

NASA's Space Launch System: A Revolutionary Capability for Science

Stephen Creech
Deputy Manager
SLS Spacecraft/Payload Integration and Evolution
July 2014

SLS: An Evolving Capability

Cargo Fairing

33 ft (10m)

Upper

Stage

Orion, Multi-Purpose **Crew Vehicle** (MPCV-LMCO)

Interim Cryogenic Propulsion Stage (ICPS) (EELV 5m DCSS -Boeing/ULA)

Core Stage/Avionics (Boeing)

> **5-Segment Solid Rocket Booster** (SRB) (ATK)

Core Stage Engines (RS-25) (Aerojet Rocketdyne) Launch Abort System

Commonality of Payload Interfaces

- Mechanical
- Avionics
- Software

Upper Stage & Core Stage Commonality

- Same diameter (27.5 ft.) and basic design
- Manufacturing facilities, tooling, materials, & processes/practices
- Workforce
- Supply chain/industry base
- Transportation logistics
- Ground systems/launch infrastructure
- Propellants

Commonality of Core Stage

Commonality of Engines

Solid or Liquid (i.e., RP **Engines**)

Advanced

Boosters

Block 1 Initial Capability, 2017-21 70 metric ton Payload

Evolutionary Path to Future Capabilities

- Minimizes unique configurations
- Allows incremental development

Block 2 Capability 130 metric ton **Payload**

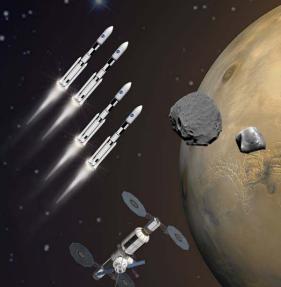
SLS' Primary Mandate

HUMAN EXPLORATION NASA's Path to Mars

RETURN TO EARTH: HOURS

RETURN TO EARTH: DAYS

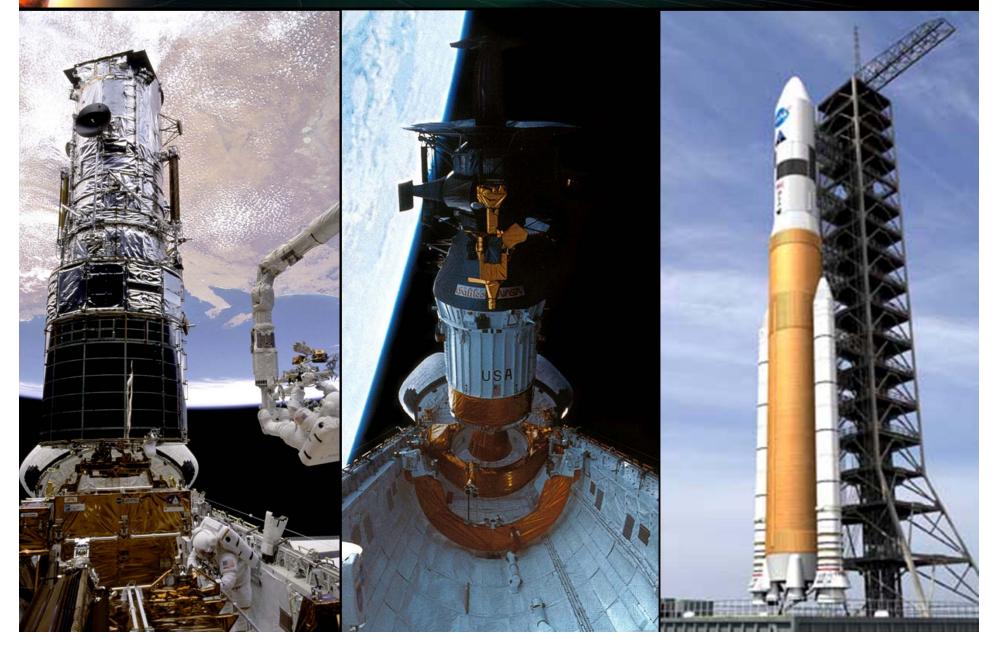
MISSION: 2 TO 3 YEARS RETURN TO EARTH: MONTHS


