NASA's Human Robotic Systems

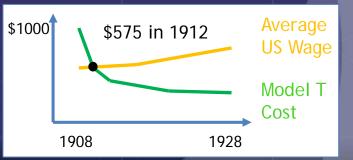
February 2014

SISC ENGINEERING

Dr. Rob Ambrose

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

JSC ENGINEERING


The Robotics Promise

"Robots will do the dull, dirty and dangerous work for humanity"

• Reducing the cost of robotics

Increasing the capability of robotics

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Increasing task capability

What can robots do today?

- Welding, painting, pick-n-place
- Vacuuming, pool cleaning, mowing
- Increasingly: mining, harvesting, spying

What is left?

- A lot!
- Think about the worst jobs to do in the world

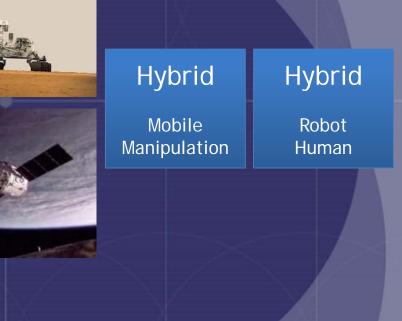
DIRECTORATE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Where will new robot capabilities be invented?

HUMAN SPACEFLIGH ENGINEERING

The Great Dichotomies in Robotics Today


Mobility

Moving people or things to ightarrowwhere they are needed.

Manipulation

Definition: Changing \bullet (something) by artful means so as to serve one's own purpose.

ENGINEERING

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Design Tensions in Robotics Today

Component Advances are Disruptive

- Batteries, computing, sensors, materials, software, communication, lightweight materials, additive manufacturing
- Robots designs must evolve
 Safety Around People
- Strong vs safe
- Fast vs safe

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA

Ground Vehicles

Chariot

- 2:1 Payload to weight ratio, 2x redundancy
- Manned or robotic driving, all electric
- Crab steer, active suspension
- 45 degree tip over, 1 psi ground pressure

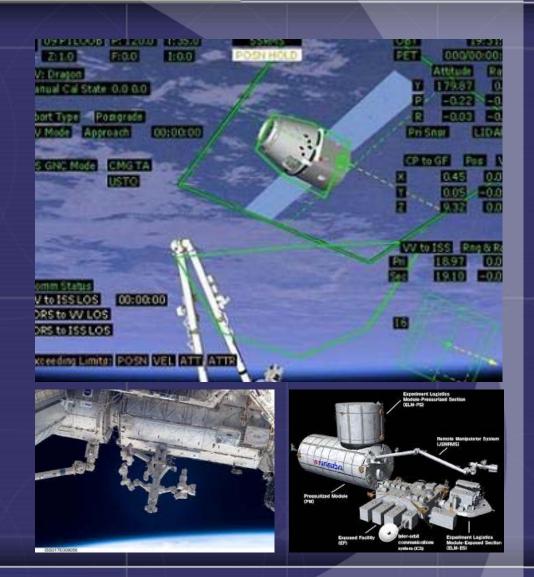
Modular Robotic Vehicle

- 100 KPH, 100 Km Range
- Manned or robotic driving, all electric
- Crab steer, warm blooded thermal control
- Drive-by-wire safety, redundancy

DIRECTORATE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

JSC ENGINEERING


ISS Robotics

Systems onboard ISS

- SSRMS
- SPDM
- JEM

Tasks

- Grappling/berthing
- Astronaut EVA support
- Payload handling and servicing
- Operations
- 90% Ground control (night shift)
- All tasks simulated and analyzed

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Robonaut 2

History

- Robonaut 1 started in 1996
- Robonaut 2 now on the Space Station

Vision

Astronaut assistants able to safely work in a world engineered for humans.

Applications

- IVA / EVA Operations (indoor and outdoor)
- Satellite servicing
- Asteroid & surface sampling
- Maintenance & contingency operations

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Robonaut 2 0g Legs

History

- Legs developed for climbing on ISS
- Next generation manipulators

Status

- Designed and built in 2012
- Certified in 2013, along with battery
- Delivered for launch on SpaceX-3 (February)

Applications

- IVA / EVA Operations (indoor and outdoor)
- Able to work with ISS interfaces
 - Handrails, WIF, Seat Track

DIRECTORATE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NAS

Wearable Robotics

- Robo Glove
 - Worn by a human
 - Reduces wrist fatigue
 - Reduces wrist injury
- Lower Body Exoskeleton
 - Worn by human
 - Assist injured people
 - Amplify strength
 - Use it for exercise

DIRECTORATE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Robots for Dynamic Testing

• Gravity Offload

- NASA needs to simulate reduced gravity
- Terrestrial applications might include safety or rehabilitation

Dynamic Simulation

- NASA needs to emulate contact or assembly in VR
- Terrestrial applications might be training or collaboration

Virtual Reality

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

SC DIRECTORATE

Partnerships: Oil & Gas Industry

Inspect Offshore Oil Storage Chamber Access underwater chamber Gather sonar data Collect samples December 2012 Problem defined March 2013 NASA formulated a concept August 2013 Prototype completed October 2013 Testing at Neutral Buoyancy Lab November 2013 Robot delivered and accepted

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Partnerships: DARPA Challenge

Disaster Response

Working in human facilities Machines, doors, ladders Tools, valves, hoses

July 2012 DARPA Award Received October 2012 Project Start July 2013 Robot Powered Up October 2013 Baby's first steps December 2013 Robot goes to trials

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION