the <MLCO2> as expressed by the linear 
regression y = –76.959 + 0.598x, having a coefficient of correlation r = 0.338, a coefficient of deter-
mination r2 = 0.114 (meaning that about 11.4% of the variance in the LOS can be explained by the 
variation in the <MLCO2> alone), a standard error of estimate se = 40 days, and cl > 98%. Based 
on Fisher’s exact test for 2 × 2 contingency tables (where the vertical and horizontal lines in the scat-
terplot represent the parametric medians), the probability P of  obtaining the observed result, or one 
more suggestive of a departure from independence (chance), is P = 13.8%. Since the expected value 
of the <MLCO2> for 2014 will be greater than the median <MLCO2> value (348.28 ppm), based 
on the overall interval 1960–2013), one expects the LOS for 2014 likely to be greater than the median 
value for the LOS (131 days). Of the 27 years when the <MLCO2> exceeded 348.28 ppm, 16 years 
had LOS ≥ 131 days (59%). Presuming <MLCO2> = 398.46 ppm for the year 2014, one infers (from 
the regression) LOS = 161 ± 40 days (the ±1 standard error of estimate se prediction interval), or 
LOS ≥ 121 days. (In this scatterplot and all succeeding scatterplots, the years marking the extremes 
for the parameters are identified.)

 From figure 3(b), one finds that the LOS is inferred to be inversely related to the FSD as 
given by the linear expression y = 321.587 – 1.052x, having r = –0.828, r2 = 0.686, se = 24 days, and 
cl > 99.9%. Furthermore, based on Fisher’s exact test for 2 × 2 contingency tables, one finds that the 
probability P of  obtaining the observed result, or one more suggestive of a departure from indepen-
dence, is P = 0.045%. Because the FSD is now known for the year 2014, one finds from Fisher’s exact 
test that the LOS is about 3 times more likely to be <131 days (and highly likely to be <167 days) than 
≥131 days. From the regression equation, one infers that LOS = 130 ± 24 days (the ±1 se prediction 
interval), or LOS <154 days, for the year 2014 (i.e., the yearly hurricane season for the year 2014 is 
expected to end before December 2).
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 Figure 4 shows the yearly variation of (a) the difference (observed minus expected) LOS, 
based on the linear fit of LOS versus FSD, D(FSD) and (b) the difference LOS, based on the linear 
fit of LOS versus <MLCO2>, D(<MLCO2>). Runs-testing yields the normal deviate for the sample 
results z = 1.06 and 0.02, respectively, meaning that the differences appear to be distributed randomly. 
Based on FSD, 16 years (30%) have had D(FSD) within ±10 days, 33 years (61%) have had D(FSD) 
within ±20 days, and 45 years (83%) have had D(FSD) within ±30 days. Based on <MLCO2>, 
12 years (22%) have had D(<MLCO2>) within ±10 days, 19 years (35%) have had D(<MLCO2>) 
within ±20 days, and 30 years (56%) have had D(<MLCO2>) within ±30 days. Obviously, knowl-
edge of the FSD for a hurricane season provides the best indicator as to how long one should antici-
pate the hurricane season to last. (In figure 4, na refers to the number of differences above zero, nb 
refers to the number of differences below zero, and nra refers to the number of positive-valued runs.)
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Figure 4.  Variation of yearly (a) D(FSD) and (b) D(<MLCO2>) for the interval 1960–2013.
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 Table 1 gives the statistics (a, b, r, r2, se, and cl, where a is the y-intercept and b is the slope) 
using FSD and LOS as the independent variables for the prediction of specific tropical cyclone 
parametric values. The listing of parameters,7,8 in addition to those called out in the Introduction, 
includes NH (number of hurricanes), NMH (number of major hurricanes), NUSLFH (number of 
U.S. land-falling hurricanes), <LAT> (mean seasonal latitude), <LONG> (mean seasonal longitude, 
PWS (peak wind speed), <PWS> (mean seasonal PWS), LP (lowest pressure), <LP> (mean seasonal 
LP), <ACE> (mean seasonal ACE), HISACE (highest individual storm ACE), <PDI> (mean sea-
sonal power dissipation index), total PDI, HISPDI (highest individual storm PDI), <NSD> (means 
seasonal NSD), LISNSD (longest individual storm NSD), total NHD (total number of hurricane 
days), and total NMHD (total number of major hurricane days). When the inferred correlation has 
cl > 95% it is marked with * and when the inferred correlation has cl > 98% it is marked **. Exami-
nation of the table reveals that the only correlation involving FSD to be marked * or ** is the one 
between LOS and FSD. Regarding the correlations against LOS, those marked * or ** include FSD, 
LSD, NTC, NH, total ACE, total PDI, total NSD, and NTCA.

Table 1.  Summary of tropical cyclone statistics against FSD and LOS.

FSD LOS
Parameter a b r r 2 se cl a b r r 2 se cl
FSD – – – – – – 266.031 –0.652 –0.828 0.686 19.009 >99.9%**
LSD 320.587 –0.052 –0.073 0.005 23.528 <90% 265.031 0.348 0.620 0.384 19.158 >99.9%**
LOS 321.587 –1.052 –0.828 0.686 23.768 >99.9%** – – – – – –
NTC 16.032 –0.026 –0.190 0.036 4.517 <90% 4.851 0.049 0.462 0.213 4.116 >99.9%**
NH 6.834 –0.004 –0.044 0.002 2.861 <90% 3.483 0.020 0.308 0.095 2.711 >95%*
NMH 2.907 –0.003 –0.046 0.002 1.926 <90% 0.973 0.011 0.253 0.064 1.827 >90%
NUSLFH 1.833 –0.002 –0.048 0.002 1.486 <90% 0.258 0.009 0.254 0.065 1.449 >90%
<LAT> 24.147 –0.009 –0.090 0.008 3.359 <90% 22.645 –0.001 –0.010 – 3.432 <90%
<LONG> 67.954 –0.025 –0.144 0.021 5.740 <90% 63.740 –0.002 –0.016 – 5.728 <90%
PWS 107.174 0.095 0.145 0.021 21.818 <90% 119.840 0.033 0.065 0.004 22.091 <90%
<PWS> 67.373 0.031 0.119 0.014 8.596 <90% 72.769 0.001 0.006 – 8.837 <90%
LP 944.825 –0.043 –0.065 0.004 23.580 <90% 949.501 –0.093 –0.179 0.032 21.609 <90%
<LP> 983.629 –0.016 –0.069 0.005 7.934 <90% 981.806 –0.008 –0.044 0.002 8.471 <90%
<ACE> 7.740 0.005 0.043 0.002 3.687 <90% 7.792 0.006 0.070 0.005 3.743 <90%
Total ACE 123.257 –0.127 –0.071  0.005 59.607 <90% 40.092 0.456 0.326 0.106 56.427 >98%**
HISACE 37.208 –0.035 –0.073 0.005 15.222 <90% 22.010 0.067 0.176 0.031 16.007 <90%
<PDI> 6.191 0.004 0.036 0.001 3.946 <90% 5.986 0.007 0.079 0.006 3.933 <90%
Total PDI 98.214 –0.091 –0.054 0.003 56.166 <90% 28.755 0.401 0.304 0.092 53.559 >95%*
HISPDI 36.174 –0.030 –0.049 0.002 20.356 <90% 20.386 0.079 0.165 0.027 20.045 <90%
<NSD> 5.104 –0.001 –0.022 0.001 1.391 <90% 4.544 0.003 0.094 0.009 1.354 <90%
LISNSD 12.481 –0.004 –0.036 0.001 3.770 <90% 10.650 0.008 0.095 0.009 3.840 <90%
Total NSD 80.850 –0.127 –0.130 0.017 32.547 <90% 24.522 0.254 0.330 0.109 30.839 >98%**
Total NHD 23.054 0.004 0.008 – 14.701 <90% 13.714 0.075 0.218 0.048 14.449 <90%
Total NMHD 7.025 –0.008 –0.046 0.002 5.880 <90% 1.223 0.033 0.238 0.057 5.712 >90%
NTCA 135.062 –0.142 –0.078 0.006 61.109 <90% 47.280 0.470 0.328 0.107 57.901 >98%**

  * Means inferred correlation is statistically significant at cl >95%.
** Means inferred correlation is statistically significant at cl >98%.
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 Figure 5 depicts the scatterplots of (a) FSD, (b) LSD, and (c) NTC versus LOS. Figure 5(a) 
is simply a replot of figure 3(b), but now using LOS as the independent variable rather than FSD. 
Clearly, the two parameters are highly correlated (inversely). If  one assumes an LOS(2014) = 131 
days (the median), one infers that the FSD(2014) should be about DOY 181 ± 19 days, or that it 
would likely occur no earlier than about DOY 162 (about June 11) and no later than about DOY 
200 (about July 19). In actuality, the FSD for the 2014 season is now known to have occurred on 
DOY 182 (July 1).

 In figure 5(b), assuming LOS(2014) = 131 days, one infers that the LSD(2014) should be 
about DOY 311 (November 7) ± 19 days, or that it likely will occur no earlier than DOY 292 (Octo-
ber 19) and no later than DOY 330 (November 26). Should the actual LOS(2014) be <131 days, this 
would tend to make the LSD(2014) < DOY 310, while LOS(2014) > 131 days would tend to make 
LSD(2014) > DOY 310.

