MUSCULOSKELETAL-INDUCED NUCLEATION IN ALTITUDE DECOMPRESSION SICKNESS

NW Pollock¹, MJ Natoli¹, J Conkin², JH Wessel III³, ML Gernhardt ${ }^{4}$

${ }^{1}$ Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, NC 27710; ${ }^{2}$ University Space Research Association,

3600 Bay Area Blvd, Houston, TX 77058; ${ }^{3}$ Wyle Integrated Science and Engineering Group, 1290 Hercules, Houston, TX 77058; ${ }^{4}$ NASA Johnson Space Center, 2100 NASA Parkway, Houston, TX 77058

INTRODUCTION

- Musculoskeletal activity has the potential to both improve and compromise decompression safety
- enhancing inert gas elimination during oxygen breathing
- promoting bubble nuclei formation and gas phase separation
- Timing, pattern and intensity of exercise and the level of tissue supersaturation may be critical to the net effect
- understanding mechanisms may help quantify risk
- NASA Prebreathe Reduction Program (PRP) studies
- combined oxygen prebreathe and exercise followed by low pressure (4.3 psi) microgravity simulation
- produced two operational protocols used for EVA
* CEVIS and ISLE
- Current study investigates the influence of ambulation exercise on bubble formation and risk of DCS

CEVIS PROTOCOL
 (not to scale)

METHODS

- 4 experiments replicate CEVIS protocol, each with exception

Expt 1 - ambulation both preflight and at 4.3 psi

- Expt 2 -non-ambulatory preflight; ambulatory at 4.3 psi
- Expt 3 -ambulatory preflight; non-ambulatory at 4.3 psi
- Expt 4 - reverse heavy/light exercise order; non-ambulatory
- Decompression stress assessment
- ultrasound during each of 14 epochs in 4 h 'spacewalk' \& aural Doppler for right heart bubbles (Spencer grade 0-IV) \& two-dimensional imaging for left heart bubbles (test termin.)
- venous blood to assess microparticle response to deco stress
\triangleleft Fisher Exact Tests (one-tailed) compare test/control groups
- Plan - 25-50 subjects per experiment
- trials suspended with 70\% confidence of DCS risk >15\% or grade IV VGE risk >20\%

EXERCISE STRATEGIES

Controlled walking

Suit simulator set up for multiple semi-recumbent intermittent light exercise simulating astronaut tasks

EVA SUIT SIMULATOR EXERCISES

- 6 exercises
- sit-ups, arm pulls, full body pulls, torque wrenching, walking
- Subjects cycle through
- specific exercises
- Doppler/2-D echo monitoring
- Rest break
\& 4 minute intervals for each

- pace guided by an automated task prompter - manual prompting if needed

ULTRASONIC ASSESSMENT

Doppler Bubble Detector

Transthoracic Echo (TTE)

BLOOD MICROPARTICLE ASSESSMENT

- MPs are 0.1-1.0 $\mu \mathrm{m}$ diameter cell membrane fragments -pro-inflammatory
$\diamond 5 \mathrm{~mL}$ blood samples drawn at 3 points
-baseline
-post-10.2 psi repress
-post-4.3 psi repress

RESULTS

- 15 Experiment 1 trials complete
- 11 male, 4 female

Expt 1 vs. CEVIS

- DCS greater
. 4/15 (27\%) vs. 0/45 (0\%), respectively ($\mathrm{p}=0.0001$)
- peak grade IV VGE frequency greater
$* 4 / 15$ (27\%) vs. 3/45 (7\%), respectively ($\mathrm{p}=0.0334$)
- cumulative grade IV VGE across all trial epochs not different * 10/183 (5\%) vs. 26/630 (4\%), respectively ($\mathrm{p=}=0.220$)
- microparticle data for 9/15 trials (4 with DCS outcomes)
\& high variability not yet resolved statistically
- DSMB review allowed Expt 1 trials to continue
- to improve statistical power of microparticle assessment

DISCUSSION

Expt 1 trial results support thesis that decompression stress is increased by ambulation exercise

- Additional trials may improve the statistical power to evaluate the relationship between decompression stress and microparticle accumulation
- Future experiments will test decompression stress of
- ambulation at altitude (supersaturated) vs. ambulation at ground level (undersaturated)
- light exercise after heavy exercise induced nucleation

ACKNOWLEDGMENT

\diamond Funded by NASA NNX12AG22A

