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Abstract—	   Propulsion technology development efforts at the 
NASA Johnson Space Center continue to advance the under-
standing of the quantum vacuum plasma thruster (Q-
Thruster), a form of electric propulsion. Through the use of 
electric and magnetic fields, a Q-thruster pushes quantum 
particles (electrons/positrons) in one direction, while the Q-
thruster recoils to conserve momentum. This principle is 
similar to how a submarine uses its propeller to push water in 
one direction, while the submarine recoils to conserve momen-
tum. Based on laboratory results, it appears that continuous 
specific thrust levels of 0.4 - 4.0 N/kWe are achievable with 
essentially no onboard propellant consumption. 

To evaluate the potential of this technology, a mission analysis 
tool was developed utilizing the Generalized Reduced Gradient 
non-linear parameter optimization engine contained in the 
Microsoft Excel® platform.  This tool allowed very rapid 
assessments of “Q-Ship” minimum time transfers from earth 
to the outer planets and back utilizing parametric variations in 
thrust acceleration while enforcing constraints on planetary 
phase angles and minimum heliocentric distances.  A conserva-
tive Q-Thruster specific thrust assumption (0.4 N/kWe) 
combined with “moderate” levels of space nuclear power (1 - 2 
MWe) and vehicle specific mass (45 - 55 kg/kWe) results in 
continuous milli-g thrust acceleration, opening up realms of 
human spaceflight performance completely unattainable by 
any current systems or near-term proposed technologies.  
Minimum flight times to Mars are predicted to be as low as 75 
days, but perhaps more importantly new “retro-phase” and 
“gravity-augmented” trajectory shaping techniques were 
revealed which overcome adverse planetary phasing and allow 
virtually unrestricted departure and return opportunities.  
Even more impressively, the Jovian and Saturnian systems 
would be opened up to human exploration with round-trip 
times of 21 and 32 months respectively including 6 to 12 
months of exploration at the destinations.  Finally, interstellar 
trip times are assessed at milli-g acceleration levels. 
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1. INTRODUCTION 
Q-Thruster Overview 

It is not the intent here to detail the theory or engineering of 
quantum vacuum plasma thrusters (Q-Thrusters).  Rather, an 
overview of the foundational physics and laboratory find-
ings are given. 

Q-Thrusters attempt to use the properties of the “quantum 
vacuum” to propel a spacecraft.  Quantum Electrodynamics 
(QED) predicts that the quantum vacuum (the lowest state 
of the electromagnetic field) is not empty, but rather a sea of 
virtual particles and photons that pop into and out of exist-
ence stemming from the Heisenberg uncertainty principle.  
A number of approaches to utilize this quantum vacuum to 
transfer momentum from a spacecraft to the vacuum have 
been synopsized in [1].   

A Q-Thruster uses the same principles as conventional 
plasma thrusters, namely magnetohydrodynamics, where 
plasma is exposed to crossed electric and magnetic fields 
which induce a drift of the entire plasma in a direction 
orthogonal to the applied fields.  The difference arises in 
that a Q-Thruster uses quantum vacuum fluctuations as the 
“propellant” source, eliminating the need for conventional 
on-board propellant.  A discussion of spacecraft “conserva-
tion of energy” is given in Appendix A.  Recent laboratory 
test results [2] indicate the expected thrust-to-power ratio 
for flight applications could be in the 0.4 – 4.0 N/kWe 
range, which is one to two orders of magnitude greater than 
current operational electric thrusters.  This combination of 
characteristics – relatively high specific thrust combined 
with essentially zero on-board propellant requirement - 
suggest space mission performance levels significantly 
exceeding current capabilities. 

Mission Analysis Approach 

The following analyses are intended to investigate the 
potential of Q-Thruster performance in the context of 
human exploration of the outer solar system.  A parametric 
understanding of the interplay of thruster, vehicle and 
mission characteristics is first developed followed by 
specific instantiations of round-trip missions to Mars, 
Jupiter and Saturn along with investigations of several 
unique mission capabilities.  Finally, a brief discussion of 
interstellar mission performance is offered. 
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2. Q-THRUSTER SYSTEM BEHAVIOR 

To evaluate the potential of Q-Thrusters in the human 
exploration of the outer solar system, an understanding of 
generalized system behavior is in order.  The unique Q-
Thruster characteristics described above imply a nearly 
constant-mass spacecraft with thrust level varying linearly 
with thruster power input. While required power levels and 
system specific masses are some of the desired findings 
from the following analyses, it is clear that for outer planet 
missions, especially those beyond Mars, reasonable power 
levels can only be maintained with nuclear systems.  Since 
the output power of such systems can be held constant 
(independent of heliocentric distance) the spacecraft will 
experience essentially constant thrust acceleration. 

Excellent continuous-thrust mission analysis tools exist, 
however many of these require specialized operator exper-
tise and exhibit levels of fidelity unnecessary for rapid 
assessment of a broad range of mission and vehicle parame-
ters.  For this high-level analysis, a closed-form analytical 
solution exists for the minimum time, phase independent 
orbit-to-orbit heliocentric transfer of a constant thrust-
acceleration spacecraft.  To evaluate more complex mis-
sions with additional constraints, a computational tool was 
constructed utilizing the programmability and optimization 
capabilities of Microsoft Excel®.  Results from this analyti-
cal solution and numerical tool were compared with classic 
test cases and with a sophisticated NASA production 
trajectory optimizer. 

Heliocentric Analytical Solution 

Prior to the availability of computationally rapid numerical 
trajectory integration and calculus of variation analysis 
tools, various techniques were investigated to analytically 
approximate optimal continuous thrust trajectories [3], [4].  
One somewhat successful method [5] sought to identify 
characteristic distances or velocity changes which, when 
used in rectilinear motion equations satisfying the specific 
problem’s optimality conditions (usually minimum propel-
lant usage with specified terminal position and velocity 
constraints) gave reasonable approximations to the propel-
lant usage and flight times obtained from the more rigorous 
tools.  These analytical solutions could become quite cum-
bersome however, since traditional propulsion systems 
provide varying acceleration levels due to propellant deple-
tion and the propellant-optimal solutions for such accelera-
tion profiles are thrust-coast-thrust arcs. 

In our analysis however, the constant thrust acceleration 
condition provides exceedingly simple closed-form solu-
tions to the problem of a spacecraft transferring from earth’s 
heliocentric orbit to that of an outer planet without phase 
angle constraints.  If one assumes circular, coplanar plane-
tary orbits, the minimum acceleration levels corresponding 
to a given flight time are 

 𝑎! =
4 𝑟!"#$%! − 𝑟!"#$!

𝑡!!
  ,  (1) 
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 𝑎!!!"#$! = 𝑎!! + 𝑎!!  . (3) 

Here, 𝑟!"#$! and 𝑟!"#$%! are the heliocentric orbital radii of 
the earth and the target planets respectively, and 𝜇⊙ is the 
sun’s gravitational parameter.  The 𝑎! term is immediately 
recognizable as the “field-free” constant acceleration 
magnitude required to traverse the radial distance between 
the planets’ orbits in time 𝑡!  assuming zero radial velocity at 
each end and a reversal of acceleration direction at the 
midpoint.  Similarly, 𝑎! is simply the field-free constant 
tangential acceleration needed to match the target planet’s 
orbital velocity over the same time interval.  There is no 
tangential position constraint since this problem was defined 
as phase independent.  It is a fairly trivial exercise to prove 
that these rectilinear solutions satisfy the optimality condi-
tions and terminal state constraints.  Their validity to the 
“true” dynamics is based on the observation that 𝑎! main-
tains the spacecraft in a gravitational “pseudo-equilibrium” 
such that radial gravitational accelerations can be ignored.  
Even so, upon evaluation 𝑎! contributes less that 1% to the 
magnitude of 𝑎!!!"#$ for all outer planet missions and thrust 
acceleration levels of interest, so can therefore be neglected.  
This allows the minimum flight time for a given constant 
thrust acceleration level to be expressed as 

 𝑡!"# = 2
𝑟!"#$%! − 𝑟!"#$!

𝑎!!!"#$
  .  (4) 

The validity of the analytic solution will be demonstrated 
subsequently. 

Heliocentric Vehicle and Mission Parameterization 

For a Q-Thruster propelled nuclear-powered spacecraft the 
sole parameter affecting the vehicle dynamics is the (con-
stant) thrust acceleration level and the associated steering 
policy.  The thrust level is determined by the Q-Thruster 
specific thrust 𝑇! (N/kWe) and the power 𝑃 supplied to it.  
The spacecraft mass can be segregated into that associated 
with the propulsion and power systems and that associated 
with the payload 𝑚!/!.  Typically, for nuclear electric 
spacecraft parametric analysis, the propulsion and power 
systems are characterized by specific mass 𝛼 (kg/kWe).  
This parameter does tend to change with power level (due to 
economies of scale), but for modest power variations can be 
considered constant.  Therefore, the vehicle thrust accelera-
tion level can be expressed by 
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 This expression combined with that for 𝑡!"# above gives a 
very quick way to estimate minimum heliocentric transit 
times given destination, Q-Thruster specific thrust, vehicle 
specific mass, power level and payload mass.   

Heliocentric Numerical Analysis 

To more rigorously examine aspects of Q-Thruster perfor-
mance, an analysis technique was needed that still allowed 
relatively rapid assessments of vehicle and mission varia-
tions, but avoided the unnecessary complexity of produc-
tion-level tools.  Constant acceleration heliocentric two-
degree-of-freedom vehicle equations of motion (Appendix 
B) were programmed into Microsoft Excel® and combined 
with the built-in General Reduced Gradient (GRG) parame-
ter optimizer [6].  Several test cases were run including a 
classic low-thrust optimal control problem [7], [8], the 
solution to which the GRG/Excel® tool duplicated to a high 
degree of precision (Appendix C). 

The first task was to verify the behavior predicted by the 
analytical solutions.  GRG allows terminal constraints to be 
imposed on the state variables – in this case the final helio-
centric radius along with final radial and tangential veloci-
ties.  The parameters to be optimized were the thrust direc-
tion at the integration nodes and the duration of the trajecto-
ry.  The trajectory duration was also the objective function 
to be minimized.  Thrust acceleration magnitudes were 
selected to span the same range examined by the analytical 
assessment for transfers to Mars, Jupiter and Saturn. 

Secondly, representative transfers to the three planets were 
assessed using NASA’s “Copernicus” trajectory optimizer 
[9].  Copernicus is an extremely sophisticated six degree-of-
freedom tool that accurately models planetary ephemerides 
and multi-body gravity effects.  It is capable of utilizing 
impulsive, finite and continuous thrust control variables, 
evaluating multiple performance indices and enforcing 
terminal state constraints. 

Comparison of Analysis Techniques 

Figure 1 compares results for minimum time, phase inde-
pendent orbit-to-orbit heliocentric transfers of a constant 
thrust-acceleration spacecraft from the analytical, 
GRG/Excel® and Copernicus analyses, with acceleration 
expressed in milli-g’s.  As can be seen, there is excellent 
agreement amongst all techniques with less than 3% mini-
mum transit time difference between GRG/Excel® and 
Copernicus and 5% between the analytic solution and 
Copernicus.  This comparison is also combined nomograph-
ically with the vehicle and mission parametrics described in 
Equation (5), allowing a visual interpretation of the sensitiv-
ity of flight time to the various quantities.  The values of Q-
Thruster specific thrust span the range consistent with 
laboratory results. 

