Near Earth Asteroid Scout Mission AIAA Space 2014 7 August 2014

Andrew Heaton (NASA/MSFC) Julie Castillo-Rogez (JPL/Caltech/NASA) Andreas Frick (JPL/Caltech/NASA) Wayne Hartford (JPL/Caltech/NASA) Les Johnson (NASA/MSFC) Laura Jones (JPL/Caltech/NASA) Leslie McNutt (NASA/MSFC) And the NEA Scout Team

SLS EM-1 Secondary Payload Overview

- HEOMD's Advanced Exploration Systems (AES) selected 3 concepts for further refinement toward a combined Mission Concept Review (MCR) and System Requirements Review (SRR) planned for August 2014
- Primary selection criteria:
 - Relevance to Space Exploration Strategic Knowledge Gaps (SKGs)
 - Life cycle cost
 - Synergistic use of previously demonstrated technologies
 - Optimal use of available civil servant workforce
- Project in Pre-formulation
- Completed a Non-Advocate Review of the Science Plan

Payload NASA Centers	Strategic Knowledge Gaps Addressed	Mission Concept	
BioSentinel ARC/JSC	 Human health/performance in high- radiation space environments Fundamental effects on biological systems of ionizing radiation in space environments 	Study radiation-induced DNA damage of live organisms in cis- lunar space; correlate with measurements on ISS and Earth	
Lunar Flashlight JPL/MSFC	 Lunar resource potential Quantity and distribution of water and other volatiles in lunar cold traps 	Locate ice deposits in the Moon's permanently shadowed craters	
Near Earth Asteroid (NEA) Scout MSFC/JPL	 Human NEA mission target identification • NEA size, rotation state (rate/pole position) How to work on and interact with NEA surface • NEA surface mechanical properties 	Flyby/rendezvous and characterize one NEA that is candidate for a human mission 2	

Why NEA Scout?

- Characterize a NEA with an imager to address key Strategic Knowledge Gaps (SKGs)
- Demonstrates low cost reconnaissance capability for HEOMD (6U CubeSat)

Leverages:

- Solar sail development expertise (NanoSail-D, Sunjammer, LightSail-1)
- CubeSat developments and standards (INSPIRE, University & Industry experience)
- Synergies with Lunar Flashlight are in review (Cubesat bus, solar sail, communication system, integration & test, operations)

Measurements: *NEA volume, spectral type, spin mode and orbital properties, address key physical and regolith mechanical SKG*

- ≥80% surface coverage imaging at ≤50 cm/px
- Spectral range: 400-900 nm (incl. 4 color channels)
- ≥30% surface coverage imaging at ≤10 cm/px

Key Technical Constraints:

- 6U Cubesat and ~80 m² sail to leverage commonalities
 with Lunar Flashlight, expected deployer compatibility and optimize cost
- Target must be within 1 AU distance from Earth due to telecom limitations
- Slow flyby with target-relative navigation on close approach

- NHATS database contains targets from 1 m to >1 km
 - Do not all carry same value: low orbit condition code, >10 m, synodic period < 10 yr are of high priority
- Targets accessible to NEA Scout are < 50m

Rendezvous Target Search

Local minima for flight time. Flight time increases linearly with pre-escape loiter time Flight time increases non-linearly with delayed escapes

What Do We Know About 1991 VG and Backups

2013 BS45 (radar, courtesy of Lance Benner):

- H=28.4±0.7
- Diameter ~ 5-12 meters
- Albedo is unknown
- Rotation period between a few minutes and less than 1 hr
- Unlikely to have a companion
- Likely did not retain an exosphere or dust cloud
 - Solar radiation pressure sweeps dust on timescales of hours or day

NEA	Absolute magnitude	30% albedo Diameter (m)	5% albedo Diameter (m)	Orbit Condition Code	Observation Opportunity prior to launch
1991 VG	28.5	5	12	2	2017-07 (Optical)
2001 GP ₂	26.9	10	25	6	Depends on launch date 2020-10 (Optical)
2013 BS45	25.9	11	51	0	2015-01 (Optical)
2008 EA ₉	27.7	7	17	5	none
2012 UV ₁₃₆	25.5	19	47	1	2014-08 (Optical) 2020-05 (RADAR)

Prioritized Strategic Knowledge Gaps

HEO-Defined Strategic Knowledge Gaps	Expected Performance	Risk Reduction or Benefit		
Location (position prediction/orbit)	OCC decrease to 0	0 0 0		
Size (existence of binary/ternary)	High accuracy on size, detection of satellites	0 0 0 0		
Rotation rate & pole orientation	High accuracy on pole and velocity	0 0 0 0		
Particulate environment/Debris field	Depends on flyby vs. rendezvous	0 0 0 0		
Regolith mechanical & geotechnical properties	Indirect (imagery interpretation)	0 0 0 0 0		
Mass/density estimates (internal structure)	Indirect (based on taxonomic characterization)	• • •		
Surface morphologies and properties	Depends on flyby vs. rendezvous	$\circ \circ \circ \circ \bullet$		
Mineralogical & chemical composition	Indirect from taxonomic characterization	0 0 0 0 0		
Crew/Mission Operations	O Cost O Performance	Science/Engineering		

Summary: NEAScout Observation Plan

Target Reconnaissance 50 cm/px resolution over 80% surface SKGs: volume, global shape, spin rate and pole position determination

Target Detection and Approach

SNR >1.5 of target at 10K km, before frame co-adding, spectral class

SKGs: Ephemeris determination and composition assessment

Close Proximity Imaging High-resolution imaging, 10 cm/px GSD SKGs: Medium-scale morphology, regolith properties, and local environment characterization NEA Scout ConOps Summary

Earth

Not to scale

- Notional Launch on SLS EM-1 (Dec. 2017)
- Secondary payloads will be integrated on the MPCV stage adapter (MSA) on the SLS upper stage.
- Secondary payloads will be deployed on a trans-lunar trajectory after the upper stage disposal maneuver.

NEA Scout Flight System Overview

Mission: Retire Strategic Knowledge Gaps at a Near-Earth Asteroid
Launch Opportunity: SLS EM-1 (Dec. 2017 notional launch)
Bus: JPL Deep Space NanoSat Bus (based on INSPIRE)
Form Factor: "6U" CubeSat (<12kg)
Main Propulsion: MSFC ~80 m² Solar Sail (based on NanoSail-D)
Payload: COTS NEA Imager, e.g. MSSS ECAM M-50
Command & Data Sys.: Radiation tolerant LEON3 architecture
Attitude Control: 3-Axis Control (Zero-momentum spin cruise)
Electrical Power: ~35W (@1 AU)
Telecom: JPL Iris, INSPIRE LGA (2 Pair) + Microstrip Array HGA (~500 bps @ 0.75 AU to 34m DSN)

Baseline

- MSSS ECAM M-50 camera with NFOV lens
- COTS, TRL 8 via OSIRIS-Rex, excellent IFOV & FOV, volume, power
- Aptina MT9P031 FPA

- Contribution to the CubeSat Community
 - Long-lived CubeSat bus for deep space missions (C&DH, EPS, ADCS, Deep Space Transponder)
 - Further characterization of deep space environment effects on CubeSats (building on INSPIRE)
 - First science-grade observations of solar system objects
 - Mature CubeSat Solar Sail propulsion

Future Potential of Small Missions for Big Science

- Secondary spacecraft hosted on interplanetary missions
- NEA Scout could be repeated to characterize additional NEAs or increase coverage of lunar ices (possibly with different, complementary payloads)
- Other solar sail applications (e.g. Space Weather Monitoring constellation at Lagrange Points)