Mastering fundamentals aboard the International **Space Station**

U.S. companies provide access to low-Earth orbit

Expanding capabilities by visiting an asteroid redirected to a lunar distant retrograde orbit

The next step: traveling beyond low-Earth orbit with the Space Launch System rocket and Orion spacecraft



Developing planetary independence by exploring Mars, its moons and other deep space destinations

www.nasa.gov

luman Spaceflight and Space Science

SLS Availability for Space Science

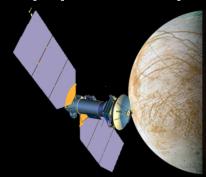
- ◆ SLS is on schedule and within budget for to be available for launches beginning in 2017.
- ◆5-meter payload fairings allow for payload envelopes compatible with current EELVs.
- Cargo-launch variants offer the reliability of a human-mission launch and power in excess of any launch vehicle in history.

SLS Development Milestones

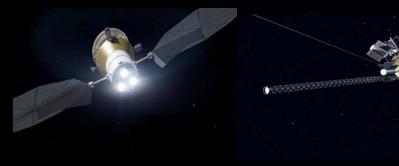
2011	2	012	2013	2014	2015	2016	2017	
▼ MCR	s	RR/SDR	▼ PDR		▼ CDR	SIR	PLAR FRR V Launch	
PROGRAM PROGRESS								
SLS Design Chosen Boost Developi Test	Deliver invented terment	ed to	Manufacturing Tooling Installation Production of First New Flight Hardware Wind Tunnel Testing Pro	STA			Vehicle Stacking at KSC First Flight	
Concept Studies			Preliminary Design & Final Design & Fabric		System Assembly, Integration & Test, Launch & Checkout			

MCR: Mission Concept Review	CDR: Critical Design Review		
SRR: System Requirements Review	SIR: System Integration Review		
SDR: System Definition Review	FRR: Flight Readiness Review		
PDR: Preliminary Design Review	PLAR: Post-Launch Asses. Review		

SLS Benefits to Space Science

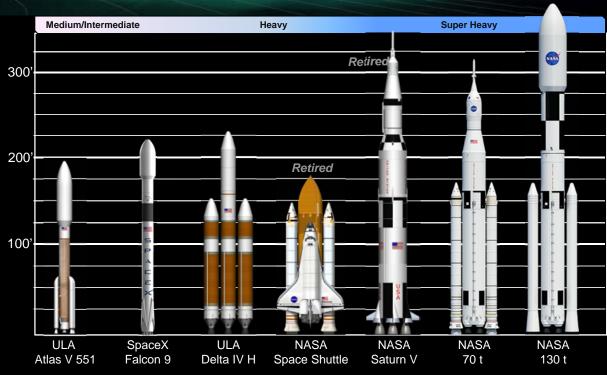

- Greatest mass lift capability of any launch vehicle in the world.
- Largest payload fairings of any launch vehicle produce greatest available volume.
- High departure energy availability for missions through the solar system and beyond.

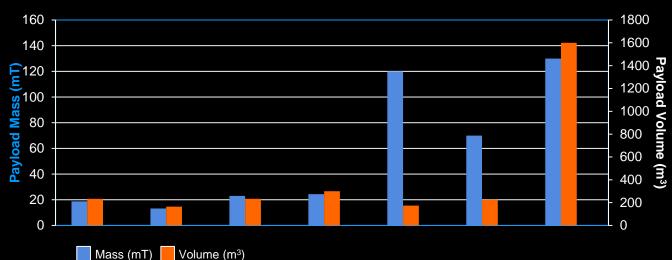
Deep Space Telescope


Mars Sample Return

Europa Clipper

Solar Probe


Uranus Spacecraft


Interstellar

Benefit: SLS Mass Lift Capability

- SLS initial configuration offers 70 t to LEO.
- Future configurations offer 105 and 130 t to LEO.
- Mass capability
 benefits mean larger
 payloads to any
 destination.

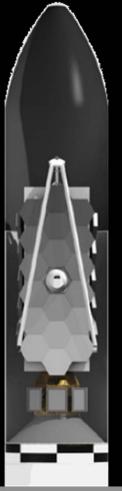
Case Study: Mars Sample Return

- Mars Sample Return was identified as a high priority in the "Visions and Voyages" planetary science decadal survey.
- SLS offers single-launch option for Mars Sample Return, versus three launches with EELVs.
- ◆ Additional benefits of SLS for Mars Sample Return include reduced mission time, increased sample mass, and reduced mission cost, complexity and risk.

Benefit: Unrivaled Payload Volume

 SLS is investigating utilizing existing fairings for early cargo flights, offering payload envelope compatibility with design for current EELVs

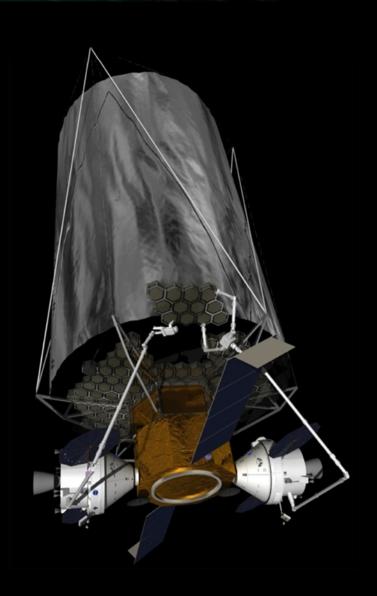
Phase A studies in work for 8.4m and10 m fairing options


4m x 12m (100 m³)

5m x 14m (200 m³)

5m x 19m (300 m³)

8.4m x 31m (1200 m³)

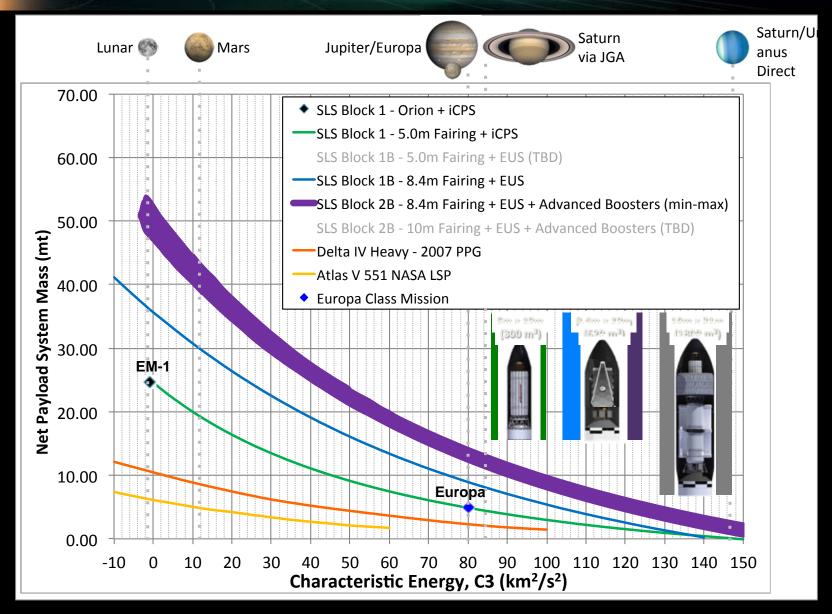


10m x 31m (1800 m³)

ase Study: ATLAST

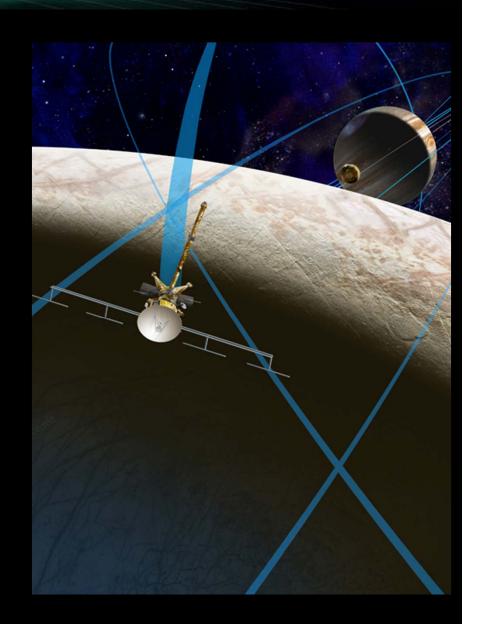
- ◆ Large-aperture spectroscopic telescope was identified as a vital step in the "Enduring Quests, Daring Visions" astrophysics roadmap.
- ◆SLS is uniquely enabling for largestdiameter telescopes due to fairingwidth requirements.
- ◆ Additional benefits of SLS for ATLAST include opportunities for human assembly and/or servicing at deep space destinations.