Figure 1 – Q-Ship Phase Independent Performance 

It is apparent that there is a “knee of the curve” in minimum 
flight time vs. thrust acceleration at around 0.5-1.5 milli-g’s 
which is achievable even at the lower range of the expected 
Q-Thruster specific thrust.  At lower acceleration levels, 
flight times increase sharply, while at higher levels they 
decrease, but somewhat asymptotically.  This performance 
region is therefore of interest in defining desirable thruster, 
vehicle and mission capabilities.  Also, from the nomograph 
it is interesting to note that all other things being equal, 
simply increasing power level (decreasing 𝑚!/! 𝑃) does not 
strongly decrease flight time because while doing so would 
increase thrust, it would also increase vehicle mass due to 
larger power and thruster systems.  However, it should be 
recognized that there is likely a tendency for 𝛼 to decrease if 
power levels increase significantly [10]. 

Planetocentric Phase 

A common technique to approximate the propellant con-
sumption of low-thrust spacecraft during the multi-
revolution spiral from planetary orbit to escape velocity is 
the so-called Edelbaum transfer [11].  The equation of 
interest describes the equivalent ideal “field-free” velocity 
change ∆𝑣!"#$%   experienced by a spacecraft transiting from a 
circular orbit of radius 𝑟! to another circular orbit of radius 
𝑟! with a differential orbital inclination of ∆𝑖: 

 ∆𝑣!"#$%! =
𝜇
𝑟!
+
𝜇
𝑟!
−

𝜇
𝑟!𝑟!

cos
𝜋
2
∆𝑖  . (6) 

Here,  𝜇 is the planet’s gravitational parameter.  For the case 
of departure from 𝑟! to escape velocity, 𝑟! = ∞.  Typically, 
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∆𝑣!"#$% is used to estimate the spacecraft propellant re-
quirements via the “rocket equation,” but since Q-Thruster 
spacecraft consume no propellant, we will use ∆𝑣!"#$% to 
estimate the flight time to achieve escape velocity 
∆𝑡!"#   through 

 ∆𝑡!"# =
∆𝑣!"#$%
𝑎!!!"#$

=
𝜇 𝑟!

𝑎!!!"#$
. (7) 

Since 𝑎!!!"#$ is constant for Q-Thruster spacecraft, Equa-
tion (7) is equally valid for planetary orbit departure or 
arrival.  Examples of ∆𝑡!"# vs. 𝑎!!!"#$ are shown in Figure 2 
for the following planetary orbits of interest: Earth: 400 km 
circular, Mars: 400 km circular, Jupiter: 1,882,700 km 
circular (Callisto) and Saturn: 273,948 and 1,221,870 km 
circular (Enceladus and Titan, respectively). 

Figure 2 – Edelbaum Departure/Capture Spiral Times 

In addition, two Copernicus assessments of Earth departure 
are shown.  These minimum-time trajectories reach escape 
velocity 15-30% faster than the Edelbaum transfers predict.  
Upon examining the Copernicus profiles it was clear that at 
the acceleration levels chosen, the optimal steering profiles 
exhibited considerable radial thrust components, and since 
one of the tenets of the Edelbaum approximation is tangen-
tial steering, these results are not surprising.  However, for 
preliminary mission assessments even at thrust levels of ~1 
milli-g or higher, the Edelbaum computations are deemed 
acceptable, if conservative. 

As can be seen from Figure 2 these data also display a “knee 
of the curve” at around 1 milli-g.  This is an encouraging 
finding - if a spacecraft could achieve this thrust accelera-
tion level, it would attain the more “asymptotic” mission 
times associated with both planetary departure/arrival and 
heliocentric transfers. 

Now that the system behavior of Q-Thruster-based missions 
to the outer planets has been explored, the validity of the 
GRG/Excel® tool verified and the utility of the Edelbaum 
transfer demonstrated, subsequent analysis will focus on 
specific examples of vehicles and missions in order to more 
explicitly understand the performance afforded by this 
technology. 

3. MARS MISSIONS 
Vehicle and Mission Parameters 

Returning to Figure 1, we examine combinations of system 
and mission parameters that could allow nearly asymptotic 
performance levels and compare these against those consid-
ered state-of-the-art or which represent reasonable techno-
logical extrapolations.  Previous NASA crewed Mars 
mission analyses [12] have provided estimates for the 
masses of the spacecraft systems associated with crew 
habitation assuming fairly high efficiency levels of water 
and air recovery.  Parametric sizing tools indicate a habita-
tion mass of 35 metric tons should be able to sustain 6-8 
crewmembers for one year.  The remainder of the spacecraft 
mass (power and propulsion systems) is derived from 
additional mass estimates [13].  The power system specific 
mass chosen corresponds to “Growth SP-100” technology 
(single lithium-cooled reactor with single-phase Brayton 
power conversion).  The Q-Thruster-based propulsion 
system was assumed to exhibit a specific mass similar to 
that of ion thrusters of comparable power level.  The aggre-
gate power/propulsion 𝛼 selected was 20 kg/kWe.  As 
previously discussed, laboratory results indicate Q-Thruster 
specific thrust values could range from 0.4 to 4.0 N/kWe.  
In this analysis we use the more conservative value of 0.4 
N/kWe.  

Utilizing the above parameter choices and Equation (5) we 
can compute the power level necessary to achieve  𝑎!!!"#$ 
near the knee of the curve in Figure 1.  Utilizing 1 MWe of 
power results in  𝑎!!!"#$ = 0.74 milli-g’s and a total vehicle 
mass of 55 tons.  This is the value selected for the Mars 
mission assessments. 

Phase-Independent Transits 

It is immediately obvious from Figure 1 that this vehicle and 
payload combination gives a very impressive heliocentric 
phase-independent transit time to Mars of only 75 days.  
The trajectory and thrust profile computed from the 
GRG/Excel® tool are shown in Figure 3.  Note that the 
optimal thrust profile is very similar to the radial “field-
free” analytical solution from Equation (1) - nearly constant 
radial outward thrusting with a rapid switch to inward at the 
transit’s halfway point.  The arrows in the trajectory dia-
gram indicate the direction of the thrust vector. 

Also, by examining Equation (7) or Figure 2 it can be seen 
that only 12 days would be utilized spiraling up from a 400 
km low Earth orbit to achieve escape velocity and only 5 
days spiraling down to a 400 km low Mars orbit.  These 
relatively rapid transits would argue for mission strategies 
where the “Q-Ship” operates between the lowest orbits 
possible to minimize the launch requirements of crew and 
supplies from earth and lander complexity at Mars.  It also 
obviates the need for a high-speed entry vehicle to be hauled 
round-trip just to return the crew to the Earth.  By quickly 
spiraling into Earth orbit at the end of the mission, the crew 
could readily be retrieved via a “ground-up” launch. 
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 Figure 3 – Optimal Phase-Independent Earth-Mars 
Transfer, TS=0.4, P=1.0 MWe, 𝒎𝒑/𝒍=35 t, 𝜶=20 kg/kWe 

While minimum transit time is an important metric in the 
evaluation of the potential of Q-Thrusters, it may not be the 
only or even the most important.  Other advanced propul-
sion technologies [14] have focused on minimum transit 
time, but the challenges associated with the accompanying 
system or mission parameters (required power level, specif-
ic masses, mission risk) required to achieve those transit 
times may outweigh the potential propulsion system bene-
fits. 

In particular, focusing on minimum transit time, either 
outbound or inbound, usually implies optimal planetary 
alignment (phase angle) which occurs only once per Earth-
target synodic cycle – for Earth-Mars this is approximately 
26 months.  This low mission frequency seriously underuti-
lizes a system with the extreme performance capability and 
multi-mission potential of the Q-Ship.  The paradigm of a 
vehicle that transports a crew to Mars, loiters in orbit for 
months or years waiting for the correct planetary alignment 
and then transports the crew home needs to be rethought. 

“Any-Phase” Transits 

Mission analyses involving Mars vehicle concepts utilizing 
conventional or even advanced propulsion assumptions 
rarely examine departure or return opportunities that exceed 
the optimum planetary phasing by more than a few weeks.  
This is due to the extreme propellant penalties incurred by 
the associated velocity change increases.  The “propellant-
less” Q-Thrusters would not suffer from this exponential 
mass penalty, but instead experience increasing transit 
times.  We now examine the consequence of “any-phase” 
departure (and by symmetry, return) opportunities to extend 
the utility of Q-Thruster transportation. 

The optimum phase-independent transfer shown in Figure 3 
resulted in a departure Earth-Mars phase angle (Mars 
“leading” Earth is positive) of 15°.  As we constrain this 
angle to be more positive (corresponding to an earlier 
departure date) the Q-Ship will need to extend its transfer 
time to compensate.  As the phase angle is constrained to be 
more and more positive, the trajectory will begin to descend 
below 1 AU in order to achieve higher angular rates through 
orbital dynamics effects. 

Eventually, solar thermal conditions will limit this method 
of phase compensation.  While the value of this minimum 

solar distance will ultimately depend upon vehicle design 
details, we can observe the effects of a constrained heliocen-
tric radius on the optimal flight times.  Fortunately, GRG 
allows inequality constraints to be imposed on state varia-
bles, and an arbitrary minimum heliocentric radius of 0.72 
AU (Venus’ orbit) was imposed.  When adverse phasing 
becomes sufficiently severe, the vehicle transitions to what 
we have termed “gravity-augmented phasing”, where all of 
the vehicle’s thrust is directed radially inward, augmenting 
the sun’s gravity and allowing faster heliocentric angular 
motion along the constrained radius than purely ballistic 
motion would allow.  In the current example, our Q-Ship 
would be travelling in Venus’ heliocentric orbit, but nearly 
30% faster than the planet.  This technique could be sus-
tained indefinitely, eventually overcoming any degree of 
adverse Earth-Mars phasing at the expense of extended 
flight time.  Figure 4 depicts gravity-augmented phasing as 
the vehicle compensates for an initial phase angle of 180° 

 
Figure 4 - Gravity Augmented Phasing 

A distinctly different technique becomes apparent as depar-
ture phase angles are reduced from the phase-independent 
optimum  (later departure dates).  In these cases, orbital 
motion is resisted rather than augmented.  The Q-Ship has 
sufficient performance to retard or actually reverse its 
heliocentric motion in order to allow Mars to advance 
relative to the vehicle’s position in a maneuver we have 
termed “retro-phasing”.  Figure 5 depicts the trajectory 
associated with an initial phase angle of -90°.  This tech-
nique provides the minimum achievable flight times until 
departure phase angles decrease past -135° after which 
gravity-augmented phasing (with the vehicle travelling the 
other way around the sun!) is faster. 
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Figure 5 –“Retro-Phasing” 

When we combine the techniques of gravity-augmentation 
and retro-phasing over the entire 26-month Earth-Mars 
synodic cycle (360° of departure phase angles) we see that 
for the vehicle and mission parameters we have selected, the 
transit times vary from 2½ months at phase-optimum to 7 
months at the “cross-over” of the phasing techniques (Fig-
ure 6). The implications should be stated clearly: there are 
no constraints on departure dates if Earth-Mars transit 
times of up to 7 months are acceptable!  Also, since the Q-
Ship’s constant thrust acceleration allows symmetry be-
tween outbound and return trajectories there are no con-
straints on Mars departure dates either, given the same 
transit time constraints. 

 
Figure 6 - Combined Phasing Techniques 

Crewed Q-Ship Mission 

While the fast Mars transits that Q-Thruster technology 
could enable would be revolutionary, the independence 
from the limitations of departure and arrival windows may 
ultimately be more so.  This independence would allow 
missions to be conducted based on mission objectives and 
the limitations of crew health and safety rather than the laws 
of orbital mechanics.  The concept of a “permanent” human 

presence at Mars with Q-Ships performing the crew rotation 
function – similar to International Space Station operations - 
may be the best utilization of this capability.  Using the 
results of the previous section, such a capability will be 
explored. 

