

October 2014

NASA/TM–2014-218532

MADS Users’ Guide

Daniel D. Moerder
Langley Research Center, Hampton, Virginia

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the
auspices of the Agency Chief Information Officer.
It collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI
program provides access to the NASA Aeronautics
and Space Database and its public interface, the
NASA Technical Report Server, thus providing one
of the largest collections of aeronautical and space
science STI in the world. Results are published in
both non-NASA channels and by NASA in the
NASA STI Report Series, which includes the
following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase
of research that present the results of NASA
Programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but
having less stringent limitations on manuscript
length and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.

Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or co-
sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION.

English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and feeds,
providing information desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page

at http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Fax your question to the NASA STI

Information Desk at 443-757-5803

• Phone the NASA STI Information Desk at

443-757-5802

• Write to:

 STI Information Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076-1320

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

October 2014

NASA/TM–2014-218532

MADS Users’ Guide

Daniel D. Moerder
Langley Research Center, Hampton, Virginia

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive

Hanover, MD 21076-1320
443-757-5802

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an
official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics
and Space Administration.

Abstract

MADS (Minimization Assistant for Dynamical Systems) is a trajectory optimization code
in which a user-specified performance measure is directly minimized, subject to constraints
placed on a low-order discretization of user-supplied plant ordinary differential equations.
This document describes the mathematical formulation of the set of trajectory optimization
problems for which MADS is suitable, and describes the user interface. Usage examples are
provided.

1

Contents

1 Introduction 3

2 Problem Formulation and Software Interface 4
2.1 Excursus: Custom Problem Formulations in MADS 6
2.2 Subroutines To Be Provided By The User . 7
2.3 Producing and Operating On A MADS Solution 11

2.3.1 Formats for MADS Solution Data . 12
2.3.2 Matlab Functions for Operating On MADS Data 13

2.4 Setting Up and Executing a MADS Run . 18
2.4.1 Autodifferentiation for MADS . 20

3 Tutorial Examples 24
3.1 Linear System Minimum Time to Origin . 25

3.1.1 Baseline Problem . 25
3.1.2 Break the problem into two phases 28
3.1.3 Introduce variable discretization step size 30
3.1.4 Eliminate the Bangs . 33
3.1.5 Problem Summary . 35

3.2 Goddard Problem . 36
3.2.1 Obtaining an Initial Guess . 39
3.2.2 Simple Solution with Dynamic Pressure Constraint 42
3.2.3 A Penalty Function to Smooth Out Singular Jitter 48

2

1 Introduction

This document describes the user interface and provides a usage tutorial for the MADS (Min-
imization Agent for Dynamical Systems) trajectory optimization tool. MADS comprises a
FORTRAN95 subroutine that organizes and executes trajectory optimization computations,
and a set of Matlab functions that manipulate MADS input and output data. MADS casts
a trajectory optimization problem as direct cost function minimization subject to a set
of constraints that include a temporal discretization of the first-order ordinary differential
equations that govern the user’s plant dynamics, boundary conditions, and miscellaneous
constraints imposed on the trajectory between boundary conditions. The resulting nonlin-
ear programming problem (NLP) is solved by the NLP software SNOPT [1], which must be
available in order to run MADS.

The user provides four problem-specific subroutines that realize the system state rates,
the boundary conditions, the trajectory path constraints, and the cost function. Given
the maturity and benefit of autodifferentiation (AD) software, MADS assumes the presence
of autodifferentiated versions of the four user routines to supply derivatives. MADS’ user
subroutine interfaces assume the use of the TAPANADE [2] AD package.

The approach taken in MADS to posing and solving trajectory optimization problems
is to encourage robust convergence to a solution by using a low-order discretization and
a control parameterization which can gracefully accommodate the temporal discontinuities
which can appear on the interior of trajectory arcs when exploring an optimal control
problem. The low-order discretization and control is normally accompanied by a fairly fine,
uniformly distributed, mesh of time points over which the problem is solved.

This emphasis on simplicity and accommodation of nonsmooth control behavior places
MADS somewhat out of the mainstream of emerging numerical optimal control technology,
much of which has been emphasizing pseudospectral techniques [3] – high-order quadra-
ture of orthogonal polynomials, with adaptive temporal discretization mesh logic. These
emerging techniques show very good performance and high accuracy on temporally smooth
problems, but graceful treatment of nonsmooth behavior remains an area of active research.

Section 2 describes the family of optimal control problems that can be solved with
MADS, and describes its software interface and that of the user-supplied routines. It also
describes the Matlab utility functions that are used for manipulating MADS initial guesses
and solutions.

Section 3 sets up and solves two simple, classic optimal control problems, both of which
exhibit nonsmooth temporal behavior issues, several different ways. Simple measures are
described for varying the discretization density over the trajectory, and for constraining
aspects of the control trajectory’s behavior.

3

2 Problem Formulation and Software Interface

MADS operates on trajectories of the form

dxk
dt

= f(xk, uk, p), t ∈ [0, 1], k = 1, ..., nph (1)

that is, for trajectories which may (when nph > 1) consist of multiple subarcs, or “phases.”
In each kth phase, xk ∈ Rnxk are states, and p ∈ Rnp is a vector of “static” free parameters;
that is, parameters to be chosen by the optimization process, and which do not vary with
time. Note that while xk and uk are specific to the kth phase in (1), all of the elements of
p are visible to all nph phases of the trajectory. Each uk(t) is assumed to be an integrable
nu-dimensional functional defined on the interval t ∈ [0, 1]. The integrability assumption
is more-or-less moot, since MADS recasts the problem in discrete time. It is, however, the
case that if the user attempts to solve a problem for which an integrable optimal solution
does not exist, numerical difficulties will ensue. Subsection 2.2 of the Tutorials gives an
example where optimal control leads to a nonintegrable “optimal” control solution, and
gives approaches for compensating for the nonintegrability. It should also be noted that
the unity duration of the subarcs in (1) does not restrict the user from posing variable-time
problems. There are a number of easy ways to do this, and literally all of the examples in
the Tutorial involve free terminal time. The very simplest is to use an element of p to scale
time. Restricting to nph = 1 and p scalar for simplicity, transform t to τ via τ = pt so that

dx

dτ
= pf(x, u, p), τ ∈ [0, 1] (2)

Alternatively, an element, say uτ , of u can be used as a time scaling parameter; that is,
τ(t) = uτ (t), giving

dx

dτ

∣∣∣∣
τ=uτ (t)

= uτf(x, u, p), τ ∈ [0,
∫ 1

0

uτ (t)dt], uτ ≥ cτ > 0 (3)

where cτ is a user-specified constant. This latter formulation permits the flexibility of vari-
able time steps, at the cost of some additional complexity. The Tutorial includes problems
using both approaches.

