

(National Astronomical Observatory of Japan)

R. Ishikawa, N. Narukage, T. Bando,

Y. Katsukawa, M. Kubo, S. Ishikawa (NAOJ),

K. Kobayashi (NASA/MSFC), J. Trujillo Bueno (IAC),

F. Auchère (IAS), with the CLASP team

# Active Chromosphere

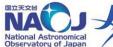
Quiet Photosphere



We would like to have magnetic-field measurements in low-β plasma.

# Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP)

A sounding rocket experiment aiming the followings:


- high-precision (0.1%) measurements of linear polarizations in vacuum-UV (VUV) lights,
- the <u>first measurement</u> of the linear polarization induced by atomic polarization and Hanle effect in the Lyman-alpha line (121.567nm), and
- the <u>first exploration</u> of <u>magnetic fields</u> in the upper chromosphere and transition region of the Sun.

The CLASP project was accepted by NASA in 2012, and CLASP will fly with NASA's sounding rocket in 2015!

#### International Collaboration in CLASP

#### 12 institutes in 5 countries

Japan : R.Kano (PI, NAOJ)









- All of CLASP science instrument (except CCD camera system
  - and concave grating)
- Development of empirical tool to diagnose ch.-magnetic fields.

<u>USA</u>: K. Kobayashi (PI, NASA/MSFC)









- CCD camera system
- Sounding rocket & operation

Collaborations

France: F. Auchère (PI, IAS)

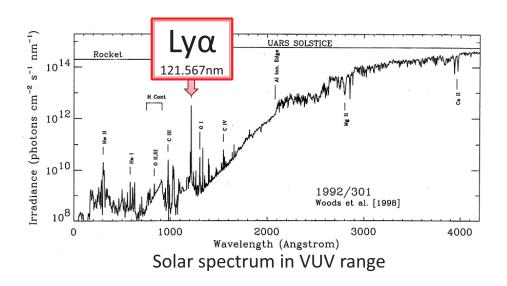
Concave grating IAS

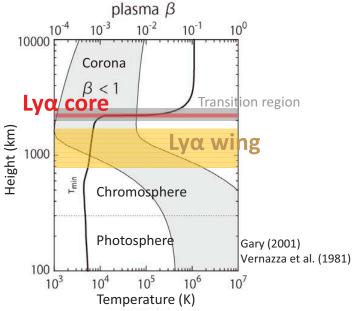




Norway: M. Carlsson (Oslo U.)

3D modeling of solar atmosphere





**Spain**: J. Trujillo Bueno (PI, IAC)

 Modeling of spectropolarimetric profile in Lyman-alpha with Hanle effect



# Why Lyα line?



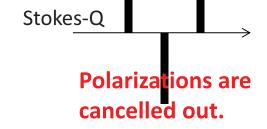


Plasma- $\beta$  and formation height of Ly $\alpha$  in the solar atmosphere

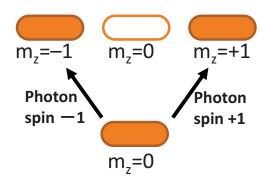
- Brightest line in VUV chromospheric emission lines.
- Bright even in quiet Sun as well as active regions.
- Line core is emitted by the plasma located between higher chromosphere and transition region.
- Good sensitivity to magnetic field of 10 250 G via Hanle effect.
  - $\Rightarrow$  Lyα line is a best candidate to infer magnetic fields in low- $\beta$  plasma ( $\beta$ <1) over the entire solar disk.

### Origin of linear polarization in scattered lights

Step 1: Population imbalance between atomic sublevels induced by **anisotropic radiation** illuminating atom.