The function of the Q-Ships in this mission archetype would 
be to facilitate Mars crew exchanges.  They would transport 
crews from low Earth orbit to low Mars orbit and return 
previous crew following their tours of duty.  The sequence 
of events follows: 

1) The Mars crew and supplies are transported to a Q-
Ship in low Earth orbit using an Earth-to-orbit in-
frastructure similar to that supporting the Interna-
tional Space Station. 

2) When ready, the Q-Ship departs and transports the 
crew to low Mars orbit in a trip lasting from 3 to 
7½ months depending on planetary phasing.  These 
times include the planetocentric spirals. 

3) The crew debarks to prepositioned infrastructure in 
low Mars orbit – an orbital habitat and/or planetary 
lander. 

4) The previous crew, having completed their Mars 
tour of duty boards the Q-Ship.  One month is allo-
cated for this crew exchange. 

5) Then when ready, the Q-Ship departs low Mars or-
bit and transports the returning crew to low Earth 
orbit in a trip lasting from 3 to 7½ months depend-
ing on planetary phasing.  These times include the 
planetocentric spirals. 

6) Earth-to-orbit transport is launched to the Q-Ship 
to return the Mars crew to Earth.  This transport 
could also bring supplies and/or maintenance per-
sonnel to the Q-Ship. 

7) Maintenance and resupply of the Q-Ship occur in 
low Earth orbit.  When the Q-Ship is ready, the cy-
cle repeats. 

While this mission construct seems straightforward, it is not 
one that is often applied to Mars mission concepts, simply 
because traditional vehicle performance and dependence 
upon departure/return windows have not permitted reasona-
ble length tours of duty.  Of interest will be the tour of duty 
duration that can be supported with a single Q-Ship using 
the above concept of operations. 

Figure 7 shows the same outbound transit time vs. departure 
phase angle curve as Figure 6, but superimposed is similar 
information for the return transit assuming a 30-day stay at 
Mars.  The top curve is the superposition, which shows the 
total round-trip mission time as a function of departure 
phase angle.  It is apparent that even with the “worst” 
departure phase angles a complete mission cycle can be 
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completed in less than 390 days thereby allowing two 
round-trip missions per synodic cycle with a single vehicle.  
In addition, avoiding the adverse phase angles would allow 
crew tours of duty at Mars of around one year with 4–6 
month transits each way – a seemingly reasonable scenario 
that would also provide several months between missions in 
low Earth orbit for vehicle turnaround.  Figure 8 shows an 
example of the Q-Ship round-trip trajectory assuming a 
180° departure phase angle.  If shorter Mars tours of duty 
were desired, a second Q-Ship could be inserted into the 
rotation. 

 
Figure 7 - Round-Trip Mission Times 

 

 
Figure 8 - Example Round-Trip Trajectory 

Q-Ship Cargo Capability 

There will be a need for significant cargo delivery capability 
to Mars to support the sort of crewed presence described 
above.  This could include both crewed and cargo landers 
for surface mission support, orbital habitats for temporary 
crew billeting during rotations and lander support services, 
etc.  A quick assessment was made of the cargo delivery 
capability of a Q-Ship having the same power and propul-
sion system parameters as those of the previous analyses, 
but with the crew module replaced with 100 tons of one-

way cargo. This capability would encompass delivery of the 
largest surface landers envisioned in Ref DRA5 or a Skylab-
class orbital habitat to low Mars orbit. 

Figure 9 depicts the trajectory of such a cargo run.  Using 
optimized outbound phasing, the 100-ton payload could be 
delivered in less than 5 months including the more extended 
spiral times at Earth and Mars.  “Deadheading” back to 
Earth would require only 3 months.  This is obviously not 
the most efficient way to use such a freighter, since it would 
be sitting idle in Earth orbit for 18 months waiting for the 
next phase-optimal departure.  Analysis similar to the 
crewed vehicle should be performed, where flight times 
over a wide range of departure phasing are assessed to 
maximize the mission rate per vehicle.  The payload per 
vehicle is likely an additional parameter of interest, since 
the probable true metric to be maximized is freight through-
put per vehicle, such as tonnage per year. 

 

Figure 9 - Example 100 t Cargo Delivery Mission 

4. EXTREME PERFORMANCE MISSIONS 
Crewed Jupiter Missions 

The rapidly increasing scale of the solar system beyond 
Mars has traditionally been viewed as a barrier to human 
exploration.  However, the combination of nuclear power 
and the performance characteristics of Q-Thrusters may 
change this.  As evidenced by Figure 1, if milli-g levels of 
acceleration can be achieved, revolutionary transit times 
could be attained. 

Similar to the Mars Q-Ship, we develop thrust and mass 
estimates for a crewed mission to Jupiter’s moon Callisto.  
Callisto’s orbit remains outside the most intense of Jupiter 
radiation belts, and therefore may represent a staging 
location for remote exploration of the other Galilean satel-
lites.  In any case it is likely that the mass of the habitation 
systems will be required to increase to accommodate the 
longer mission time, additional radiation protection, addi-
tional exploration equipment, etc.  We chose 50 metric tons 
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as the mass required for habitation systems, and to maintain 
thrust acceleration near the milli-g level the power to the 
thrusters was increased to 2 MWe.  Q-Thuster specific 
thrust was maintained at 0.4 N/kWe and power/propulsion 
system 𝛼 at 20 kg/kWe.  This results in 𝑎!!!"#$  = 0.91 milli-
g’s with a total vehicle mass of 90 metric tons. 