Free parameters in the trajectory – state boundary values, control functionals, and the
p vector are chosen to minimize a Mayer-type cost function

φ(x10, x1f , x20, x2f , . . . , xnph0, xnphf , p),
{

xk0 = xk(0)
xkf = xk(1) (4)

The cost function φ is minimized subject to a discretization of (1) and, optionally, boundary
conditions

ψj(x10, x1f , . . . , xnph0, xnphf , p)
{

= 0, iebcvec(j) = 0
≥ 0, iebcvec(j) = 1 j = 1, . . . , nbc (5)

where nbc is the dimension of ψ and iebcvec(j) is a user-specified flag that controls
whether the jth element of ψ is to be treated as an equality or inequality constraint. Again
optionally, constraints can be imposed on the trajectory between boundary conditions using
a discretization of trajectory constraints of the form

cj(xk, uk, p)
{

= 0, iecv(j) = 0
≥ 0, iecv(j) = 1 k = 1, . . . , nph, j = 1, . . . , nck (6)

where iecv is a user-specified flag. Note that the number of trajectory constraints in each
of the nph subarcs, or “phases” may vary from phase to phase.

4

MADS computes optimized trajectories by direct minimization of the cost function φ,
using finite-dimensional approximations of the state and control trajectories, the former ob-
tained via low-order collocation. Each kth trajectory arc in (1) is broken into ndk equal time
subintervals and the state trajectory across each subinterval is approximated by collocation:

xj+1 − xj = F (xj , xj+1, uj , p), j = 1, . . . , ndk (7)

where uj is constant, i.e., zero-order hold (ZOH) across the discretization intervals. Note
that, while each kth discretized phase has one value uj per discretization interval, for a total
of ndk values, there are ndk + 1 corresponding values of xj , since each phase has an initial
and terminal state.
The overall organization of constraints in MADS is

Z =

z1
...

znph
ψ

 , zj =

 y1
...

yndj

 , yi =
[
Fij
Cij

]
(8)

where Fij is the discretization (7) for the ith time step of the jth phase, and Cij is the
corresponding constraint from (6).
There are currently three discretization expressions implemented, and the MADS input
parameter kode=kodev(k) controls which of them is used to discretize the kth phase of the
trajectory:

1. Midpoint Euler (ME) (kode=0)

xj+1 − xj =
1
ndk

f

(
xj + xj+1

2
, uj , p

)
(9)

This is the most efficient discretization, since it achieves second-order accuracy with
only one state derivative computation per time step.

2. Second-Order Runge-Kutta (RK2) (kode=1)

xj+1 = xj + (1/4)(η1 + 3η2)
η1 = (1/nd)f(xj , uj , p)
η2 = (1/nd)f(xj + (2/3)η1, uj , p)

 (10)

This Runge-Kutta discretization requires twice as many state derivative computations
as the ME, but has the property that the discretization is not dependent on xj+1.

3. Fourth-Order Runge-Kutta (RK4) (kode=2)

xj+1 = (1/6)(η1 + 2η2 + 2η3 + η4)
η1 = (1/nd)f(xj , uj , p)
η2 = (1/nd)f(xj + (1/2)η1, uj , p)
η3 = (1/nd)f(xj + (1/2)η2, uj , p)
η4 = (1/nd)f(xj + η3, uj , p)

 (11)

This RK4 requires four times as many state derivative computations as the ME, but
has a clear advantage in the fourth-order accuracy with which it discretizes the state
trajectory.

5

2.1 Excursus: Custom Problem Formulations in MADS

At first glance, the user may balk at MADS’ apparent crudity, most clearly exhibited in
the zero-order hold (ZOH) imposed on the control variable. As the user’s experience with
MADS grows, however, this should mature into appreciation for MADS’ flexibility. The
ZOH is actually more of a “feature” of MADS, rather than a limitation. MADS is primarily
intended to be used with the ME discretization and relatively small time steps. The use of a
low-order discretization and small time steps encourages robust convergence to the problem
solution, and the small time steps allow the ZOH to closely approximate the continuous-time
optimal control trajectory.

All that being said, as stated in the Introduction, MADS is intended to provide a con-
venient “blank sheet” environment in which the user can formulate a wide range of trajc-
tory optimization problems without being particularly shackled by canned dynamical model
structures, or presumptions about the temporal behavior of the control trajectory.

In order to illustrate this, we consider adjustments to the standard MADS problem
formulation that permit control trajectories more complicated than ZOH. Since the ME
only samples the control trajectory at one point per discretization interval, why might a
user want to complicate the control parameterization? Two reasons are to achieve higher
numerical precision, or to obtain a control solution that accommodates known characteristics
of the hardware that would actually realize the implement the control being optimized..

• The RK4 discretization may be used to check the validity of a ME-based solution
by re-solving the problem on the set of time points used for the MEs solution and
verifying that the RK4 and ME solutions are “sufficiently close.” Since the RK4
samples the control trajectory at four points rather than one, fidelity to the continuous-
time optimal control trajectory can be improved by choosing a more complicated
control parameterization that varies over the discretization interval.

• Optimal control trajectories are typically unrealistic in the sense that, while actual
implemented controls are the response of finite-bandwidth actuators to commands,
actuation dynamics are not typically included in plant models for trajectory optimiza-
tion. The control parameterization examples described below all involve the use of
state variables. With these in hand, the user can easily constrain or penalize unrealis-
tic control features, such as “instantaneous” jumps that would require very expensive
actuators to implement. The first solution example includes a demonstration of this
type bandwidth-limited control.

Returning to specifics, suppose, for example, that the user would prefer a piecewise linear
control history, rather than the default ZOH. In that case, rewrite (1) as

ẋ = f(x, γ, p) (12)

and define a state to propagate the control variable γ(t):

γ̇ = u (13)

and append it to the plant state xplant

x =
[
x
γ

]
(14)

so that the value of piecewise constant u on the jth discretization interval is the slope of γ
over that interval. If a discontinuous first-order hold (FOH) control variation is preferred,
define a state to model time variation inside the discretization interval:

ẋt = 1, xt(0) = 0 (15)

6

and define the interval time as

tj = xt − j/nd (16)

where both j and nd are passed to the user’s plant dynamics subroutine through the calling
argument. The FOH control, then, is

γj(tj) = c0j + c1jtj (17)

where c0j , c1j appear in the problem formulation as elements appended to the vector uplant

that contains whatever controls, if any, are modelled as ZOH:

xj =
[
xplant

xt

]
, uj =

 uplant

c0j
c1j

 (18)

If a high-order control variation with continous slope is desired, it can be simply imple-
mented by constructing a Hermite-type spline. Again define a time state

ẋj = nd, x(0) = 0, tj = xt − j (19)

so that tj passes from 0 to 1 over each jth interval. With tj in hand, define the control
function as

γj(tj) = c0j + c1jtj + c2jt
2
j (20)

and require

γj(1) = γj+1(0) → c0j + c1j + c2j − c0,j+1 = 0
γ̇j(1) = γ̇j+1 → c1j + 2c2j − c1,j+1 = 0

}
(21)

These dynamical constraints require that c1 and c2 be modelled as states added to the plant
state vector:

(ċ1)j = k1j

(ċ2)j = k2j
(22)

and k1j and k2j are appended to the control vector uj , resulting in

x =

xplant

xt
c1
c2

 , u =

uplant

c0
k1

k2

 (23)

The discussion above has been presented primarily to whet the reader’s imagination for
posing MADS problems, and to provide assurance that it is not difficult to set up problems
that fall outside the MADS defaults.