Benefit: High Departure Energy

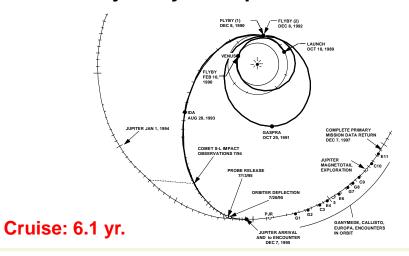


- Even the Initial configuration of SLS offers orders of magnitude greater payload-todestination energy compared to existing launch vehicles; future configurations improve C3 performance even further.
- Departure energy offers faster transit time to destination, including 4-7 year reduction to Saturn or 6 years to Uranus.
- Higher departure energy offers more launch opportunities.
- Trade space exists between departure energy and mass capability; a Jovian mission could see 3-year transit reduction or 13 t mass increase.

SLS Evolved Performance

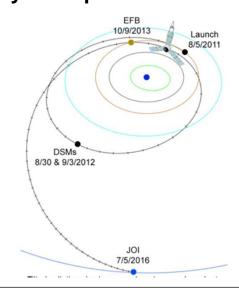


ase Study: Europa Clipper

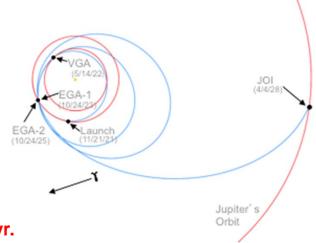

- Europa exploration was identified as a high priority in the "Visions and Voyages" planetary science decadal survey.
- ◆ SLS can provide direct injection to Jupiter, eliminating several years of planetary gravity assists to reduce flight time to Europa from 6.3 years to 2.7.
- Additional benefits of SLS for Europa Clipper include reduced operational costs, reduced mission risk, and greater mass margin.

Duter Planet EELV Trajectories

Galileo Trajectory To Jupiter

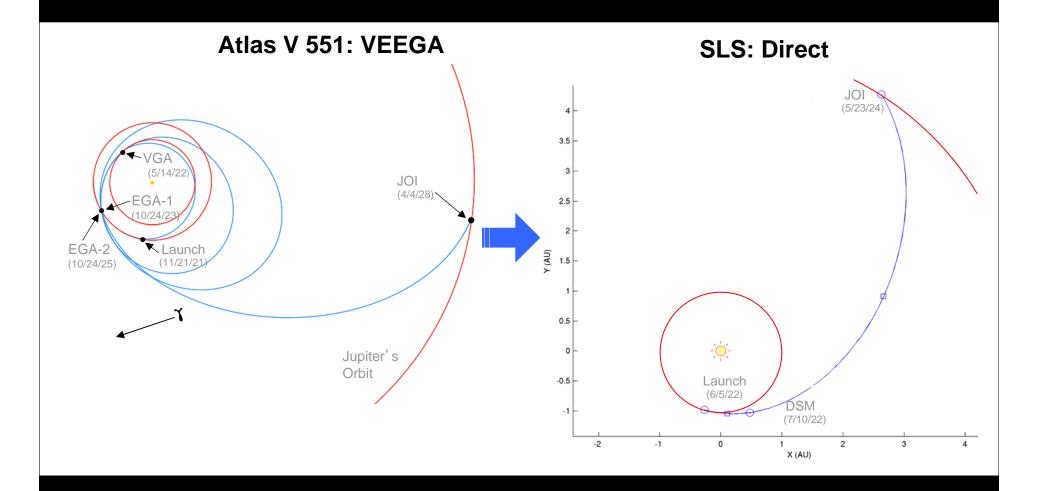


Cassini Trajectory to Saturn VENUS 1 FLYBY APR-MAY 1998 VENUS 2 FLYBY JUN 1999 MANEUVER MAR-APR 1998 LAUNCH OCT-NOV 1997 PERIHELIA MAR 1998 0.68 AU JUN 1999 0.72 AU


Cruise: 6.7 yr.