Due to the expected flight times, the mission archetype 
chosen is more the traditional crewed round-trip rather than 
the crew exchange used for Mars.  We somewhat arbitrarily 
selected six months duration at Callisto, although if this 
results in adverse phasing upon return to earth, the time 
could be adjusted.  As can be seen in Figure 10, phenome-
nally rapid Jupiter transit times of around six months are 
achievable.  While the outbound (and nearly the inbound) 
transit utilizes optimal phasing, this is not as constraining as 
it was with Mars missions since the Earth-Jupiter synodic 
period is only 13 months.  The round trip can be accom-
plished within 20 months 

Crewed Saturn Mission 

Utilizing the same vehicle parameters as those of the Jupiter 
mission we constructed a crewed Saturn mission which is 
designed to spend six months at the Saturnian moon Titan 
and six months at Enceladus – both destinations of consid-
erable scientific interest.  Again, using nearly optimal 
phasing we see from Figure 11 that the transit to Saturn can 
be accomplished in only nine months.  It is informative to 
note that at the turnaround point in the transit, our vehicle is 
travelling in excess of 100 kilometers per second – over five 
times the local solar system escape velocity. 

 

 Figure 10 - Example Jupiter Mission 

 

Figure 11 - Example Saturn Mission 

Interstellar Performance 

The velocities attained in only a few months for the Saturni-
an mission raise an interesting question as to those that 
could be reached for very long thrust periods.  While no 
attempt is made here to design an interstellar probe, it is 
fairly straightforward to compute the velocities and transit 
time that could be achieved with milli-g levels of Q-
Thruster performance. 

For most purposes, analysis of accelerated motion that may 
attain a significant fraction of lightspeed must use general 
relativity equations to predict spacecraft trajectories.  
However, for the restricted case of constant, rectilinear 
acceleration, special relativity relationships can be em-
ployed [15].  The spacecraft velocity 𝑣 can be expressed 

 𝑣 =
𝑎!!!"#$∆t

1 + 𝑎!!!"#$
! ∆𝑡!
𝑐!

  , (8) 

where 𝑎!!!"#$ is the acceleration level experienced by the 
spacecraft in it’s reference frame, ∆𝑡 is the transit duration 
as experienced in the rest frame and 𝑐 is lightspeed.  The 
distance travelled, 𝑧 can be expressed 

 𝑧 =   
𝑐!

𝑎!!!"#$
1 +

𝑎!!!"#$! ∆𝑡!

𝑐!
− 1   . (9) 

This can be solved for the time interval needed to travel a 
given distance under constant thrust: 

 ∆𝑡 =
𝑐!

𝑎!!!"#$!
𝑧𝑎!!!"#$
𝑐!

+ 1
!
− 1   . (10) 
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For a one-way, non-decelerating trip to 𝛼 Centauri, 
(𝑧!"#$ = 4.37 light years) under a constant one milli-g 
acceleration, ∆𝑡 = 92 years with a velocity at the destination 
of 0.094c.  If deceleration at the target system were desired, 
the trip would take 130 years, with a spacecraft velocity at 
the turnaround point of 0.067c.  The Lorentz factors for the 
decelerating and non-decelerating missions are 1.0023 and 
1.0045, respectively, so relativity effects are minor.  

While designing spacecraft systems for a ~100 year mission 
is certainly daunting, it should be pointed out that the U.S. 
Voyager 1 and 2 spacecraft continue to operate after one-
third of that duration. 

5. SUMMARY  
While Quantum Thruster technology is currently at a 
relatively low level of technology readiness, it has been 
instructive to understand the potential implications to solar 
system transportation should postulated levels of specific 
thrust be attained.  The combination of constant milli-g 
thrust, megawatt power levels and essentially zero propel-
lant expenditure would provide revolutionary human trans-
portation capabilities to and from the outer planets with 
typical round-trip mission durations of 10 months for Mars, 
19 months for Jupiter and 30 months for Saturn.  For Mars 
in particular, the resultant performance level would allow 
crewed missions independent of planetary phasing and high-
capacity, frequent cargo delivery capabilities. 

Further analyses should examine specific earth departure 
and return techniques.  Unconstrained Q-Ship spiral trajec-
tories could expose crewmembers to undesirable levels of 
radiation exposure due to the Van Allen radiation belts.  It 
may be possible to use the Q-Thruster performance levels to 
design trajectories that avoid or minimize transits through 
the most problematic regions. 

Since Mars missions traditionally display larger opportuni-
ty-dependent performance variations than missions to other 
planets due to Mars’ orbital eccentricity and relative inclina-
tion it would be prudent to check the GRG/Excel® results 
against tools utilizing accurate planetary ephemerides, 
although it is expected that the postulated Q-Thruster 
performance would greatly attenuate these variations. 
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APPENDIX A 
Analysis of Conservation of Energy for Interplanetary Space Missions using Electric Propulsion

The intent of this paper is a “what if” exploration of a 
possible emerging technology concept to some mission 
applications. This exercise helps to understand and 
articulate the capabilities that the performance metrics 
discussed here bring to the mission planner’s toolbox. 
Although the performance metrics are introduced as 
attached to the concept of a Q-Thruster, any advanced 
propulsion system that has similar characteristics can also 
use this analysis effort to understand the mission benefits.  

One of the issues to consider for a constant thrust system 
is the matter of conservation of energy. When will the 
spacecraft with its given power level reach a state where 
the integral of the input power over a given time frame 
increase the kinetic energy of the spacecraft such that the 
change in kinetic energy is greater than the integral of 
power? The thrust for the spacecraft will be the thrust-to-
power ratio times the power of the spacecraft:  

𝑇 = 𝑇!𝑃. 

The velocity for the spacecraft is a simple matter: 

𝑣 = 𝑇!𝑃 𝑚 𝑡, 

Where t is the thrust duration.  Using this velocity, the 
change in kinetic energy of the spacecraft is  

𝐾.𝐸.= 𝑇!!𝑃!𝑡! (2𝑚). 

The input energy from the power system for the same 
time period is simply E=Pt. The point of interest is when 
these two energy changes are equal to one another: 

𝑇!!𝑃!𝑡! 2𝑚 = 𝑃𝑡. 

