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1.0 Introduction 

Remote sensing methods used to generate base maps to analyze the urban environment rely 

predominantly on digital sensor data from space-borne platforms. This is due in part from new 

sources of high spatial resolution data covering the globe, a variety of multispectral and 

multitemporal sources, sophisticated statistical and geospatial methods, and compatibility with 

GIS data sources and methods. The goal of this chapter is to review the four groups of 

classification methods for digital sensor data from space-borne platforms; per-pixel, sub-pixel, 

object-based (spatial-based), and geospatial methods. Per-pixel methods are widely used 

methods that classify pixels into distinct categories based solely on the spectral and ancillary 

information within that pixel. They are used for simple calculations of environmental indices 

(e.g., NDVI) to sophisticated expert systems to assign urban land covers (Stefanov et al., 2001). 

Researchers recognize however, that even with the smallest pixel size the spectral information 

within a pixel is really a combination of multiple urban surfaces. Sub-pixel classification 

methods therefore aim to statistically quantify the mixture of surfaces to improve overall 

classification accuracy (Myint, 2006a). While within pixel variations exist, there is also 

significant evidence that groups of nearby pixels have similar spectral information and therefore 

belong to the same classification category. Object-oriented methods have emerged that group 

pixels prior to classification based on spectral similarity and spatial proximity. Classification 

accuracy using object-based methods show significant success and promise for numerous urban 
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applications (Myint et al., 2011). Like the object-oriented methods that recognize the importance 

of spatial proximity, geospatial methods for urban mapping also utilize neighboring pixels in the 

classification process. The primary difference though is that geostatistical methods (e.g., spatial 

autocorrelation methods) are utilized during both the pre- and post-classification steps (Myint 

and Mesev, 2012). 

 

Within this chapter, each of the four approaches is described in terms of scale and accuracy 

classifying urban land use and urban land cover; and for its range of urban applications. We 

demonstrate the overview of four main classification groups in Figure 1 while Table 1 details the 

approaches with respect to classification requirements and procedures (e.g., reflectance 

conversion, steps before training sample selection, training samples, spatial approaches 

commonly used, classifiers, primary inputs for classification, output structures, number of output 

layers, and accuracy assessment). The chapter concludes with a brief summary of the methods 

reviewed and the challenges that remain in developing new classification methods for improving 

the efficiency and accuracy of mapping urban areas. 

 

Insert Figure 1 here 

Insert Table 2 

 

2.0 Remote sensing methods for urban classification and interpretation 

Urban areas are comprised of a heterogeneous patchwork of land covers and land uses that are 

juxtaposed so that classification of specific classes using remote sensing data can be problematic. 

Derivation of classification methods for urban landscape features has evolved in tandem with 
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increasing spatial, spectral, and temporal resolutions of remote sensing instruments (e.g., from 90 

m Landsat Multispectral Scanner-MSS to 30 m to the Landsat  Enhanced Thematic Mapper Plus 

[ETM+] and Operational Land Imager [OLI] data and progressing to sub-meter spatial resolution 

products available from commercial systems such as .34 m Geoeye) to achieve more robust 

digital classification schemes. This evolution of classification techniques, however, does not 

imply that one method is better than another. As with the type of satellite remote sensing data 

that are employed for analyses, the application of a specific algorithm for classification of urban 

land cover and land use is dependent upon what the user’s objectives are, and what level of 

detail, frequency, and sensors are required for the anticipated or resulting output products. Table 

2 shows urban remote sensing applications with regards to spatial, temporal, and sensor 

resolutions. 

 

2.1 Per-pixel methods 

Scale is indelible when conducting per pixel classifications. The spatial resolution of the sensor 

dictates the classification type, range, and accuracy of urban land use and urban land cover. That 

is because individual urban features are rarely the same size as pixels, nor are they conveniently 

rectangular in shape. Add temporal scale representing rapid urban activity and per pixel 

classifications become even more removed from reality. Refining the spatial resolution and 

reducing the area of the pixel does not necessarily lead to improvements in classification 

accuracy, and may even introduce additional spectral noise, especially when pixels are smaller 

than urban features. In all, the ideal situation that each pixel can be identified to represent 

conclusively one and only one land cover type has now long been abandoned. So too the perfect 
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relationship between the pixel and the field-of-view, which assumes reflectance is recorded 

entirely and uniformly from within the spatial limits of individual pixels (Figure 1). 

 

Regardless, the appeal of per-pixel or hard classifications remains; predominantly because they 

produce crisp and convenient thematic coverages that can be easily integrated with raster-based 

GIS models (Table 1). Composite models and methodologies containing information from 

remotely sensed sources are critical for revising databases and for producing comprehensive 

query-based urban applications. To preserve this relationship with GIS, the quality of per-pixel 

classifications must be monitored not only using conventional determination of accuracy based 

on comparisons with more reliable reference data, but also in relation to levels of suitability or 

‘scale of appropriateness.’ Both were evident in the USGS hierarchical scheme (Anderson et al., 

1976) using the much-cited 85% as a general guideline for the accuracy of urban features, and 

which subsequently established a benchmark for researchers to attain and supersede using a 

variety of statistical and stochastic per-pixel techniques. Some of these focused exclusively on 

maximizing computational class separability, using the traditional maximum likelihood 

algorithm (Strahler 1980) and the more recent support vector machines (Yang, 2011), while 

others developed methodologies that imported extraneous information when aggregating 

spectrally similar pixels (Mesev, 1998), by incorporating contextual relationships (Stuckens et 

al., 2000), or by measuring pixel inter-connectivity (Barr and Barnsley, 1997). In both, 

classification accuracy typically improves only marginally, simply because there is an inherent 

numerical limitation to the extent individual pixel values can comprehensively represent the 

multitude of true urban features within the rigid confines of their regular-sized pixel limits 

(Fisher, 1997). 
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However within these numerical limits per-pixel classification accuracy can be consistently high 

if the appropriate spatial resolution (i.e., pixel size) is identified with respect to the suitable level 

of urban detail (Table 2). Such ideas of scale appropriateness can be traced back to Welch 

(1982), and have since been widely accepted as an important part of the class training process. 