2.2 Subroutines To Be Provided By The User

The user’s problem, as expressed by (1,4,5,6) is implemented in four user-supplied subrou-
tines. These can be divided into two groups – subroutines that operate along trajectory arcs,
and subroutines that operate on boundary values. Before providing individual details of the
user-supplied subroutines, we describe a SNOPT-related input common to all of them. That
input is an integer scalar, nstate, which is generated by SNOPT to provide the user with
signals for initialization operations – such as data initialization and memory allocation –
and post-run cleanup operations such as deallocation. The three most important conditions
for nstate are

7

• nstate=0
normal subroutine call,

• nstate=1
first call. If there are special operations to be performed on the first call, perform
them now, then proceed on to the operations performed for nstate = 0. Note that
there is only one nstate = 1 call to each of the user subroutines at the beginning of
a MADS run.

• nstate=2
final call. If the user has cleanup operations to perform, they should be done now.
MADS has finished, and will not use the results of any computations performed dur-
ing this call, so it would be best to simply return once user cleanup operations are
complete. If the user has nothing to do for the nstate = 2 call in any of the four user-
supplied subroutines, simply make the first executable line of each of the subroutines
“if(nstate.GE.2)return.”

There are several other values that nstate can take on, none of which are recognized
specifically by MADS. Those values are explained in the SNOPT documentation [1]. The
user is recommended not use nstate, but rather to perform initialization and memory
operations in code units separate from those implementing (1,4,5,6)

The subroutines that operate along trajectory arcs are

xdot: This subroutine corresponds to (1), and provides the right-hand side of the system of
first-order ordinary differential equations (ODEs) defining the trajectory for each of
the nph trajectory phases; that is to say, MADS calls one xdot, and that subroutine
has logic to return the state derivative for each kth phase, k = 1, . . . , nph. The calling
syntax for xdot is

subroutine xdot(nstate,kph,nk,jk,nx,x,nu,u,np,p,f)
integer,intent(in) :: nstate,kph,nk,jk,nx,nu,np
real(8),intent(in) :: x(nx),u(nu),p(np)
real(8),intent(out) :: f(nx)

The inputs are

nstate: See the discussion at the beginning of this Subsection.

kph: index of current trajectory phase, i.e. 1 ≤ kph ≤ nph

nk: number of discretization intervals in this phase

jk: index number of current discretization interval, i.e. 1 ≤ jk ≤ nk

nx: state dimension in current phase

x: nx-element state vector

nu: control dimension in current phase

u: current value of nu-element control vector

np: dimension of vector of static free parameter

p: np-element static free parameter vector

The output is

f: right-hand side of the state time derivative, for the current inputs.

8

cineq: This subroutine corresponds to (6), and provides the equality and inequality con-
straints that operate on the state and control trajectories in between boundary condi-
tions. This routine differs from xdot in that it has access to the state at the discrete
instants at the beginning and end of the current discretization interval, whereas, xdot
is simply called with whatever state argument is provided it by the user’s chosen ME,
RK2, or RK4 discretization logic. This routine also differs from xdot in that the user
needs to specify, for each element of the output vector, whether it is to be treated as
an equality or inequality constraint. Recall that all inequality constraints in MADS,
per (5, 6) are posed so that they are satisfied by non-negative values. The calling
syntax for cineq is

subroutine cineq(nstate,kph,nk,jk,nx,xj,xjp1,nu,u,np,p, &
& nc,c,iec,iecflag)
integer,intent(in) :: nstate,kph,nk,jk,nx,nu,np,nc,iecflag
integer,intent(out) :: iec(nc)
real(8),intent(in) :: xj(nx),xjp1(nx),u(nu),p(np)
real(8),intent(out) :: c(nc)

The inputs are

nstate: See the discussion at the beginning of this Subsection.

kph: index of current trajectory phase, i.e. 1 ≤ kph ≤ nph

nk: number of discretization intervals in this phase

jk: index number of current discretization interval, i.e. 1 ≤ jk ≤ nk

nx: state dimension in current phase

xj: nx-element state vector at the beginning of discretization interval jk

xjp1: nx-element state vector at the end of discretization interval jk

nu: control dimension in current phase

u: current value of nu-element control vector

np: dimension of vector of static free parameter

p: np-element static free parameter vector

c: the dimension of the constraint vector c that is to be output by cineq

iecflag: integer scalar that signals cineq to output the iec vector. The values of iecflag
that MADS inputs are

0: a normal call, in which cineq is to compute its constraint quantities.
1: cineq is required to output iec and then exit. No other operations are

wanted from cineq in this case. If the user does perform other operations,
they will be ignored.

The outputs are

c: nc-dimensional constraint vector from (6)

iec: nc-dimensional integer vector of ones and zeros whose ith component signals
MADS whether c(i) is an equality or inequality constraint. The values of iec are

iec(i)=0: c(i) = 0 is required for solution
iec(i)=1: c(i) ≥ 0 is required for solutions

9

The next two user subroutines operate on state boundary values and the p vector to im-
plement (4) and 5). The boundary values are available to the routines as a vector, xbc,
that stacks the initial and terminal values, along with integer vectors k0 and kf such that
k0(k) + 1 points to the first element of the initial state for the kth trajectory phase and
kf(k) + 1 points to the first element of its terminal state, in turn. This is displayed in the
following equation, in which x0,k refers to the first (initial boundary value) state vector in
the kth phase and xf,k refers to the last (terminal boundary value) state vector in the kth

phase. For a trajectory with nph phases, there will be nph state dimensions, which can be
collected in an integer vector nxv(k), k = 1, . . . , nph:

xbc =

x0,1

xf,1
x0,2

xf,2
...

x0,nph

xf,nph

. . . k0(1) + 1

. . . kf(1) + 1

. . . k0(2) + 1

. . . kf(2) + 1
...

. . . k0(nph) + 1

. . . kf(nph) + 1

x0,k =

 (x0,k)1
...

(x0,k)nxv(k)

xf,k =

 (xndk+1,k)1
...