This condition occurs at a change in time of 𝑡 =
2𝑚 (𝑇!!𝑃) which equates to a Δ𝑣 of 2 𝑇!. When this 
situation occurs, in order to ensure that the input energy is 
equal to the change in kinetic energy, the thrust to power 
performance will have to decrease over time. This scenar-
io has an analog in the terrestrial realm when considering 
a turbine aircraft flight profile. At takeoff, the turbine 
aircraft has a very high thrust to power (hundreds of  
N/kW), but at cruise altitude, the thrust to power perfor-
mance is much lower (1-10 N/kW). The following graph 
shows the curve with some highlighted data points for 
consideration.  

  

At this point, it is a useful exercise to explore this issue 
from a relativistic point of view, as it will uncover a 
paradox. For example, we know from study of the cosmic 
microwave background radiation that our Milky Way 
galaxy has a peculiar velocity (e.g. not from expansion of 
space, but a real velocity) of ~371 km/s as evidenced by 
the anisotropic measurements of the background radiation 
temperature. Consider what an inertial observer that is at 
rest relative to the background radiation would see when 
considering a spacecraft in our solar system that under-
goes a Δ𝑣 of 1 km/s. The example spacecraft for our 
scenario will be a 10,000 kg spacecraft with a power 
system that provides 10 kWe of power. The electric 
propulsion system for this example spacecraft will be 
modeled as Hall-thruster-like with thrust to power of 
0.056 N/kWe and a specific impulse of 1838 s. This 
spacecraft will take 17,370,579 seconds or 201 days to 
change the velocity of the spacecraft by 1 km/s, and will 
consume 540 kg of propellant. The amount of energy 
provided by the power source over this time frame is 174 
Gigajoules. The change in kinetic energy as measured by 
the inertial observer at rest relative to the background 
radiation is the initial kinetic energy !

!𝑚!𝑣!!  minus the 
final kinetic energy !

!𝑚!𝑣!! . The initial mass is 10,000 
kg, the final mass is 9,460 kg. The initial velocity is 371 
km/s, and the final velocity is 372 km/s, which assumes 
the spacecraft, had a radial trajectory aligned with the 
peculiar velocity vector. The change in kinetic energy is 
33,649 Gigajoules, which is two orders of magnitude 
larger than the energy provided by the power system. 
Although the example mission is clearly not an exotic 
mission and can easily be achieved in practice, the point 
of this paragraph is to identify that the paradox can be 
created for any spacecraft using conventional propulsion 
as well as advanced propulsion. 
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APPENDIX B 
Equations of Motion 

Coordinate System 

As coordinate system for the translational motion, a flight 
path-oriented axis system is chosen.  The x-axis is tangen-
tial to the trajectory, positive in the flight direction and 
inclined to the heliocentric radius vector normal plane by 
the flight path angle 𝛾, positive for increasing radius.   
The azimuth angle 𝜒 designates the change in orientation 
of the non-radial velocity component relative to the initial 
time 𝑡!, positive in the direction of the orbital angular 
momentum vector.  The change in planar angle relative to 
𝑡! is 𝜃, the change in out-of-plane angle is Λ. 

Controls are the thrust directions 𝜀 𝑡  (out of the instanta-
neous orbit plane) and 𝜎 𝑡  (in the orbit plane). 

Equations of Motion 

The equations of motion for a thrusting vehicle in helio-
centric space can then be expressed: 

𝑉 = −𝑔 sin 𝛾 + 𝑇
𝑚
cos 𝜀 cos 𝜎, 

 

χ = −
𝑉
𝑟
cos 𝛾 cos 𝜒 tanΛ +

𝑇
𝑚𝑉

sin 𝜀
cos 𝛾

  , 

 

𝛾 =
𝑉
𝑟
−
𝑔
𝑉

cos 𝛾 +
𝑇
𝑚𝑉

cos 𝜀 sin 𝜎, 
 

𝜃 =
𝑉
𝑟
cos 𝛾
cosΛ

cos 𝜒, 
 

Λ =
𝑉
𝑟
cos 𝛾 sin 𝜒, 

 
𝑟 = 𝑉 sin 𝛾, 

 
𝑚 = −𝑐, 

 
𝑔 = 𝜇⨀

𝑟!
  , 

 
where 𝑉 is the magnitude of the vehicle velocity vector, 𝑇 
is the thrust magnitude, 𝑟 is the radial distance from the 
vehicle to the sun, 𝑚 is the vehicle mass, 𝑐 is the propel-
lant mass flow rate, 𝑔 is the magnitude of the sun’s 
gravitational acceleration and 𝜇⨀ is the sun’s gravitational 
constant. 

 
If motion is constrained to the original orbit plane, the 
equations simplify to: 

 

𝑉 = −𝑔 sin 𝛾 + 𝑇
𝑚
cos 𝜎, 

 

𝛾 =
𝑉
𝑟
−
𝑔
𝑉

cos 𝛾 +
𝑇
𝑚𝑉

sin 𝜎, 
 

𝜃 =
𝑉
𝑟
cos 𝛾, 

 
𝑟 = 𝑉 sin 𝛾, 

 
𝑚 = −𝑐, 

 
𝑔 = 𝜇⨀

𝑟!
  . 

 
Canonical Units 

Normalizing the state variables can aid in stability of 
numerical integration and other calculations.  The classic 
“canonical units” normalization has been utilized where, 
for heliocentric space: 

The Distance Unit (𝐷𝑈⨀) ≡ 1 AU. 

The Time Unit (𝑇𝑈⨀) is defined such that the orbital 
speed of an object in a 1 𝐷𝑈⨀ radius circular orbit is 1 

𝐷𝑈⨀/𝑇𝑈⨀.  That is, 1  𝑇𝑈⨀ ≡ 1  𝐷𝑈⨀!/𝜇⨀.  So, in 

canonical units, 𝜇⨀= 1 𝐷𝑈⨀!/𝑇𝑈⨀!  and the orbital period 
of a 1 𝐷𝑈⨀ radius circular orbit is 2𝜋  𝑇𝑈⨀. 

Accelerations are scaled by 𝜇⨀/𝐷𝑈⨀
! or 1 𝐷𝑈⨀/𝑇𝑈⨀! 

which is the sun’s gravitational acceleration at 1 𝐷𝑈⨀. 

So, if 1 AU = 149,599,650 km and 𝜇⨀= 132,715,440,000 
km3/s2, then 

1 𝐷𝑈⨀ = 149,599,650 km, 
1  𝑇𝑈⨀ = 5,022,676 s, 
1  𝐷𝑈⨀/𝑇𝑈⨀ = 29.78485 km/s, 
1 𝐷𝑈⨀/𝑇𝑈⨀!  = 5.93008x10-6 km/s2.
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APPENDIX C 
Test Problem 

Test Problem 

To test the Excel®-based optimal control solution method, 
we use one of the first numerically solved low-thrust trajec-
tory optimization problems, described by Kopp and McGill 
[7] and subsequently solved in a slightly different form by 
Bryson and Ho [8]. In this problem, a spacecraft travels 
from earth’s orbit around the sun to Mars’ orbit using 
constant magnitude continuous low-thrust, T.  The orbits of 
earth and Mars are considered to be circular and coplanar 
and the minimum time of flight is sought utilizing the thrust 
direction 𝜎 𝑡   as the control. 

Using the planar form of the state equations and heliocentric 
canonical units, the state variable initial conditions are: 

𝑉 𝑡! = 1.0, 𝛾 𝑡! = 0.0, 𝜃 𝑡! = 0.0,

𝑟 𝑡! = 1.0  𝑎𝑛𝑑  
𝑚 𝑡!
𝑇

= 7.117, 

with a normalized constant mass flow rate of  !
!
= 0.533. 

Since we want to match the orbit of Mars, the desired state 
variable terminal constraints are: 

𝜓! 𝑡! = 𝑉 𝑡! −
1

𝑟 𝑡!
= 0  , 

𝜓! = 𝛾 𝑡! = 0, 

𝜓! = 𝑟 𝑡! − 1.525 = 0. 

The performance index (to be minimized) is: 

𝒥 =   𝜙 𝑥 𝑡! , 𝑡! + ℒ 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡
!!

!!
 

using the calculus of variations terminology of Bryson and 
Ho [8], where  𝑥 represents the vector of state variables, and 
𝑢 the vector of control variables.    𝜙 = 0 and ℒ = 1 for this 
problem. 

Moyer and Pinkham [7] employed a gradient technique 
along with penalty functions of the form: 

𝜙!" =
!
!
𝑘!𝜓!! + !

!
𝑘!𝜓!! + !

!
𝑘!𝜓!!  , 

where the 𝑘′𝑠 are the penalty multipliers.  Therefore their 
augmented penalty function is: 

𝒥 =   𝜙!" + 𝑑𝑡  .
!!

!!
 

In [7], the minimum flight time of 193 days was obtained.  

 

Excel® Solution - Solver 

The state equations are implemented in Excel® through a 
fourth-order Runge-Kutta technique, with the equations 
themselves implemented in Visual Basic for Applications® 
(VBA) functions.  The state equations can be generally 
expressed as: 

𝑑𝑥
𝑑𝑡

= 𝑓 𝑥, 𝑢, 𝑡 , 𝑡! < 𝑡 < 𝑡! . 

In general, the equations have a “free” final time, but by 
using a simple transformation they can be converted into 
fixed end-time to facilitate easier numerical evaluation.  Let 
𝑡! = 0 and define 

𝑡 = 𝜂𝜏, 0 < 𝜏 < 1. 

The quantity 𝜂 represents the final time and is treated as a 
control parameter and 𝜏 becomes the new independent 
variable.  If, as in this problem, the state equations do not 
explicitly depend upon time, the transformed dynamics are 
simply 

𝑑𝑥
𝑑𝜏

= 𝜂𝑓 𝑥, 𝑢 . 

A constant one hundred-step integration interval was estab-
lished which has proven adequate for the relatively smooth 
trajectory problems under consideration.  A control function 
is therefore implemented as 101 discrete values at the 
integration nodes: 

𝑢 𝜏 ≅ 𝑢 𝜏! , 𝑢 𝜏! , 𝑢 𝜏! ,… 𝑢 𝜏!"" !   , 

where 𝜏! = 0 and  𝜏!"" = 1.  The initial state conditions and 
terminal state constraints are identical to the test problem in 
[7].  The performance index (to be minimized) is simply 𝜂, 
the final time. 

Microsoft Excel Solver® uses the Generalized Reduced 
Gradient (GRG) Algorithm for optimizing nonlinear prob-
lems [6].  GRG determines directions of search by compu-
ting changes in the value of the performance index through 
finite differences of the control parameters, so user compu-
tation of the gradient of the Hamiltonian is unnecessary.  
The terminal state constraints are handled internally by 
means of “slack variables,” so no penalty functions need to 
be developed. 

To use Solver®, the user sets up the spreadsheet so that the 
state variables and control function values are available at 
every integration node and the control parameter 𝜂, the 
values of the terminal state constraints and the value of the 
performance index are available in data cells. 

When Solver® begins, it develops the finite difference 
information it needs to estimate search directions, and then 
begins the iterative process of minimizing the performance 
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index while satisfying the terminal state constraints.  These 
involve many solutions to the state equations, so they should 
be made as efficient and well-scaled as possible.  If the user 
has set up plots of key state variables and the control, the 
time-histories can be observed changing during the optimi-
zation process.  

The test problem from [7] and [8] was set up and run using 
Solver/GRG®.  The results are shown below.  The minimum 
flight time of 193 days was achieved, and the thrust direc-
tion time-history and trajectory is very similar to the [8] 
solution as shown in Figure 12.  

 

 
Figure 12 – Reference [8] Test Problem Comparison 
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