But the decision is far from trivial, and must also consider the appropriate scale of analysis 

(Mesev, 2012). Consider a continuous scale that can be conceptualized by levels of measurement 

from remote sensor data; ranging from the representation of atomistic urban features (building, 

tree, sidewalk, etc.) at the micro scale, to the representation of aggregate urban features 

(residential neighborhoods, industrial zones, or even complete urban areas) at the macro scale. 

Micro urban remote sensing by per-pixel classification remains highly tenuous (even using meter 

and sub meter resolutions from the latest sensors) and any reliable interpretation is extracted 

directly from the spatial orientation of pixels—in a similar vein to conventional interpretation of 

aerial photography, but with lower clarity and with limited stereoscopic capabilities. However, 

the spectral heterogeneity problem is less restrictive at the macro scale of analysis where 

classified pixels, instead of measuring individual urban objects, can be aggregated to represent a 

generalized view of urban areas, including total imperviousness, approximate lateral growth, and 

overall greenness. It is at this scale of analysis that many types of urban processes, such as 

sprawl, congestion, poverty, land use zoning, storm water flow, and heat islands, can be studied 

simultaneously across an entire urban area as part of the search for theories of livability and 

sustainability. In sum, per-pixel classifications produce simple and convenient thematic maps of 

urban land use and land cover that can be incorporated into GIS models. The spatial resolution of 

the remote sensor, however, limits their accuracy away from mapping individual urban features 
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with any level of pragmatic precision and towards more traditional macro scales of generalized 

land cover combinations reminiscent of the timeless V-I-S model (Ridd, 1995). 

 

Insert Table 2 here 

 

2.2 Sub-pixel methods 

If locational and thematic accuracy of urban representation from remote sensing is paramount, 

per-pixel classifications can be modified statistically to measure spectral mixtures representing 

multiple land cover classes within individual pixels. These are termed sub-pixel algorithms or 

soft classifications because pixels are no longer constrained to representing single classes, but 

instead represent various proportions of land cover classes which are conceptually more akin to 

the spatial and compositional heterogeneity of urban configurations (Ji and Jensen, 1999; Small, 

2004). The debate on which approach, per-pixel or sub-pixel, can again be tied to the scale of 

urban analysis. For example, the measurement of impervious surfaces is particularly amenable to 

sub-pixel classification because pixels can represent a continuum of imperviousness, from total 

coverage (downtown areas and industrial estates) to scant dispersion intermingled with bio-

physical land covers (city parks). Extensive research has been devoted to more precise 

quantification of impervious surfaces, and other urban land covers at sub-pixel level, such as 

linear mixture models (Wu and Murray, 2003; Rashed, et al., 2003), background removal 

spectral mixture analysis (Ji and Jensen, 1999; Myint, 2006a), Bayesian probabilities (Foody et 

al., 1992; Mesev, 2001; Eastman and Laney, 2002; Hung and Ridd, 2002), artificial neural 

network (Foody and Aurora, 1996; Zhang and Foody, 2001), normalized spectral mixture 

analysis (Wu and Yuan, 2007; Yuan and Bauer, 2007), fuzzy c-means methods (Fisher and 
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Pathirana, 1990; Foody 2000), multivariate statistical analysis (Bauer et al., 2004; Yang and Liu, 

2005; Bauer et al., 2007), and regression trees (Yang et al., 2003a and 2003b; Homer et al., 

2007). 

 

Among these, linear spectral mixture analysis, regression analysis, and regression trees have had 

a wider appeal because they are theoretically and computationally simpler, as well as more 

prevalent in many commercial software packages. However, the success of measuring urban land 

cover types using linear techniques is dependent on identifying spectrally-pure endmembers, 

preferably using reference samples collected in the field (Adams et al., 1995; Roberts et al., 1998 

and 2012). Although Weng and Hu (2008) derived moderate accuracy levels from employing 

linear spectral mixture analysis using ASTER and Landsat ETM+ sensor imagery, they 

discovered that artificial neural networks were also capable of performing non-linear mixing of 

land cover types at the sub-pixel level (Borel and Gerstl, 1994; Ray and Murray, 1996). Another 

limitation with linear spectral mixture classifiers is that they do not permit the number of 

endmembers to be greater than the number of spectral bands (Myint, 2006a). In response, a 

multiple endmember spectral mixture analysis (MESMA) has been developed to identify many 

more endmember types to represent the heterogeneous mixture of urban land cover types 

(Rashed et al., 2003; Powell et al., 2007; Myint and Okin, 2009). Diagrams demonstrating linear 

spectral mixture analysis and multiple endmember spectral mixture analysis are provided in 

Figures 2 and 3 respectively.  

 

Figure 2 here 

Figure 3 here 
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Two challenges dominate the research efforts to improve subpixel analysis methods for urban 

settings. The first challenge is pixel size. Identifying endmembers for all classes in images with 

large to medium pixels in urban areas is difficult given the heterogeneous nature of urban areas. 