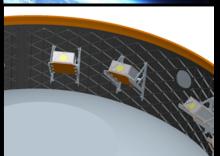
JUNO Trajectory To Jupiter

Cruise: 4.9 yr.


Atlas V Clipper Trajectory

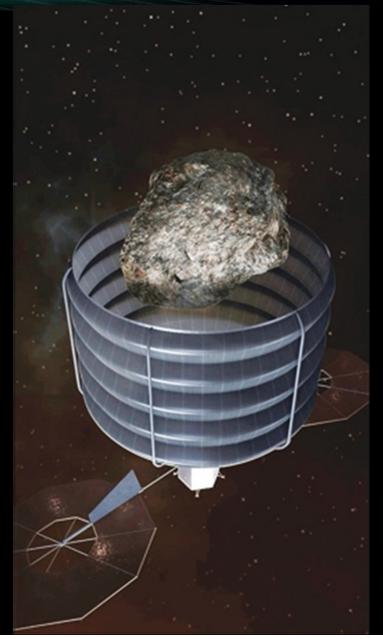
Cruise: 6.4 yr.

Europa Trajectory Comparison


REDUCES TRANSIT TIME TO EUROPA FROM 6.5 TO 2.7 YEARS

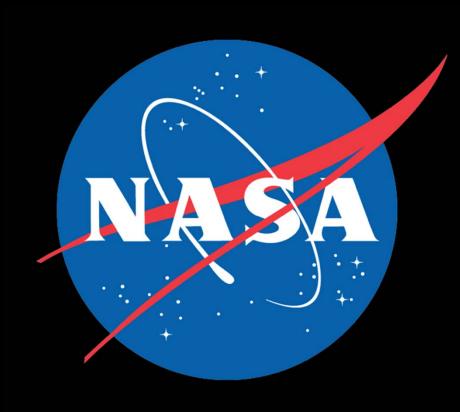
SLS Secondary Payload Capability

- SLS is providing accommodations for secondary payloads on EM-1 and subsequent launches
- Secondary payloads will be accommodated in the Orion- MPCV Spacecraft Adapter (MSA) on EM-1
- 6U equivalent volume/mass is the current standard; 12U volume can be accommodated
 - 12U mass still being evaluated
 - Additional mounting locations are being evaluated
- SLS provides secondary payload science opportunities beyond EELVs capabilities (Lunar and beyond)



ossible Next Step: ARRM

- The Asteroid Redirect Robotic Mission is an early step on NASA's Path to Mars.
- SLS offers reduced transit time, providing earlier redirection of target and/or greater launch opportunities.
- Additional benefits of SLS for ARRM offer the potential for redirecting a larger object and for enabling a wider variety of targets.
- SLS could launch an ARRM spacecraft as early as 2019.



Summary

- SLS provides capability for human exploration missions.
 - ●70 t configuration enables EM-1 and EM-2 flight tests.
 - Evolved configurations enable missions including humans to Mars.
- SLS offers unrivaled benefits for a variety of missions.
 - •70 t provides greater mass lift than any contemporary launch vehicle; 130 t offers greater lift than any launch vehicle, ever.
 - •With 8.4m and 10m fairings, SLS will over greater volume lift capability than any other vehicle.
 - Initial ICPS configuration and future evolution will offer highestever C3.
- SLS is currently on schedule for first launch in December 2017.
 - Preliminary design completed in July 2013; SLS is now in implementation.
 - Manufacture and testing are currently underway.
 - •Hardware now exists representing all SLS elements.

Somewhere, something incredible is waiting to be known.

— Carl Sagan

For More Information

www.nasa.gov/sls

www.twitter.com/nasa_sls

www.facebook.com/nasasIs