If Doppler width

Zeeman spliting,

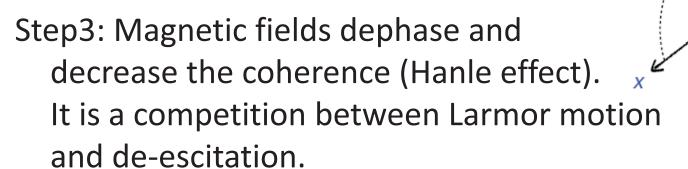

is wider than

#### isotropic radiation

# $m_z=-1$ $m_z=0$ $m_z=+1$ $m_z=0$



#### anisotropic radiation





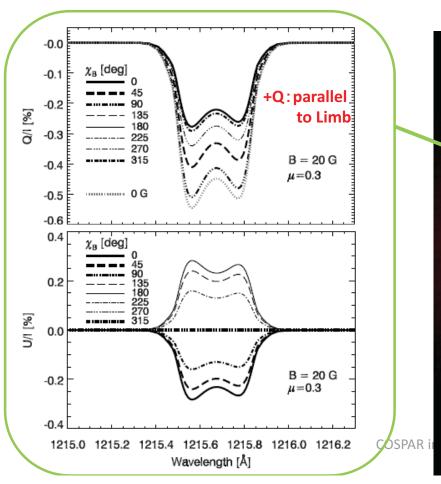

Polarizations remain even after cancellation.

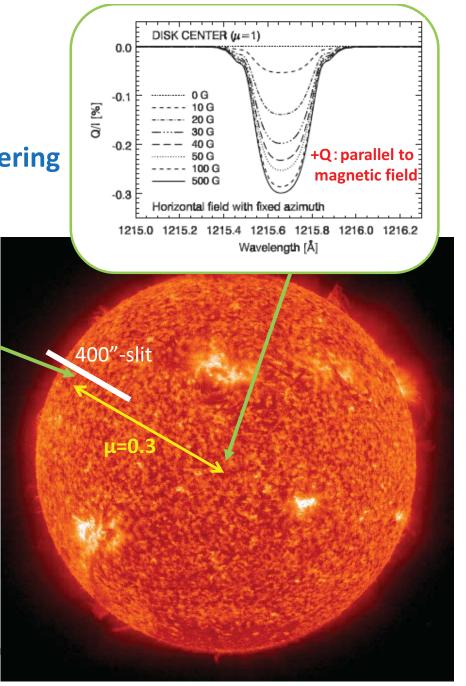
### Origin of linear polarization in scattered lights

Step2: Quantum coherency by rotation of quantization axes.



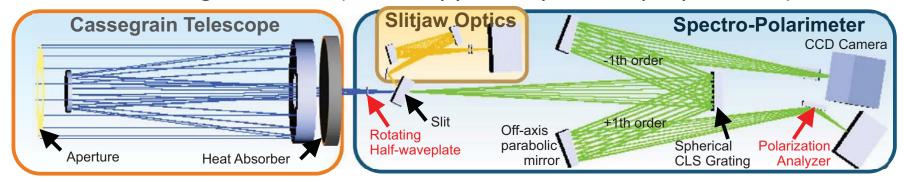
$$\frac{1}{\omega_0} \text{ VS. } \frac{1}{A} \\ \text{time scale to change coherency} \\ \frac{1}{\omega_0} \sim \frac{1}{A} \\ \frac{1}{\omega_0} \sim \frac{1}{A} \\ \frac{1}{\omega_0} \sim \frac{1}{A} \\ \text{marginal field: depolarization of linear polarization} \\ \frac{1}{B} \sim 54G \\ \text{@ Ly-alpha} \\ \frac{1}{\omega_0} \ll \frac{1}{A} \\ \text{strong field (saturation regime):} \\ \frac{1}{\omega_0} \ll \frac{1}{A} \\ \text{depolarization} \\$$


$$\omega_0 = \frac{e}{2m}gB$$
: Larmor frequency


A: Einstein coefficient for spontaneous decay

2014/08/03

# Polarization of Hanle effect in Lyα


based on **FAL-C model** & **CRD scattering** (Trujillo Bueno et al. 2011, ApJ)





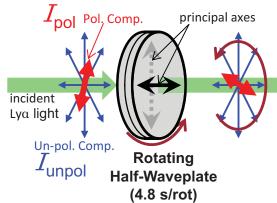
# **CLASP Instrument: Optics**

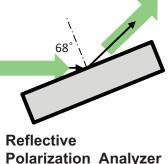
Narukage, N. et al. (2014, Applied Optics, in preparation)



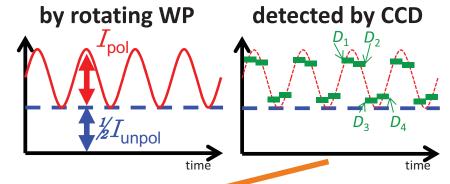
actra Palarimeta

| Cassegrain Telescope      |                                         |  |
|---------------------------|-----------------------------------------|--|
| Aperture                  | ф270.0 mm                               |  |
| Effective<br>Focal Length | 2614 mm (F/9.68)                        |  |
| Visible light rejection   | "Cold Mirror" coating on primary mirror |  |


| Slitjaw Optics |                                |     |
|----------------|--------------------------------|-----|
| Wavelength     | 121.567 nm (narrowband filter) |     |
| Plate scale    | 1.03"/pixel                    |     |
| FoV            | 527" × 527"                    | 'AF |


| Spectro-Polarimeter |                                                |             |  |
|---------------------|------------------------------------------------|-------------|--|
| Optics              | <b>Dual beam</b> of Inverse Wadsworth mounting |             |  |
| Wavelength          | 121.567 ± 0.61 nm                              |             |  |
| Slit                | 1.45" (width), 400" (length)                   |             |  |
| Grating             | Spherical constant-line-spacing, 3000 lines/mm |             |  |
| CCD camera          | 512 × 512 pixel                                | 13µm/pixel  |  |
| Plate scale         | 0.0048 nm/pixel                                | 1.11"/pixel |  |
| Resolution          | 0.01nm                                         | 3"          |  |
| Sensitivity         | 0.1%                                           |             |  |

#### Polarization Measurement


 CLASP is optimized for linear polarization, because V/I is expected to be too small (~0.005% @10G in the Ly-alpha by Zeeman effect).

#### **CLASP Polarimeter**







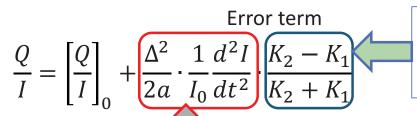


# Demodulation from CCD exposures

$$Q = aK\{(D_1 - D_2 - D_3 + D_4) + ...\}$$

$$U = aK\{(D_2 - D_3 - D_4 + D_5) + ...\}$$

$$I = K\{(D_1 + D_2 + D_3 + D_4) + ...\}$$


a: modulation coefficient

K: throughput value

#### Dual-beam demodulation

• It will reduce spurious polarizations from time variations.

|     | t1      | t2      | t3      | t4      |  |
|-----|---------|---------|---------|---------|--|
| Ch1 | I+aQ+aU | I–aQ+aU | I-aQ-aU | I+aQ-aU |  |
| Ch2 | I-aQ-aU | I+aQ-aU | I+aQ+aU | I-aQ+aU |  |



Difference of throughput *K* between 2 Ch

 We expect that the symmetric optics reduces the difference.

Time variation of intensity of targets

- The modulation/demodulation scheme removes a sensitivity to the linear change.
- The 1.2s period to take one set for the demodulation (i.e. 4 exposures) may be short enough.

 $\Delta$ : exposure interval (~0.3s)

### Error budget for spurious polarization

Ishikawa,R., et al. (2014, Solar Physics, in press)

| Cause of error                                                                                                                      |                                    | error (1σ)           |  |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------|--|
| Photon noise at Ly-a center (10" along slit and 200s obs. period )  Readout noise of CCD cameras  Eluctuation of exposure durations |                                    | 0.026%               |  |
| (10" along slit and 200s obs. period )  Readout noise of CCD cameras                                                                |                                    | 0.011%               |  |
| Rá                                                                                                                                  | Fluctuation of exposure durations  | 5x10 <sup>-5</sup> % |  |
| -11                                                                                                                                 | Time variation of source intensity | <0.018%† (~0%)       |  |
| $\frac{dI}{dt}$ Intensity variation from pointing jitter                                                                            |                                    | <0.018%† (~0%)       |  |
| Image shift from waveplate rotation                                                                                                 |                                    | ~0%                  |  |
| Tal                                                                                                                                 | Off-axis incidence with 200"       | ~10-4%               |  |
| Tel. Non-uniformity of coating on primary                                                                                           |                                    | 10 <sup>-3</sup> %   |  |
| SP Error in polarization calibration                                                                                                |                                    | 0.017%               |  |
| RSS                                                                                                                                 |                                    | <0.042% (~0.033%)    |  |

<sup>†:</sup> These values are the case for the single channel demodulation, and can be reduced by dual channel modulations.

COSPAR in Moscow

**Primary** 

Flight instrument is in fabrication.




**Secondary** 



Slitjaw optics: mirror unit & filter unit







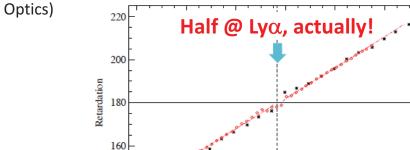


**Off-axis Camera mirror** 



**Spectro-Polarimeter Structure** 




# Measurements of flight components are also in progress.

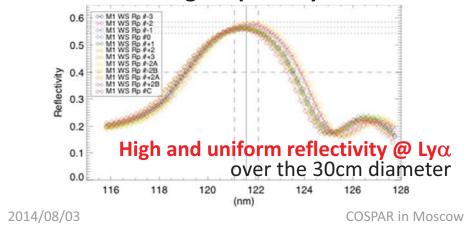
#### Half waveplate

140

121.0

MgF<sub>2</sub> WP optimized by Ishikawa,R. et al. (2013, Applied




#### "Cold mirror" coating for primary mirror

121.4

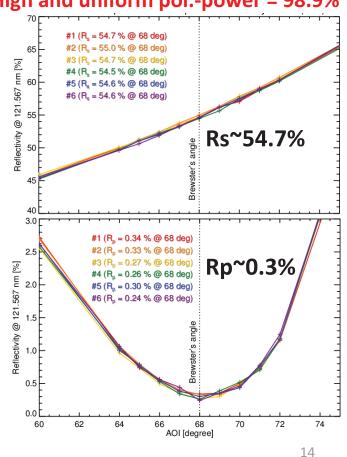
121.6

wavelength [nm]

121.2

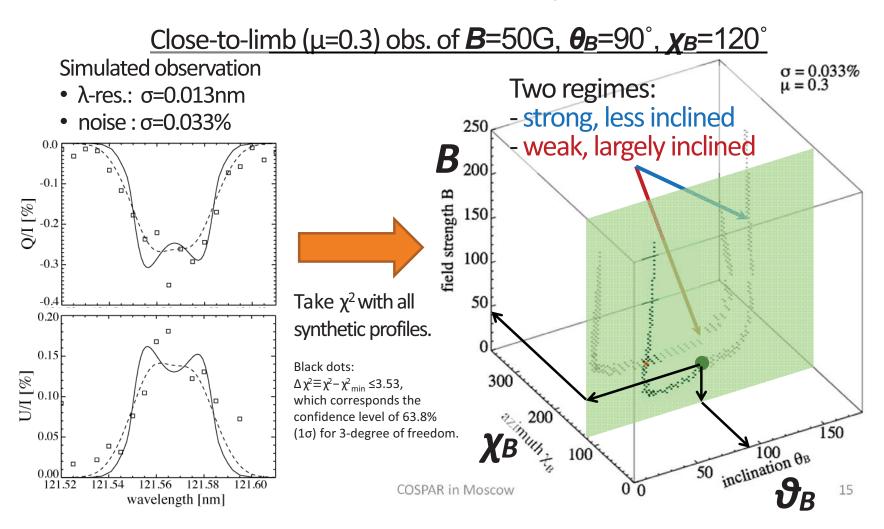


Preliminary!