In small spatial distances (e.g., < 30 m), surfaces rapidly change from impervious, to grass, to 

building. The smaller pixel size (e.g., 1m or submeter), however, is not always the optimal 

solution.  While pixels may not reflect a mixture of the desired endmembers (e.g., a combination 

of asphalt and grass), reflectance from unwanted features begin to appear that need to be filtered 

(e.g., oil surfaces and automobiles in asphalt; chimneys and air conditions on rooftops). The 

second limitation is that it is almost impossible to identify all possible endmembers in a study 

area and classification accuracy can be degraded by the potential presence of unknown classes or 

unidentified classes (e.g., the asphalt and rooftop examples from above). This is because the 

classifier is based on the assumption that the sum of the fractional proportions of all possible 

endmembers in a pixel is equal to one. Although this type of modeling is conceptually more 

representative of urban land cover, from a practical standpoint it nonetheless perpetuates the 

mixed pixel problem and presents thematic and semantic limitations to urban land classification 

schemes. In other words, output from sub-pixel analysis produces fractional classes that are more 

difficult to integrate with GIS data and may even limit their portability for comparisons across 

space and through time. 

 

2.3 Object-based methods 

With the representational limitations of purely spectrally-based per-pixel and sub-pixel 

classifications it was only a matter of time before the shift to the spatial domain gained 



10 

 

momentum. Even from a purely intuitive standpoint finer resolution (i.e., smaller pixels or large 

cartographic-scale) imagery exhibit higher levels of detailed features that mimic the 

heterogeneous nature of urban areas. This greater level of spatial detail invariably also leads to 

many more uncertain spectral classes–known as noise–which can be true but potentially 

unwanted urban features such as chimneys or manhole covers. Assuming spectral noise is 

reduced, images with spatial resolutions ranging from about 0.25 to 5 m have the potential to 

help identify urban structures necessary to perform many urban applications, including 

estimation of population based on the number of dwellings of different housing types, residential 

water use, predicting energy consumption, urban heat island, outdoor water use, solar energy use, 

and storm water pollution modeling (Jensen and Cowen, 1999). 

 

Conceptually, spatial or object-based approaches are most applicable to high spatial resolution 

remote sensing data, where objects of interest are larger than the ground resolution element, or 

pixel. Urban objects may be vegetated features of urban landscapes (e.g., trees, shrubs, golf 

course) or anthropogenic features (e.g., buildings, pools, sidewalks, roads, canals). With regards 

to mapping categorical data or identifying land use land cover classes, remotely sensed image 

analysis started to shift from pixel-based (per-pixel) to object based image analysis (OBIA) or 

geospatial object based image analysis (GEOBIA) around the year 2000 (Blaschke T., 2010). 

The object-centered classification prototype starts with the generation of segmented objects at 

multiple scales (Desclee, et al., 2006; Navulur, 2007; Im et al., 2008; Myint et al., 2008). To 

demonstrate, Walker and Briggs (2007) employed an object-oriented classification procedure to 

effectively delineate woody vegetation in an arid urban ecosystem using high spatial resolution 

true-color aerial photography (without the near infrared band) and achieved an overall accuracy 
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of 81%. Hermosilla et al. (2012) developed two object-based approaches for automatic building 

detection and localization using high spatial resolution imagery and LiDAR data. Stow et al 

(2007) further developed object-based classification by taking advantage of the spatial frequency 

characteristics of multispectral data, and then measuring the proportions of vegetation, 

imperviousness, and soil sub-objects to identify residential land use in Accra, Ghana (they 

documented an overall accuracy of 75%). In another study by Zhaou et el (2008), post-

classification change detection based on the object-based analysis of multitemporal high spatial 

resolution produced even higher accuracies of 92% and 94%; while Myint and Stow (2011) 

demonstrated the effectiveness of object-based strategies based on decision rules (i.e., 

membership functions) and nearest neighbor classifiers on high spatial resolution Quickbird 

multispectral satellite data over the city of Phoenix. These are further supported by Myint et al. 

(2011) who directly compared the accuracy from object-based classifications (90%) with more 

traditional spectral-based classifications (68%). The land-cover classes that the authors identified 

for this particular study include buildings, other impervious surfaces (e.g., roads and parking 

lots), unmanaged soil, trees/shrubs, grass, swimming pools, and lakes/ponds. The study selected 

500 samples points that led to approximately 70 points per class (7 total classes) using a stratified 

random sampling approach for the accuracy assessment of two different subsets of QuickBird 

over Phoenix. To be consistent and for precise comparison purposes, they applied the same 

sample points generated for the output generated by the objectbased classifier as the output 

produced by the traditional classification technique (i.e., maximum likelihood). 

 

In general, spectrally similar signatures such as dark/gray soil, dark/gray rooftops, dark/gray 

roads, swimming pools/blue color rooftops, and red soil/red rooftop remain problematic even 
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with object-based approaches. Furthermore, the most commonly used object-oriented software 

(Definiens or eCognition) is required to perform a tremendous number of segmentations of 

objects from all spectral bands using various scale parameters. There is no universally accepted 

method to determine an optimal level of scale (e.g., object size) to segment objects, and a single 

scale may not be suitable for all classes. The most feasible approach may be to select the bands 

for membership functions at the scale that identifies the class with variable options and analyze 

them heuristically on the display screen. Given that the nearest neighbor classifier and decision 

rule available in the object-based approach are non-parametric approaches, they are independent 

of the assumption that data values need to be normally distributed. This is advantageous, because 

most data are not normally distributed in many real world situations. Another advantage of the 

object-based approach is that it allows additional selection or modification of new objects 

(training samples) at iterative stages, until the satisfactory result is obtained. However, the 

object-based approach has a significant problem when dealing with a remotely sensed data over a 

fairly large area since computer memory needs to be used extensively to segment tremendous 

numbers of objects using multispectral bands. This is true even for fine spatial resolution data 

with fewer bands (e.g., QuickBird) over a small study area when requiring smaller scale 

parameters (smaller objects). Figure 4 shows segmented images at scale level 25, 50, and 100 

using a subset of a QuickBird image over Phoenix. Figure 5 demonstrates how hierarchical 

image segmentation delineates image objects at various scales. 