 In figure 5(c), assuming LOS(2014) = 131 days, one infers that the NTC(2014) should be 
about 11 ± 4, which is essentially the long-term average for the 1960–2013 interval. Based on Pois-
son statistics, it has been shown7 that the probability of obtaining NTC(2014) = 11 ± 4 is about 83%. 
Should the year turn out to be classified as ENY, the probability of obtaining NTC(2014) = 9 ± 2 
is about 60%. On the other hand, if  the year 2014 turns out to be classified as non-ENY, the prob-
ability of obtaining NTC(2014) = 13 ± 2 is about 60%. It has also been shown8 (1) that the NTC is 
closely related to the yearly <AMO> index, such that it is about 3 times more likely that the NTC ≥ 11 
when the <AMO> is in its warm (positive) phase, which it now is and has been since about 1995 and 
should remain so for at least another decade or more, and (2) that the NTC is strongly related to the 
<MLCO2>, such that the NTC ≥11 is more than twice as likely when the <MLCO2> ≥ 348.28 ppm, 
which it now is and has been since 1987. (The <MLCO2> is expected to measure about 398.46 ppm 
for the year 2014.)
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 Figure 6 shows the scatterplots of (a) total ACE and (b) total NSD versus LOS. Again, 
assuming an LOS(2014) = 131 days, one infers that the total ACE(2014) should be about 99.8 ± 56  
(in units of 104 kt2) and the total NSD(2014) should be about 58 ± 31 days. Based on the <AMO> 
being in the warm (positive) phase, one infers that the total ACE(2014) and total NSD(2014) are 
more than twice as likely to be ≥88 and ≥52 days, respectively. Based on the expected <MLCO2> 
value for the year 2014 (398.46 ppm), one expects the total NSD(2014) = 87 ± 29 days, or ≥58 days.
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12

 Figure 7 displays the scatterplot of NTCA versus LOS. Assuming LOS(2014) = 131 days, the 
NTCA(2014) is estimated to be about 108.9% ± 57.9%, or ≥51%. Based on <AMO> being in the 
warm (positive) phase, one infers that the NTCA(2014) is more than twice as likely to be ≥98.8%.
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Figure 7.  Scatterplot of NTCA versus LOS.
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3.  SUMMARY

 The LOS of the yearly hurricane season is reckoned inclusively from FSD to LSD, averaging 
about 133 days in length and spanning 47 (1983) to 235 (2003) days during the weather satellite era 
(1960–2013). During the subinterval 1960–1994, the LOS averaged about 122 days, while during the 
more recent subinterval 1995–2013, it has averaged about 152 days. Incorporating the phasing of 
the El Niño-Southern Oscillation, the LOS is found to usually be somewhat shorter during an ENY 
(about 110 days, on average), while being somewhat longer during a non-ENY (about 141 days, on 
average). The LOS is found to correlate strongly against both the <MLCO2> and FSD, especially, 
the latter. For the 2014 North Atlantic basin hurricane season, the increased level of CO2 suggests 
that the LOS might be longer than 133 days (as does the current continuing warm phase of the AMO, 
which began about 1995). In contrast, because the FSD for the 2014 hurricane season occurred on 
July 1 (DOY 182), this suggests that the LOS for the 2014 hurricane season likely will be less than 
133 days (the mean; actually it is likely to be less than the median LOS, which equals 131 days). The 
inferred regression of LOS against FSD (having r = –0.828, se = 24 days) suggests that the LOS for 
the 2014 hurricane season likely will be about 130 ± 24 days, inferring that the LSD will come no 
earlier than October 15 (DOY 288) and no later than December 2 (DOY 336).

 Presently, the Climate Prediction Center and the International Research Institute for Climate 
and Society are predicting the chance for El Niño forming during the Northern Hemisphere this 
summer to be about 70% and to be about 80% during the fall and early winter.22 If  the months of 
July–December each have ONI monthly values of 0.5 ºC or more, then following the definition of 
ENY as employed in this study, the year 2014 will be classified as an ENY and would be expected to 
have LOS < 133 days (about 110 ± 40 days, inferring LSD no earlier than September 9, or DOY 252, 
and no later than November 28, or DOY 332). (The ONI monthly values for January–May 2014 are 
–0.6, –0.6, –0.5, –0.1, and 0.2 ºC, respectively.23)

 Assuming that the year 2014 will have LOS < 133 days and that it will be classified as ENY, 
one expects LSD before DOY 299 ± 18 days, or before November 13 and after October 8. Also, one 
expects NTC = 11 ± 4, probably <11; total ACE = 101 ± 56, probably <101; NSD = 58 ± 30 days, prob-
ably <58 days; and NTCA = 110 ± 58%, probably <110%. 
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