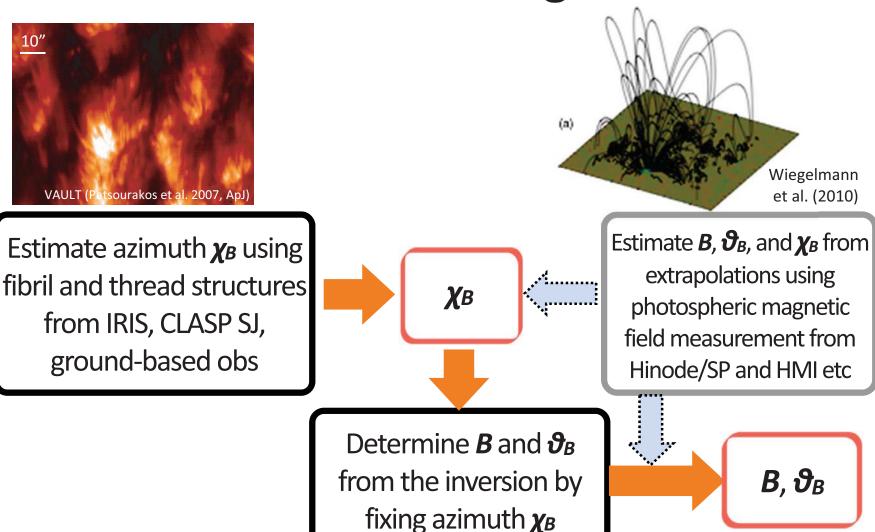

122.0

121.8

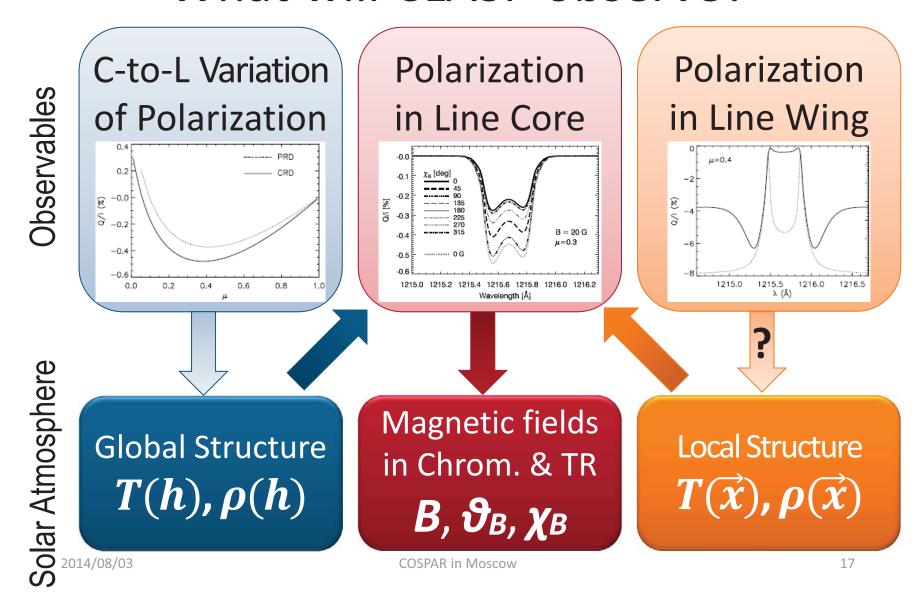
#### Reflective pol. analyzer


Multi-layer designed by Bridou et al.(2011. Applied Physics A)

#### **High and uniform pol.-power = 98.9%**




# How ambiguous is **B**-inversion? How to solve the ambiguity?


Ishikawa, R. et al. (2014, ApJ 787, 159)

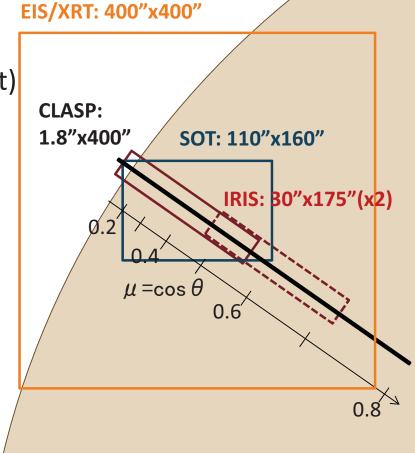


# Procedure to infer magnetic fields



#### What will CLASP observe?




### **Draft for Coordinated Observation**

#### **IRIS**

- during the CLASP flight
  - Raster scan of 30"(scan)x175"(slit)
  - Near the limb:  $\mu$ ~0.4 and 0.6 (Scat-pol is maximum at  $\mu$ ~0.4.)
  - Mg II h&k observation.

#### Hinode/SOT

- before/after the CLASP flight
  - Near the limb:  $\mu$ ~0.4.
  - Hα imaging & Photospheric
     Vector magnetic fields by SP.



## Summary

- The CLASP project is on-going to infer magnetic fields in upper-chromosphere and transition region.
- The CLASP, a sounding rocket experiment, will be performed in 2015 summer at White Sands in USA.
- Coordinated imaging observations of chromosphere and photospheric magnetic fields are necessary.
- A quick inversion based on plane-parallel atmospheres will be tried at first, but will be followed by precise analysis collaborated with 3D simulations.