 

Figure 4 here 

Figure 5 here 
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2.4 Geospatial methods 

Texture plays an important role in the human visual system for pattern recognition and 

interpretation. For image interpretation, pattern is defined as the overall spatial form of related 

features, where the repetition of certain forms is a characteristic pattern found in many cultural 

objects and some natural features. Local variability in remotely sensed data, which is part of 

texture or pattern analysis, can be characterized by computing the statistics of a group of pixels, 

e.g., standard deviation, coefficient of variance or autocovariance, or by the analysis of fractal 

similarities or autocorrelation of spatial relationships. There have been some attempts to improve 

the spectral analysis of remotely sensed data by using texture transforms in which some measure 

of variability in digital numbers is estimated within local windows; e.g. the contrast between 

neighboring pixels (Edwards et al., 1988), standard deviation (Arai, 1993), or local variance 

(Woodcock and Harward, 1992). One commonly used statistical procedure for interpreting 

texture uses an image spatial co-occurrence matrix, which is also known as a gray level co-

occurrence matrix (GLCM) (Franklin et al., 2000). There are a number of texture measures, 

which could be applied to spatial co-occurrence matrices for texture analysis (Peddle and 

Franklin, 1991). For instance, Herold et al. (2003) proposed a method based on using landscape 

metrics to classify IKONOS sensor images, which in turn is compared to a GLCM. Liu et al. 

(2006) further contrasted spatial metrics, GLCM, and semi-variograms in terms of urban land 

use classification. 

 

Lam et al. (1998) demonstrated how fractal dimensions yield quantitative insight into the spatial 

complexity and information contained in remotely sensed data. Quattrochi et al. (1997) went 

further and created a software package known as the Image Characterization and Modeling 
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System (ICAMS) to explore how the fractal dimension is related to surface texture. Fractal 

dimensions were also analyzed by Emerson et al. (1999) who used the isarithm method and 

Moran’s I and Geary’s C spatial autocorrelation measures to observe the differing spatial 

structure of the smooth and rough surfaces in remotely sensed images. In terms of other 

geospatial techniques, De Jong and Burrough (1995) and Woodcock et al (1988) implemented 

variograms to measurements derived from remotely sensed to quantitatively describe urban 

spatial patterns. Myint and Lam (2005a; 2005b) and Myint et al. (2006) developed a number of 

lacunarity approaches to characterize urban spatial features with completely different texture 

appearances that may share the same fractal dimension values. Both studies report that lacunarity 

can be considered more effective in comparison to fractal approaches for urban mapping. 

 

The geospatial methods described so far may not provide satisfactory accuracies when they are 

applied to the classification of urban features from fine spatial resolution remotely sensed 

images. That is mainly because most of them focus primarily on coupling features and objects at 

a single scale and cannot determine the effective representative value of particular texture 

features according to their directionality, spatial arrangements, variations, edges, contrasts, and 

the repetitive nature of object and features. There have been a number of reports in spatial 

frequency analysis of mathematical transforms, which provide solutions using multi-resolution 

analysis. Recent developments in spatial/frequency transforms such as the Fourier transform, 

Wigner distribution, discrete cosine transform, and wavelet transform have all provided sound 

multi-resolution analytical tools (Bovik et al., 1990; Zhu and Yang, 1998). 
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Of all transformation approaches, wavelets play the most critical part in texture analysis. 

Wavelets are part of spatial and frequency based classification approaches, and a local window 

plays an important role in measuring and characterizing spatial arrangements of objects and 

features. Homogeneity, size of regions, characteristic scale, directionality, and spatial periodicity 

are important issues that should be considered to identify local windows when performing 

wavelet analysis (Myint, 2010). From a computational perspective, the ideal window size is the 

smallest size that also produces the highest accuracy (Hodgson, 1998). The accuracy should 

increase with a larger local window size since it contains more information than a smaller 

window size and therefore provides more complete coverage of spatial variation, directionality 

and spatial periodicity of a particular texture. However, minimization of local window size is 

also important in spatial-based urban image classification techniques since a larger window size 

tends to cover more urban land cover features and consequently creates mixed boundary pixels 

or mixed land cover problems. However, some spatial and frequency approaches such as wavelet 

dyadic decomposition approaches require large window sizes to capture spatial information at 

multiple scales (Myint, 2006b). The potential solution to this problem would be to employ a 

multi-scale overcomplete wavelet analysis using an infinite scale decomposition procedure. This 

is because a large spatial coverage or a large local window is not needed to describe a spatial 

pattern. Furthermore, this approach can measure different directional information of anisotropic 

features at unlimited scales, and it is designed to normalize and select effective features to 

identify urban classes. Myint and Mesev (2012) employed a wavelet-based classification method 

to identify urban land use and land cover classes using different decision rule sets and spatial 

measures and demonstrated the effectiveness of wavelets. However, the current wavelet-based 

classification system with the dyadic wavelet approach is limited by the fact that higher-level 
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sub-images are just a quarter of the preceding image. In general, smaller window size is 

generally thought to yield higher accuracy in geospatial-based image classification because if the 

window is too large, much spatial information from two or more land cover classes could create 

a mixed boundary problem. Further research is required to consider an overcomplete wavelet 

approach that can generate spatial arrangements of objects and features at any scale level for 

urban mapping. Such an approach could potentially be applicable to any land use/ land cover 

system at any resolution or scale because it can effectively use any window size. Figure 6 shows 

how wavelet approaches work in comparison to other geospatial approaches in urban mapping. 

 

Figure 6 here 

 

3.0 Concluding remarks 

Interpreting urban land cover from data captured by remote sensors remains a conceptual and 

technical challenge. Accuracy levels are typically lower than the interpretation of more naturally-

occurring surfaces. However, huge strides have been made with the formulation of statistical 

models that help disentangle the spectral and spatial complexity of urban land covers. Whereas 

per-pixel classification have stood the test of time (primarily for pragmatic reasons, especially 

when integrated with GIS-handled datasets), developments in sub-pixel, object-based and 

geospatial techniques have begun, at last, to reproduce the geographical configuration and 

compositional texture of urban structures. These developments are further tempered by 

conceptual developments that now consider the “appropriateness” of scale (understanding the 

level of urban structural measurements) and the “appropriateness” of time (understanding the lag 

between urban process and urban structure). Both are critical for measuring the rate of urban 
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change; not simply the amount of lateral growth, but also the juxtaposition of land use within 

existing urban limits. Further research will only improve our use of remote sensor data for 

measuring urban patterns and in turn will complement our understanding of key urban processes. 



18 

 

4.0 References: 

 

Adams, J. B., Sabol, D. E., Kapos, V., Almeida-Filho, R., Roberts, D. A., Smith, M. O. & 

Gillespie, A.R. 1995. Classification of multiple images based on fractions of endmembers: 

application to landcover change in the Brazilian Amazon, Remote Sensing of Environment, 52, 

137–154. 

Anderson, J. R., Hardy, E. E., Roach, J. T. and Witmer, R. E. 1976. A land use and land cover 

classification system for use with remote sensor data. U.S. Geological Survey Professional 

Paper, 964. http://landcover.usgs.gov/pdf/anderson.pdf. 

Arai, K., 1993. A classification method with a spatial-spectral variability. International Journal 

of Remote Sensing, 14, 699-709. 

Barr, S., & Barnsley, M. A., 1997. A region-based, graph-theoretic data model for the inference 

of second-order thematic information from remotely-sensed images. International Journal of 

Geographical Information Science, 11, 555-576. 

Bauer, M. E., Heinert, N. J., Doyle, J. K., & Yuan, F.  2004. Impervious surface mapping and 

change monitoring using satellite remote sensing, Proceedings of the ASPRS 2004 Annual 

Conference, 24-28 May, Denver, Colorado. 

Bauer, M. E., Loeffelholz, B. C., & Wilson, B. 2007. Estimating and mapping impervious 

surface area by regression analysis of Landsat imagery. In Q. Wang (Ed.), Remote Sensing of 

Impervious Surfaces, pp. 3-20. Boca Raton, Florida: CRC Press. 



19 

 

Blaschke T. 2010. Object-based image analysis for remote sensing. ISPRS International Journal 

of Photogrammetry and Remote Sensing, 65, 2–16. 

Borel, C. C., & Gerstl, S. A. W. 1994. Nonlinear spectral mixing models for vegetative and soil 

surfaces, Remote Sensing of Environment, 47, 403-416. 

Bovik, A. C., Clark, M., & Geisler, W. S., 1990. Multichannel texture analysis using localized 

spatial filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 55-73. 

De Jong, S. M., & Burrough, P. A. 1995. A fractal approach to the classification of 

Mediterranean vegetation types in remotely sensed images. Photogrammetric Engineering and 

Remote Sensing, 61, 1041-1053. 

Desclée, B., Bogaert, P., & Defourny, P. 2006. Forest change detection by statistical object-

based method. Remote Sensing of Environment, 102, 1-11. 

Eastman, J. R., Laney, R. M. 2002. Bayesian soft classification for sub-pixel analysis: a critical 

evaluation. Photogrammetric Engineering and Remote Sensing, 6811, 1149-1154. 

Edwards, G., Landry, R., & Thompson, K. P. B. 1988. Texture analysis of forest regeneration 

sites in high-resolution SAR imagery. Proceedings of the International Geosciences and Remote 

Sensing Symposium (IGARSS 88), ESA SP-284, pp. 1355-1360. European Space Agency, Paris. 

Emerson, C. W., Lam, N. S. N., & Quattrochi, D. A. 1999. Multi-scale fractal analysis of image 

texture and pattern. Photogrammetric Engineering and Remote Sensing, 65, 51-61. 



20 

 

Fisher, P. 1997. The pixel: a snare and a delusion. International Journal of Remote Sensing, 18, 

679-685. 

Fisher, P. F., & Pathirana, S., 1990. The evaluation of fuzzy membership of land cover classes in 

the suburban zone. Remote Sensing of Environment, 34, 121-132. 

Foody, G. M., 2000. Estimation of sub-pixel land cover composition in the presence of untrained 

classes. Computers and Geosciences, 26, 469-478. 

Foody, G. M., Campbell, N. A., Trodd, N. M. & Wood, T. F. 1992. Derivation and applications 

of probabilistic measures of class membership from the maximum-likelihood classification.  

Photogrammetric Engineering and Remote Sensing, 58, 1335-1341. 

Foody, G. M. & Aurora, M. K. 1996. Incorporating mixed pixels in the training, allocation and 

testing of supervised classification. Pattern Recognition Letters, 17, 1389-1398. 

Franklin, S. E., Hall, R. J., Moskal, L. M., Maudie, A. J. & Lavigne, M. B. 2000. Incorporating 

texture into classification of forest species composition from airborne multispectral images, 

International Journal of Remote Sensing, 21, 61-79. 

Hermosilla, T., Ruiz, L. A., Recio, J. A., & Cambra-López, M. 2012. Assessing contextual 

descriptive features for plot-based classification of urban areas, Landscape and Urban Planning, 

106, 124–137. 

Herold, M., Liu, X. & Clarke, K. C. 2003. Spatial metrics and image texture for mapping urban 

land use. Photogrammetric Engineering and Remote Sensing, 69, 991-1001. 



21 

 

Hodgson, M. E. 1998. What size window for image classification? A cognitive perspective. 

Photogrammetric Engineering and Remote Sensing, 64, 797-807. 

Homer, C., Dewitz, J., Fry, J., Coan, M., Hossain, N., Larson, C., Herold, N., McKerrow, A., 

VanDriel, J. N. & Wickham, J. 2007. Completion of the 2001 national land cover database for 

the conterminous United States. Photogrammetric Engineering & Remote Sensing, 73, 337–341. 

Hung, M. & Ridd, M. K. 2002. A subpixel classifier for urban land-cover mapping based on a 

maximum-likelihood approach and expert system rules. Photogrammetric Engineering and 

Remote Sensing, 68, 1173-1180. 

Im, J., Jensen, J. R., & Hodgson, M. E. 2008. Object-based land cover classification using high 

posting density lidar data. GIScience and Remote Sensing, 45, 209-228. 

Jensen, J. R., & Cowen, D. C. 1999. Remote sensing of urban/suburban infrastructure and socio-

economic attributes. Photogrammetric Engineering and Remote Sensing, 65, 611-622. 

Ji, M. & Jensen, J. R. 1999. Effectiveness of subpixel analysis in detecting and quantifying urban 

impervious from Landsat Thematic Mapper Imagery. Geocarto International, 14, 33-41. 

Lam, N. S. N, Quattrochi, D., Qui, H. & Zhao, W. 1998. Environmental assessment and 

monitoring with image characterization and modeling system using multiscale remote sensing 

data. Applied Geographic Studies, 2, 77-93. 

Liu. X., Clarke, K. C., & Herold, M. 2006. Population density and image texture: a comparison 

study. Photogrammetric Engineering and Remote Sensing, 72, 187-196. 



22 

 

Mesev, V. 1998. The use of census data in urban image classification. Photogrammetric 

Engineering and Remote Sensing, 64, 431-438. 

Mesev, V. 2001. Modified maximum likelihood classifications of urban land use: spatial 

segmentation of prior probabilities. Geocarto International, 16, 41-48. 

Mesev, V. 2012. Multiscale and multitemporal urban remote sensing. ISPRS International 

Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, XXXIX-B2, 

17-21. 

Myint, S. W. 2006a. Urban vegetation mapping using sub-pixel analysis and expert system rules: 

A critical approach. International Journal of Remote Sensing, 27, 2645-2665. 

Myint, S. W. 2006b. A new framework for effective urban land use land cover classification: A 

wavelet approach. GIScience and Remote Sensing, 43, 155-178. 

Myint, S. W. 2010. Multi-resolution decomposition in relation to characteristic scales and local 

window sizes using an operational wavelet algorithm. International Journal of Remote Sensing, 

31, 2551-2572. 

Myint, S. W., Giri, C. P., Wang, L., Zhu, Z., & Gillette, S. 2008. Identifying mangrove species 

and their surrounding land use and land cover classes using an object oriented approach with a 

lacunarity spatial measure. GIScience and Remote Sensing, 45, 188-208. 

Myint, S. W., Gober, P., Brazel, A., Grossman-Clarke, S., & Weng, Q. 2011. Per-pixel versus 

object-based classification of urban land cover extraction using high spatial resolution imagery. 

Remote Sensing of Environment, 115, 1145-1161. 



23 

 

Myint, S. W., & Lam, N. S. N. 2005a. A study of lacunarity-based texture analysis approaches to 

improve urban image classification. Computers, Environment, and Urban Systems, 29, 501-523.  

Myint, S. W., & Lam, N. S. N. 2005b. Examining lacunarity approaches in comparison with 

fractal and spatial autocorrelation techniques for urban mapping. Photogrammetric Engineering 

and Remote Sensing, 71, 927-937. 

Myint, S. W., & Mesev, V. 2012. A comparative analysis of spatial indices and wavelet-based 

classification. Remote Sensing Letters, 3, 141–150. 

Myint, S. W., Mesev, V., & Lam, N. S. N. 2006. Texture analysis and classification through a 

modified lacunarity analysis based on differential box counting method. Geographical Analysis, 

38, 371-390. 

Myint, S. W., & Okin, G. S. 2009. Modelling land-cover types using multiple endmember 

spectral mixture analysis in a desert city. International Journal of Remote Sensing, 30, 2237–

2257. 

Myint, S. W., & Stow, D. 2011. An object‐oriented pattern recognition approach for urban 

classification. In X. Yang (Ed.), Urban Remote Sensing, Monitoring, Synthesis and Modeling in 

the Urban Environment, pp. 129-140. Chichester, UK: John Wiley & Sons, Ltd. doi: 

10.1002/9780470979563  

Navulur, K. 2007. Multispectral image analysis using the object-oriented paradigm. Boca Raton, 

Florida: CRC Press, Taylor and Frances Group. 



24 

 

Peddle, D. R., & Franklin, S. E. 1991. Image texture processing and data integration for surface 

pattern discrimination. Photogrammetric Engineering and Remote Sensing, 57, 413-420. 

Powell, R. L., Roberts, D. A., Dennison, P. E., & Hess, L. L. 2007. Sub-pixel mapping of urban 

land cover using multiple endmember spectral mixture analysis: Manaus, Brazil. Remote 

Sensing of Environment, 106, 253-267. 

Quattrochi, D. A., Lam, N. S. N., Qiu, H., & Zhao, W. 1997. Image characterization and 

modeling system (ICAMS): A geographic information system for the characterization and 

modeling of multiscale remote sensing data. In D. A. Quattrochi, & M. F. Goodchild (Eds.), 

Scale in Remote Sensing and GIS, pp. 295-308. Boca Raton, Florida: CRC Press. 

Rashed, T., Weeks, J. R., Roberts, D., Rogan J., & Powell, R. 2003. Measuring the physical 

composition of urban morphology using multiple endmember spectral mixture models. 

Photogrammetric Engineering and Remote Sensing, 69, 1011-1020. 

Ray, T. W., & Murray, B. C. 1996. Nonlinear spectral mixing in desert vegetation. Remote 

Sensing of Environment, 55, 59–64. 

Ridd, M.K. 1995. Exploring a V-I-S Vegetation-Impervious Surface-Soil model for urban 

ecosystems analysis through remote sensing: Comparative anatomy for cities. International 

Journal of Remote Sensing, 16, 2165-2186. 

Roberts, D. A., Gardner, M., Church, R., Ustin, S., Scheer, G., & Green, R. O. 1998. Mapping 

chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. 

Remote Sensing of Environment, 65, 267–279. 



25 

 

Roberts, D. A., Quattrochi, D. A., Hulley, G. C., Hook, S. J., & Green, R. O. 2012. Synergies 

between VSWIR and TIR data for the urban environment: An evaluation of the potential for the 

hyperspectral Infrared Imager (HyspIRI) decadal survey mission. Remote Sensing of 

Environment, 117, 83-101. 

Small, C. 2004. The Landsat ETM+ spectral mixing space. Remote Sensing of Environment, 93, 

1-17. 

Stow, D., Lopez, A., Lippitt, C., Hinton, S., & Weeks, J. 2007. Object-based classification of 

residential land use within Accra, Ghana based on QuickBird satellite data. International Journal 

of Remote Sensing, 28, 5167-5173. 

Stefanov, W. L., Ramsey M. S., & Christensen, P. R. 2001. Monitoring urban land cover change: 

An expert system approach to land cover classification of semiarid to arid urban centers. Remote 

Sensing of Environment 77(2):173-185. 

Strahler, A. H. 1980. The use of prior probabilities in maximum likelihood classification of 

remotely sensed data. Remote Sensing of Environment, 10, 135-163. 

Stuckens, J., Coppin, P. R. & Bauer, M. 2000. Integrating contextual information with per-pixel 

classification for improved land cover classification. Remote Sensing of Environment, 71, 282-

296. 

Walker, J. S., & Briggs, J. M. 2007. An object-oriented approach to urban forest mapping with 

high-resolution, true-color aerial photography. Photogrammetric Engineering & Remote Sensing, 

73, 577-583. 



26 

 

Welch, R.A. 1982. Spatial resolution requirements for urban studies, International Journal of 

Remote Sensing, 3, 139-146. 

Weng, Q., & Hu, X. 2008. Medium spatial resolution satellite imagery for estimating and 

mapping urban impervious surfaces using LSMA and ANN. Transactions on Geoscience and 

Remote Sensing, 46, 2387-2406. 

Woodcock, C., & Harward, V. J. 1992. Nested-hierarchical scene models and image 

segmentation. International Journal of Remote Sensing, 13, 3167-3187. 

Woodcock, C. E, Strahler, A. H., & Jupp, D. L. B. 1988. The use of variograms in remote 

sensing: I. Scene models and simulated images. Remote Sensing of Environment, 25, 323-348. 

Wu, C., & Murray, A. 2003. Estimating impervious surface distribution by spectral mixture 

analysis. Remote Sensing of Environment, 84, 493-505. 

Wu, C., & Yuan, F. 2007. Seasonal sensitivity analysis of impervious surface estimation with 

satellite imagery. Photogrammetric Engineering & Remote Sensing, 73, 1393–1401. 

Yang, L., Huang, C., Homer, C. G., Wylie, B. K., & Coan, M. J. 2003a. An approach for 

mapping large-area impervious surfaces: Synergistic use of Landsat-7 ETM+ and high spatial 

resolution imagery. Canadian Journal of Remote Sensing, 29, 230–240. 

Yang, L., Xian, G., Klaver, J.M., & Deal, B. 2003b. Urban land-cover change detection through 

sub-pixel imperviousness mapping using remotely sensed data. Photogrammetric Engineering & 

Remote Sensing, 69, 1003–1010. 



27 

 

Yang, X. 2011. Parameterizing support vector machines for land cover classification, 

Photogrammetric Engineering & Remote Sensing, 77, 27-37. 

Yang, X., & Liu, Z. 2005. Use of satellite-derived landscape imperviousness index to 

characterize urban spatial growth. Computers, Environment and Urban Systems, 29, 524-540. 

Yuan, F., & Bauer, M. E. 2007. Comparison of impervious surface area and normalized 

difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. 

Remote Sensing of Environment, 106, 375–386. 

Zhang, J. and Foody, G. M. 2001. Fully-fuzzy supervised classification of sub-urban land cover 

from remotely sensed imagery: Statistical and neural network approaches. Photogrammetric 

Engineering and Remote Sensing, 22, 615-628. 

Zhou, W. Q., Troy, A. and Grove, M. 2008. Object-based land cover classification and change 

analysis in the Baltimore metropolitan area using multitemporal high resolution remote sensing 

data. Sensors, 8, 1613-1636. 

Zhu, C., and Yang, X. 1998. Study of remote sensing image texture analysis and classification 

using wavelet. International Journal of Remote Sensing, 13, 3167-3187. 

 



28 

 

List of Tables 
 
Table 1. Classification procedures and characteristics of the four main classification groups. 
 
Table 2. Urban remote sensing classifications with regards to spatial, temporal, and sensor 
resolutions. 

 
 
 



29 

 

List of Figures 
 
Figure 1. Overview of four main classification groups. 
 
Figure 2. Spectral mixture analysis. 
 
Figure 3. Multiple endmember spectral mixture analysis. 
 
Figure 4. A subset image and segmented images at different scales. (a) Original subset; (b) level 
1 (scale parameter 25), (c) level 2 (scale parameters 50), (d) level 3 (scale parameter 100). 
 
Figure 5. Image objects at each image scale level. Level 3 = 100, level 2 = 50, level 1 = 25. 
 
Figure 6. An example of feature vectors or indices (32x32 window or a subset) used to identify 
an urban class using other geospatial approaches, the dyadic wavelet approach, and the 
overcomplete wavelet approach, 
 
Note: Sub-images at level two in the dyadic approach reach the suggested minimum dimension 
(8x8 pixels) since any sub-images smaller than eight pixels may not contain any useful spatial 
information. A sub-image at a higher level is exactly the same as its original size at the preceding 
level in the overcomplete approach. It should also be noted that the level of scale with the 
overcomplete approach is unlimited. A = approximation texture; H = horizontal texture; V = 
vertical texture; D = diagonal texture. 
 
 



30 

 

A group of pixels
(object vs. spatial)

(1) Per-pixel
Classifier

(Classical Approaches)

(3) Object-based Classifier

(4) Geospatial Classifier

Output
One class per pixel

Output
Two or more classes
per pixel (fractions)

Output = One class per pixel
(All pixels in a window is used to identify 

a class in the center of the window)

Output = One class per pixel
(All pixels in an object are used to identify a class. 

All pixels in an object are identified as a class)

(2) Sub-pixel
Classifier

(Spectral Models)

(e.g., An Object – irregular shape)

(e.g., A Local Window – 3x3)

 
 
Figure 1. Overview of four main classification groups. 
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Figure 2. Spectral mixture analysis. 
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Figure 3. Multiple endmember spectral mixture analysis. 
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Figure 4. A subset image and segmented images at different scales. (a) Original subset; (b) level 
1 (scale parameter 25), (c) level 2 (scale parameters 50), (d) level 3 (scale parameter 100). 
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Figure 5. Image objects at each image scale level. Level 3 = 100, level 2 = 50, level 1 = 25. 
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Figure 6. An example of feature vectors or indices (32x32 window or a subset) used to identify 
an urban class using other geospatial approaches, the dyadic wavelet approach, and the 
overcomplete wavelet approach, 
 
Note: Sub-images at level two in the dyadic approach reach the suggested minimum dimension 
(8x8 pixels) since any sub-images smaller than eight pixels may not contain any useful spatial 
information. A sub-image at a higher level is exactly the same as its original size at the preceding 
level in the overcomplete approach. It should also be noted that the level of scale with the 
overcomplete approach is unlimited. A = approximation texture; H = horizontal texture; V = 
vertical texture; D = diagonal texture. 
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Table 1. Classification procedures and characteristics of the four main classification groups. 
 

Per-pixel Sub-pixel Object‐based Geospatial

Reflectance Not required Necessary Not required Not required

Conversion

Additional Step No No Segment image No

Before Training into objects

Sample Selection

Training Samples Irregular polygons that Spectra of selected Segmented objects Square windows that

cover multiple pixels endmembers that cover multiple pixels cover multiple pixels

representing selected representing selected representing selected

land cover classes land cover classes land cover classes

Commonly Used GLCM No GLCM Fractal, Geary's C

Spatial Approaches Moran's I, Getis index

Fourier transforms,

Lacunarity index,

Wavelet transforms

Widely Used Maximum Likelihood, Linear Spectral Mixture, Nearest Neighbor  Mahalanobis Distance,

Classifiers  Mahalanobis Distance, Multiple Regression, Minimum Distance

Minimum Distance, Regression Tree,

Regression Tree,  Neural Network,

Neural Network Baysian

Baysian MESMA

Primary Input Training samples are Endmember spectra All pixels in each object All pixels in each window

for Classification used to identify are used to quantify identified as one of the are used to identify one

land cover classes fractions of classes training sample classes class and the winner class

is assigned to the center

of the local window

No. of Output Layer One Layer Multiple Layers One Layer One Layer

Output Structure One class per pixel One fraction per One class per pixel One class per pixel

pixel per class

Accuracy Randomly selected Correlation between Randomly selected Randomly selected

Assessment pixels for error matrix predicted and reference pixels for error matrix pixels for error matrix

fractions (or) object-based

accuracy assessment  
Note: GLCM = Gray Level (or) Spatial Co‐occurrence Matrix; MESMA = Multiple endmember 
spectral mixture analysis. 
 



37 

 

Table 2. Urban remote sensing classifications with regards to spatial, temporal, and sensor 

resolutions. 

 Urban features Urban process Spatial 

resolution 

Temporal 

resolution 

Sensor 

resolution 

M
ic

ro
 s

ca
le

: 
In

di
vi

du
al

  m
ea

su
re

m
en

ts
 Building unit (roofs: flat, 

pitch) (material: tile, 
natural/metal,  synthetic) 

Type and architecture 

Density 

1 m– 

5 m 

1 year– 

5 years 

Pan–Vis– 

NIR 

Vegetation unit (tree, shrub) Type and health 

Nature 

 

0.25 m– 

5 m 

1 year– 

5 years 

Pan–NIR 

Transport unit (width: road 
lanes, sidewalk) (material: 
asphalt, concrete, composite) 

Infrastructure 

Mobility and access 

0.25 m– 

30 m 

1 year– 

5 years 

Pan–Vis– 

NIR 

M
ac

ro
 s

ca
le

: 
A

gg
re

ga
tio

n 
of

 im
pe

rv
io

us
ne

ss
, g

re
en

ne
ss

, s
oi

l 
an

d 
w

at
er

 

Residential neighborhood Suburbanization 

Gentrification, poverty, crime, 
racial segregation, etc. 

1 km– 

5 km 

1 year– 

10 years 

VIS–NIR– 
TIR 

Industrial/commercial zone Land use zoning 

Storm water flow 

Heat island effect 

1 km– 

5 km 

1 year– 

10 years 

VIS–NIR– 
TIR 

Non built urban 

 

Environmental concerns 
Beautification 

Public space 

1 km– 

5 km 

1 year– 

10 years 

VIS–NIR– 
TIR 

Urban area Centrality and sprawl 

Flow and congestion 

Sustainability 

5 km– 

100 km 

1 year– 

10 years 

VIS–NIR– 
TIR–MIR– 
Radar 

 