(xndk+1,k)nxv(k)

(24)

The two user subroutines that operate on xbc and p are psibc for (5), and phiobj for the
cost (4):

psibc As noted above, this subroutine implements (5), operating on the trajectory’s bound-
ary values and the p vector to compute boundary conditions as equality or inequality
constraints, as specified by the user. The calling syntax is:

subroutine psibc(nstate,nph,k0,kf,nxv,nxbc,xbc,np,p, &
& npsi,psi,iebc,iebcflag)
integer,intent(in) :: nstate,nph,k0(nph),kf(nph),nxv(nph), &
& nxbc,np,npsi,iebcflag
integer,intent(out) :: iebc(npsi)
real(8),intent(in) :: xbc(nxbc),p(np)
real(8),intent(out) :: psi(npsi)

The inputs are:

nstate: See the discussion at the beginning of this Subsection.

nph: the number of phases in the trajectory

k0: explained in (24)

kf: explained in (24)

nxv: nph-element integer containing state dimension for each phase

nxbc: dimension of xbc, that is 2*sum(nxv)

np: dimension of p vector

npsi: dimension of psi vector – number of boundary conditions

iebcflag integer scalar that signals psibc to output the iecbvec vector. The values of
iebcflag that MADS inputs are

0: a normal call, in which psibc is to compute its constraint quantities.
1: psibc is required to output iecbvec and then exit. No other operations are

wanted from psibc in this case. If the user does perform other operations,
they will be ignored.

10

The outputs are:

psi: the npsi-element vector of boundary condition constraints

iebc: npsi-dimensional integer vector of ones and zeros whose ith component signals
MADS whether ψ(i) is an equality or inequality constraint. The values of iebc
are

iebc(i)=0: ψ(i) = 0 is required for solution
iebc(i)=1: ψ(i) ≥ 0 is required for solutions

phiobj: This routine implements (4), evaluating the cost function φ. The calling syntax is

subroutine phiobj(nstate,nph,k0,kf,nxv,nxbc,xbc,np,p,phi)
integer,intent(in) :: nstate,nph,k0(nph),kf(nph),nxv(nph), &
& nxbc,np
real(8),intent(in) :: xbc(nxbc),p(np)
real(8),intent(out) :: phi

The, by now, familiar inputs are:

nstate: See the discussion at the beginning of this Subsection.

nph: the number of phases in the trajectory

k0: explained in (24)

kf: explained in (24)

nxv: nph-element integer containing state dimension for each phase

nxbc: dimension of xbc, that is 2*sum(nxv)

np: dimension of p vector

and the subroutine outputs the cost:

phi: the scalar cost function

2.3 Producing and Operating On A MADS Solution

This Subsection describes the organization of data in a MADS solution and describes soft-
ware for operating on that data. The software is a mix of FORTRAN95 for the actual
optimization calculations, and Matlab functions for data manipulation. This Subsection
does not go into detail in formulating and coding trajectory optimization problems; that is
provided via solved examples in Section 2.
The steps in producing a MADS solution are as follows:

1. Formulate a reasonable problem.

2. Code the four user-supplied subroutines, per Subsection 1.2.

3. Code routines to provide the derivatives of the four subroutines referred to in Step
2. This is to be done using autodifferentiation software; automatic, widely available,
reliable, and (currently) free for noncommercial use.

4. Assemble an initial guess.

5. Run MADS.

11

6. Review the solution. Accept it, or modify the problem formulation and go to Step 2.

Steps 1 and 2 are up to the user, with help and insight from this Tutorial. Step 3 can
be accomplished using scripts provided with the MADS package, provided that the user
installs TAPANADE [2]. This Section will also provide generic comments on autodiffer-
entiation for MADS, should the user prefer to use a different package. Before discussing
autodifferentiation, though, we will concentrate on Steps 4 through 6.

2.3.1 Formats for MADS Solution Data

We first consider the organization of data in MADS, and software for manipulating it. The
problem variables for optimization are stacked together in a vector:

vMADS =

v1
v2
...

vnph
p

 vk =

x1,k

u1,k

...
xndk,k
undk,k
xndk+1,k

(25)

In order for MADS to operate on vMADS , it requires dimensional and program option data.
This is supplied by a text file with integers as follows:

nph, npsi, np
nxv(1), nuv(1), ncv(1), ndv(1), kodev(1)
...

...
...

...
...

nxv(nph), nuv(nph), ncv(nph), ndv(nph), kodev(nph)

(26)

This will be referred to in the sequel as a “premads” file.
Because (25) and (26) comprise a miserably inconvenient format for operating on or visu-

alizing a MADS solution, utility functions are provided for converting between vMADS/premads
and a Matlab structure – call it “S” – with the following fields:

S.nph: number of phases

S.np: dimension of p

S.nxv: nph-element array of state dimensions

S.nuv: nph-element array of control dimensions

S.ndv: nph-element array whose kth element is the number of discretization intervals in the
kth phase.

S.x: nph-element cell array containing whose kth element contains that phase’s state tra-
jectory.. Each x{k} is

x{k} =

x1,1 x1,2 · · · x1,nxv(k)

x2,1 x2,2 x2,nxv(k)

...
...

. . .
...

x(ndv(k)+1),1 x(ndv(k)+1),2 · · · x(ndv(k)+1),nxv(k)

 (27)

12

S.tx: nph-element cell array containing time (independent variable) instants for plotting the
trajectory in S.x. These assume the use of (2) for time scaling, and that the first nph
elements of the p vector are used for this purpose. The organization of S.tx{k} is

S.tx{k} =

t0(k)

t0(k) + p(k)/ndv(k)
...

t0(k) + p(k)

t0(k) =

{
0, k = 1

t0(k − 1) + p(k − 1), k > 1

(28)

S.u: nph-element cell array whose kth element contains that phase’s control trajectory.
Similarly to S.x, S.uk has the structure

u{k} =

u1,1 u1,2 · · · u1,nuv(k)

u2,1 u2,2 u2,nuv(k)

...
...

. . .
...

undv(k),1 undv(k),2 · · · undv(k),nuv(k)

 (29)

Note that there are ndv(k) instants in this array, rather than ndv(k)+1.

S.tu: nph-element cell array containing time instants for plotting the control trajectory in
S.u. Again, the assumption is made that (2) is used; but the control instants are
indexed to the midpoints of the discretization intervals:

S.tu{k} =

t0(k) + 1

2p(k)/ndv(k)
t0(k) + (1 + 1

2)p(k)/ndv(k)
...

t0(k) + (ndv(k)− 1
2)p(k)/ndv(k)

 (30)

and t0(k) is defined in (28).

A nice feature of this structure is, of course, that the user can add additional fields to S.

2.3.2 Matlab Functions for Operating On MADS Data

The MADS package includes several Matlab functions for

• importing of vMADS data into the Matlab environment, and supporting its visualiza-
tion,

• modifying MADS solution data for a given problem formulation, in support of con-
structing an initial guess for an alternate, but related, problem formulation,

• exporting S-format data to MADS input data.

The functions that import MADS data and support visualization are, primarily, plotmadsMADS,
and dtplotMADS. Two additional functions, getMADS, readpremadsMADS are included to pro-
vide the user with a little more flexibility in programming style. The functions are

importMADS: This is the main import function for MADS, and is called as

S=importMADS(premads,fdata,flag)

13

The inputs are:

premads: character string, the name of the premads file for the MADS data to be imported.

fdata: another character string, this the name of the MADS output data file, whose
data is in vMADS format.

flag: scalar flag to indicate whether or not the lagrange multipliers computed by
SNOPT for the MADS problem should also be imported. The admissible values
are

0 . . . don’t import
1 . . . do

The importMADS output is S, which contains all of the data in Subsection 1.3.1 and,
additionally,

S.up: nph-element cell array containing the control trajectory, formatted to plot as a
sequence of zero-order hold values.

S.tup: nph-element cell array containing the corresponding time values, again, assuming
that the first S.np element of the S.p vector are used in (2) for time scaling.

S.lamx: cell array containing lagrange multiplier histories for the discretization constraints,
output if flag=1.

S.lama: cell array containing lagrange multiplier histories for the constraints in (6), output
if flag=1. lamak=[] for those phases where there are no (6) constraints.

S.lampsi: lagrange multiplier vector for (5), output if flag=1. Note that lampsi=[] if there
are no boundary conditions.

It should also be noted that, if S.np = 0, then S.p is returned as nan.

dtplotMADS: This function produces time vectors for use in plotting S state and control trajectories
for the case where (3) is used for variable time steps. It is called as

[tu,ux]=dtplotMADS(dtin)

with input

dtin: nph-element cell array, the kth element of which contains the vector of uτ from
the MADS solution for that phase.

The outputs are

tu: cell array containing the time values for plotting S.u.

tx: cell array containing the time values for plotting S.x.

The user who has a solution with variable time steps should get the solution with
importMADS, then discard that S.tx, S.tu, and run [S.tu,S.tx]=dtplotMADS(dtin),
having pulled dtin together from the S.u data.

getMADS: This function, called as

S=getMADS(fdata,nxv,nuv,ndv,np)

outputs an S data structure containing only x, u, tx, tu, p, nxv, nuv, ndv, and np.

14

readpreMADS: This function, called as

S=readpreMADS(name)

reads a premads file with name name and outputs a partially populated S structure,
which contains the dimensional and discretization option information contained in the
premads file.

The Matlab functions that support modifying and exporting MADS data are adduxMADS,
breaktrajMADS, dtaunphMADS, and writepreMADS.

adduxMADS: This function, called as

vout=adduxMADS(x,u,nxout,nuout,randmag,(optional) outind)

pads or removes columns from S-format x and u, and collects them into a vMADS-
format vector. The states and control may optionally be reordered before concatenat-
ing into vMADS . The inputs are

x: S-format state trajectory x(nd+1,nx)

u: S-format control trajectory u(nd,nu). This may be empty if nu = 0.

nxout: desired output state dimension. If nxout > nx, then the additional states are
indexed as x(nx + 1) . . . x(nxout).

nuout: desired output control dimension. Padding for u follows the same pattern as with
x.

randmag: If nxout > nx or nuout > nu, the padded extra states or controls are popu-
lated with r=randmag*rand, where rand is the Matlab uniform random number
generator.

outind: (optional argument) structure containing desired ordering of states or controls
in the output. The x indices are in outind.xind and the u indices are in
outind.uind. If either xind or uind are not to rearrange state or control in-
dices, they may be set empty; otherwise, the dimension of each must be nxout
and nuout, respectively. As a concrete example, suppose that nx = 3, nxout = 5
and outind.xind=[4 1:3 5]. In this case, the S-format organization of each
row of the expanded state is xk = [x(4) x(1)k x(2)k x(3)k x(5)], k = 1, . . . , nd.

The output is

vout: x and u in vMADS format.

Note that, for multiphase problems, adduxMADS is simply called for each phase, and
the output vectors are stacked to make the full vMADS . For example,

randmag=0;
v=[];
for k=1:n
v=[v;adduxMADS(S.x{k},S.u{k},nxout(k),nuout(k),randmag)];

end
v=[v;S.p];

15

breaktrajMADS: This function is used to break a single xk, uk phase into subphases and, optionally,
to resample one or more of the subphases with a different number of discretization
intervals. The function also assumes that the time scaling approach of (2) is used, and
produces a vector of phase durations for the output subphases. The function is called
as

bout=breaktrajMADS(x,u,bv,tau,(optional) ndin)

The inputs are

x: S-format state trajectory x(nd+1,nx)

u: S-format control trajectory u(nd,nu). This may be empty if nu = 0.
bv: vector of breakpoints – time-wise indices comprising the initial points of the out-

put subphases. Note, bv does not include the inital point of the input single-
phase trajectory, i.e. bv 6= 1. The breakpoints bv are defined in terms of
the state discretization mesh points, with bv = k breaking the trajectory at
mesh point k. Suppose, for simplicity, we have x scalar, nph=1, ndv=20, and
bv=[3]. This breaks the trajectory into two output phases, with ndv=[2 18],
and xbout(kf(1) + 1) = x(3) and xbout(k0(2) + 1) = x(3) , where xbout is informal
notation for the multiphase output of breaktrajMADS. This, and the fact that
controls are defined on the interval between the kth and (k+ 1)th instants means
that if the user uses the control trajectory to choose a breakpoint, the chosen
control instant will appear in the phase to the right of the breakpoint. Note that
it is admissible to input bv=[]. This would correspond to the case of resampling
a single trajectory phase. In this case, ndin, detailed below, would have a single
element.

tau: scalar – the duration of the input phase.
ndin: This is an optional input, but must be present if bv=[]. ndin is the number of

integration intervals desired for each of the output subphases. The resampling is
done using piecewise linear interpolation of input state and control trajectories.

and the output is

bout: structure contining the split trajectory and associated information:
ndv: nbv-element array containing the number of discretization intervals in each

subphase.
tau: nbv-element array containing the duration of each subphase, based on the

input value of tau.
x: nbv-element cell array containing state subphases. Assuming that ndin is

not input, we have (referring to bout.x as x and bout.nph as nph,

xin =

 x1

...
xnd+1

→

x{1} =

 x1

...
xbv(1)

x{k} =

 xbv(k−1)
...

xbv(k)

 ,
k = 2, . . . , nph− 1

x{nph} =

 xbv(nph)−1
...

xnd+1

(31)

16

u: nbv-element cell array of control subphases. Here,

uin =

 u1

...
und

→

u{1} =

 u1

...
ubv(1)

u{k} =

 ubv(k−1)
...

ubv(k)

 ,
k = 2, . . . , nph− 1

u{nph} =

 ubv(nph)−1
...
und

(32)

dtaunphMADS: This function, called as

dtout=dtaunphMADS(bv,dtin)

breaks the uτ trajectory from (3) into multiple subphases. It needs to be used in order
to correctly scale the subphases’ uτ s. The inputs are

bv: vector of breakpoints, identical to that for breaktrajMADS, above.
dtin: vector of uτ values taken from a MADS solution.

and the output is

dtout: cell array of with length(bv)+1 elements. Each kth cell contains the uτ trajectory
for the subphase of dtin that began with its element bv(k).

writepreMADS: This function is the twin of readpreMADS. It inputs an S structure and writes the
corresponding premads file onto a file with name name. It is called as

writepreMADS(S,name)

Function writepreMADS opens and closes file “name.”

There are several other MADS support functions with very specialized applicability, and
they will be described in their contexts. Before leaving this topic, though, there is one
additional function to describe.

findIMADS: This function can be used to assist in debugging MADS problems. The function is
called as

theI=findIMADS(S,row)

with S structure S and “row” as inputs. This function is used to help diagnose mis-
behavior in MADS solutions. The diagnostic output from SNOPT includes a check of
the correctness of the overall problem jacobian at the beginning of the run, comparing
the user-supplied analytic jacobian to one using numerical differentiation. If there’s
an error at a particular constraint element – “row” the comment “bad” is appended to
the right of the output for that row. At the end of the run, a summary of the final con-
straint activity is provided, labelled “Section 1 - Rows.” If there is an infeasibility
for a particular constraint (row), it will be flagged with an “I” in the column labelled
“State.” To use findIMADS, the user supplies dimensional data in S, gotten either by
using importMADS or readpreMADS, and the offending row number. The output is

17

theI: structure containing

kph: the phase number. theI.kph=[] if the constraint is in psibc.
jk: the discretization interval. theI.jk=[] if the constraint is in psibc.
xcp: the “type” of the constraint: ’c’ if in cineq, ’x’ if in xdot, or ’p’ if in psibc.
ind: the position of the constraint in the in the user-supplied routine’s output.

For example, if theI.xcp=’p’ and theI.ind=2, the problem is with psi(2).

We hope that the user will never want to use this function, but we know better.

2.4 Setting Up and Executing a MADS Run

Thus far, we have described the general MADS problem formulation, the user-supplied
subroutines for realizing a given problem in MADS, and utilitiies for operating on MADS’
input and output data. We now turn to the mechanics of actually making a MADS run.

There are three principal considerations to be kept in mind when setting up a problem
for MADS:

1. Because the problem formulation resides in the four separate subroutines of Subsection
1.2, it is generally in the user’s best interest to treat those data that are common to two
or more problem routines as global variables. We recommend use of the FORTRAN
“MODULE” program unit as a means of safely sharing data across multiple local
program units. Consider the following code fragment:

module myprobMOD
implicit none
integer, parameter :: &
& UsedByCineq = 1, &
& UsedByAll = UsedByCineq + 2
real(8) :: &
& xdotParam
end module myprobMOD

subroutine cineq(nstate, kph, nk, jk, nx, xj, xjp1, &
& nu, u, np, p, nc, c, iec, iecflag)
use myprobMOD, only : UsedByCineq, UsedByAll
implicit none

...

subroutine xdot(nstate, kph, nk, jk, nx, x, nu, u, np, p, f)
use myprobMOD, only : UsedByAll, xdotParam
implicit none

...

program myprob
use myprobMOD, only xdotParam
implicit none

...
xdotParam = some number

...

18

2. Typically, for a given physical plant model, several different trajectory optimziation
problems may be posed for it. These may simply be different missions that the plant
is being called upon to perform, or it may be different formulations of superficially
similar optimization problems that the user explores while seeking results that are
not only optimal but desirable. Each of the examples in the Tutorial Section 2 will
contain examples of this type of exploration. Because of this, it is highly desirable
that the user strictly separate plant model software from problem formulation software.
For example, suppose that a problem is posed with free terminal time using the (2)
formulation. In that case, xdot should look like

module FreeTimeMOD
...

integer, parameter :: &
& loctau = 1 ! location of terminal time in p
end module FreeTimeMOD

subroutine xdot(nstate, kph, nk, jk, nx, x, nu, u, np, p, f)
use FreeTimeMOD, only : loctau

...
! MyPlant is a separate subroutine for plant ODEs
call MyPlant(x, u, f)
f = p(loctau) ∗ f ! Here is the time− scaling
end subroutine xdot

3. The instantiation of a given MADS problem will typically involve some 15-16 unique
files, not counting those pertaining to the plant model. These include “plain” and
autodifferentiated xdot, cineq, psibc and phiobj routines, main and MODULE pro-
gram units, input and output data, and scripts for visualization and for assembling
the initial guess. Experience teaches that, unless the problem-unique files for each
MADS problem are kept separate from those of other MADS problems, confusion will
ensue. The authors strongly recommend devoting a directory or “folder” to each such
problem and, further, to affix a common character string to each of the names of each
of the files that associates them with their particular problem. This practice will be
illustrated in the Tutorial.

MADS execution is performed by the subroutine batchMADS, calling SNOPT. This subrou-
tine is called by a main routine, and needs to be linked to the MADS subroutine library,
the problem subroutines cineq, xdot, psibc, phiobj, their derivatives cineq dv, xdot dv,
psibc dv, phiobj dv, and any model-specific subroutines. Generation of the derivative rou-
tines’ source code is described in the next Subsection, and the syntax of batchMADS is given
below:

batchMADS: This subroutine,

subroutine batchMADS(findata,fpremads,foutdata,inform)
integer,intent(in) :: findata,fpremads,foutdata
integer,intent(out):: inform

has the following arguments:

findata: FORTRAN “unit number” for an opened file containing the input guess.

19

fpremads: Unit number for an opened file containing the premads file for the given problem.

foutdata: Unit number for an opened file into which batchMADS will write the solution
data at the conclusion of batchMADS execution. This file contains a concatena-
tion of the output value of vMADS from (25) and the SNOPT-computed lagrange
multipliers for the constraints in the Z vector, defined in (8). Recall that ex-
tracting and organizing the lagrange multipliers from MADS output is handled
by importMADS as an option. If SNOPT fails to converge, the output data in
foutdata corresponds to the state of the iterations at the end of the run.

info: This is a batchMADS output, and is a pass-through from SNOPT, in whose doc-
umentation [1] info is fully documented. The most typical values that will be
encountered by the MADS user are

1: finished successfully
3: couldn’t achieve desired accuracy
13: infeasible constraint(s)
41: current point cannot be improved
52: incorrect constraint derivatives

In batchMADS, several SNOPT parameters are set. These are Infinite Bound set to
1020, Verify Level, set to 3, Derivative Level, set to 3, and Linesearch Tolerance,
set to 0.99. These values can be overridden, or other SNOPT options set by writing
and linking a subroutine userset:

subroutine userset(fprt,fsumm,info,cw,lcw,iw,liw,rw,lrw)
integer,intent(in) :: fprt,fsumm,lcw,liw,lrw
integer,intent(out) :: info,iw(liw)
real(8),intent(out) :: rw(lrw)
character(8),intent(out) cw(lcw)

In the body of this subroutine, the user calls SNOPT routines snseti, or snsetr to
set parameters as preferred. The user is not required to provide a userset, as the
MADS library includes a dummy for linking.

2.4.1 Autodifferentiation for MADS

This Subsection provides a short discussion of algorithmic differentiation (AD) in MADS.
Algorithmic, or “automatic” differentiation [4] is the use of software techniques to numer-
ically evaluate the derivative of a function calculated by a computer code. This is – very
superficially speaking – done by analytically differentiating the most primitive computations
in the code, e.g., exponentiation, transcendental functions, and so on, and building up the
full evaluation of the derivative by repeatedly applying the chain rule. This technique has
a substantial advantage over the use of finite differences in that the computed derivative is
accurate to machine precision, with no degradation due to the truncation that is associated
with difference-based differentiation.

MADS requires the derivatives of f (1), c (6), ψ (5), and φ (4). If the user has
TAPANADE [2] installed, the subroutines that provide these derivatives – xdot dv, cineq dv,
psibc dv, phiobj dv – are simply obtained by executing the following Matlab script invo-
cations from the command line:

tapxdot(’routines called by xdot, MODULES referenced by xdot’)
tapcineq(’routines called by cineq, MODULES referenced by cineq’)
tappsibc(’routines called by psibc, MODULES referenced by psibc’)

20

tapphiobj(’routines called by phiobj, MODULES referenced by phiobj’)
tapscript

and then the user need not think any further about AD. In the code fragments above,
incidentally, the arguments to each of the tapxxx functions are to be input as string variables.
For example, if xdot calls MyPlant.f90 and references variables from MyProbMOD.f90, then
the detailed call to tapxdot would be

tapxdot(’MyProbMOD.f90 MyPlant.f90’)

The order of files in the argument does not matter. Again, TAPANADE users can skip the
rest of this section.

If the user wishes to use a different AD package to generate the XXX dv subroutines, it will
need to be able to provide “multidimensional” differentiation, and to do so in “forward,” or
synonymously, “linear tangent” mode. The first of these options will assure that the routines
are differentiated over the entire span of their arguments: For a code that computes g(x),
x ∈ Rn, rather than generating a dv subroutine to compute vT gx, it will compute

(gx)jk =
∂gk
∂xj

(33)

Regarding “forward” versus the alternative “adjoint” or, synonymously, “backward” modes
of differentiation, “forward” is a differentiation mode that follows the order of execution in
the subroutine(s) being differentiated. This mode produces subroutines with the interface
syntax

subroutine xdot_dv(nstate,kph,nk,jk,nx,x,xd,nu,u,ud,np,p,pd,f,fd,nb)
integer,intent(in) :: nstate,kph,nk,jk,nx,nu,np,nb
real(8),intent(in) :: x(nx),xd(nb,nx),u(nu),ud(nb,nu),p(np),pd(nb,np)
real(8),intent(out) :: f(nx),fd(nb,nx)
! Note: nb=nx+nu+np

subroutine cineq_dv(nstate,kph,nk,jk,nx,xj,xjd,xjp1,xjp1d, &
& nu,u,ud,np,p,pd,nc,c,cd,iec,iecflag,nb)
integer,intent(in) :: nstate,kph,nk,jk,nx,nu,np,nc,iecflag,nb
integer,intent(out) :: iec(nc)
real(8),intent(in) :: xj(nx),xjd(nb,nx),xjp1(nx),xjp1d(nb,nx), &
& u(nu),ud(nb,nu),p(np),pd(nb,np)
real(8),intent(out) :: c(nc),cd(nb,nc)
! Note: nb=2*nx+nu+np

subroutine psibc_dv(nstate,nph,k0,kf,nxv,nxbc,xbc,xbcd,np,p,pd, &
& npsi,psi,psid,iebc,iebcflag,nb)
integer,intent(in) :: nstate,nph,k0(nph),kf(nph),nxv(nph),np, &
& npsi,iebcflag,nb
integer,intent(out) :: iebc(npsi)
real(8),intent(in) :: xbc(nxbc),xbcd(nb,nxbc),p(np),pd(nb,np)
real(8),intent(out) :: psi(npsi),psid(nb,npsi)
! Note: nb=nxbc+np

subroutine phiobj_dv(nstate,nph,k0,kf,nxv,nxbc,xbc,xbcd,np,p,pd, &
& phi,phid,nb)
integer,intent(in) :: nstate,nph,k0(nph),kf(nph),nxv(nph),np,nb
real(8),intent(in) :: xbc(nxbc),xbcd(nb,nxbc),p(np),pd(nb,np)
real(8),intent(out) :: phi,phid(nb)
! Note: nb=nxbc+np

21

The dv subroutines above are autodifferentiated with the following lists of dependent and
independent variables:

dependent independent
xdot : f x u p
cineq : c xj xjp1 u p
psibc : psi xbc p
phiobj : phi xbc p

TAPANADE, and other AD programs within the author’s experience, concatenates lists of
multiple independent variables, conceptually, into a column vector “b”:

xdot : b = [xT uT p], nb = nx + nu + np
cineq : b = [xjT xjp1T uT pT], nb = 2nx + nu + np
psibc : b = [xbcT p], nb = nxbc + np
phiobj : b = [xbcT p], nb = nxbc + np

(34)

The “d”-suffix variables in the subroutine input arguments, e.g., xd, ud, pd in the case of
xdot dv, are column partitions of ∂b/∂bT = I. Note the following:

1. The orders of variables in (34) is not important. What is illustrated here is merely
the order in which the variables are stacked in the MADS code.

2. It is critical that the AD user autodifferentiates using the entire list of independent
variables at once. For example, if a user autodifferentiates xdot first with dependent
variable x, then with u, then with p, he or she might get a differentiated subroutine
whose argument list looks superficially similar to that displayed above; but attempting
its use would almost certainly crash the program’s execution or, worse yet, only provide
erroneous results.

3. It is not unusual for an AD code to presume that the dimensionality of b is actually
larger than that declared via the list of dependent variables declared to the AD soft-
ware. In order to accomodate this presumption, they do things such as introducing a
global variable into the dv code that contains the “real” row dimension of the d-suffix
variables. For example, TAPANADE inserts the line USE DIFFSIZES into the sub-
routine header, where DIFFSIZES is to be a user-supplied MODULE file containing a
declaration of the variable NBDIRSMAX. This NBDIRSMAX is then used as the row dimen-
sion for all of the d-suffix variables and certain intermediate variables. This behavior
is unsuitable for MADS. The row dimensions of these variables should be nb, not
NBDIRSMAX. This, and a few other annoyances are corrected for TAPANADE-based
MADS users by executing the script tapscript.

4. Some AD packages, by default, second-guess the user’s declaration of dependent vari-
ables and fail to provide a d-suffix arguments in the dv routine’s argument list for
a given dependent variable if the declared dependency doesn’t actually exist for the
given subroutine. For example, suppose that xdot didn’t actually include any element
of the p vector in its computation of f. In this case, the AD output would have first
line

subroutine xdot_dv(nstate,kph,nk,jk,nx,x,xd,nu,u,ud, &
& np,p,f,fd,nb)

This example is missing “pd,” and attempting its use in a MADS execution would
result in, at best, a program crash, since MADS requires a particular, fixed, interface

22

to its dv subroutines. The user should be wary about this. This can happen; for
example, it is TAPANADE’s default behavior, though that can be corrected by using
the command line option “-fixinterface.”

23

3 Tutorial Examples

This section is a tutorial for the use of MADS in solving numerical optimal control problems.
The exposition is cast in the form of a sequence of example problems. This sequence
progresses from very simple to fairly complicated, and each problem in the sequence features
one or more tricks that are generically useful in other problems that the user may face. Two
examples are considered:

1. Linear System Minimum Time to Origin
The optimal solution of this classic problem, described in Chapter 3.9 of [5] in continu-
ous time is a “bang-bang” control trajectory in which the control jumps discontinously
between maximum and minimum constraint limits. Because MADS employs a fixed
time step in its discretization, it will be seen that the solution to the most straight-
forward MADS formulation differs from the continuous time solution by having an
“excrescence” in its control trajectory – a single time interval in which the control
takes on an intermediate value. Two approaches for capturing the structure of the
continuous time problem are described:

• Break the problem into two phases.

• Introduce variable discretization step size.

Alternatively, recognizing that true “bang-bang” control trajectories are not physically
realizable, we also demonstrate a technique that exploits the structure of the midpoint
euler discretization to limit the bandwidth of the control solution by penalizing or
constraining its rate and acceleration. An alternative to this technique would be
to introoduce a low-pass filter for the control into the dynamics. In optimizing the
trajectory with such a filter in place, however, there will be a tendency for the control
solution to attempt to cancel out the filter dynamics. The approach given here has
the advantage of operating directly on the control.

2. Goddard Problem
In the Goddard problem [8], the goal is to maximize the final altitude of a sounding
rocket’s ascent. In the problem treated here, it flies through an exponentially decaying
atmosphere in an inverse-square gravitational field, and is subject to an inequality
constraint on dynamic pressure.

This problem is distinguished by having a “singular arc” as described in Chapter
8 of [5]. A singular arc, in a variational optimal control problem, is a finite por-
tion of the optimal trajectory in which the control necessary condition for optimality
vanishes identically; in other words, to first order, the optimal performance of the
system is oblivious to the value of the control while it traverses the singular arc. It is
straightforward to obtain converged solutions to such problems using MADS, but this
insensitivity of performance to the control along singular arcs can affect the quality of
the converged solution in two ways:

(a) The user is likely to get a messy-looking control trajectory where there is no
numerically unambiguous optimum.

(b) The ambiguity in the control solution may also imply that the state trajectory
drifts some from the exact optimum.

In this example, a straightforward direct solution for the case without an active dynamic
pressure constraint displays the “messy-looking” control trajectory warned of above, and a
penalty function is applied to the jitter. The example concludes with imposition of a an
active dynamic pressure inequality constraint.

24

3.1 Linear System Minimum Time to Origin

3.1.1 Baseline Problem

In this classic problem [5], a system of the form

ẍ = u u ∈ [−1, 1] (35)

is driven from

x(0) = a ẋ(0) = b (36)

to the origin in minimum time, τ∗, resulting in an optimal trajectory in which the control,
u(t), rides the saturation boundaries cited in (35), switching a maximum of one time from
-1 to 1 or vice versa, depending on initial conditions. The problem is expressed for MADS
by converting the expression ẍ to first order ODEs:

ẋ1 = x2 ẋ2 = u (37)

and time-scaling the the equations of motion, per (2), as[
x′1
x′2

]
= τ

[
x2

u

]
(38)

The cost function is

φ = τ (39)

the control inequality constraints are

c(x, u) =
[

1− u
1 + u

]
≥ 0 (40)

and the boundary conditions are

ψ =

x1(0)− a
x2(0)− b
x1(1)
x2(1)
τ − ετ

 iebc =

0
0
0
0
1

 (41)

In (41), recall that boundary conditions expressed with iebc = 0 are treated as equality
constraints. In the case where iebc = 1, above, the constraint is nonnegative:

τ − ετ ≥ 0

where ετ is a user-selected small positive number. A constraint of this kind is inexpensive to
include, and can be quite valuable, since duration parameters in collocation-based trajectory
optimization computations – at least in our experience – frequently exhibit unproductive
behavior during the iterative search for a solution, taking on zero or negative values unless
restrained. The parameter τ is placed in the pv partition of the vector of free variables:

vin = [x̄0, u0, x̄1, u1, · · · x̄nd, und, x̄nd+1, τ]

where x̄k = [(x1)k, (x2)k] and nd is the number of discretization intervals selected. For this
problem, we choose nd = 50.

The subroutines below are reliably parsed by the version of TAPANADE [2] available at
the time of writing.

25

subroutine xdot(nstate,kph,inst,xv,nx,uv,nu,pv,np,fv)
implicit none
integer,intent(in) :: nstate,kph,inst,nx,nu,np
real(8),intent(in) :: xv(nx),uv(nu),pv(np)
real(8),intent(out) :: fv(nx)
real(8) :: x2,u,p
if(nstate.GT.1)return ! This is the last ‘‘cleanup’’ call from SNOPT
x2=xv(2) ! Calling out scalar variables aids in clarifying
u=uv(1) ! complicated nonlinear expressions. Pointers could be
p=pv(1) ! substituted here if they were reliably supported.
fv(1)=x2
fv(2)=u
fv=fv*p
return
end subroutine xdot

subroutine cineq(nstate,kph,nx,xj,xjp1,nu,uv,np,pv,nc,cv)
implicit none
integer,intent(in) :: nstate,kph,nx,nu,np,nc
real*8,intent(in) :: xj(nx),xjp1(nx),uv(nu),pv(np)
real*8,intent(out) :: cv(nc)
if(nstate.GT.1)return
cv(1)=1+uv(1)
cv(2)=1-uv(1)
return
end subroutine cineq

subroutine psibc(nstate,nph,k0,kf,nxv,nxbc,xbc,np,pv,npsi, &
& psi,iebc,iebcflag)

implicit none
integer,intent(in) :: nstate,nph,k0(nph),kf(nph),nxv(nph), &

& nxbc,np,npsi,iebcflag
integer,intent(out) :: iebc(npsi)
real(8),intent(in) :: xbc(nxbc),pv(np)
real(8),intent(out) :: psi(npsi)
real(8) :: x10,x20,x1f,x2f,tau
if(nstate.GT.1)return
if(iebcflag.EQ.1)then ! At the beginning of the run, tell MADS
iebc=0 ! which boundary conditions are
iebc(5)=1 ! equalities and which are inequalities,
return ! and RETURN!

endif
x10=xbc(k0(1)+1) ! x1(0)
x20=xbc(k0(1)+2) ! x2(0)
x1f=xbc(kf(1)+1) ! x1(t_f)
x2f=xbc(kf(1)+2) ! x2(t_f)
tf=pv(1)
psi(1)=1-x10
psi(2)=1-x20
psi(3)=x1f
psi(4)=x2f
psi(5)=tau-1.D-6 !terminal time is positive

26

return
end

subroutine phiobj(nstate,nph,k0,kf,nxv,nxbc,xbc,np,pv,phi)
implicit none
integer,intent(in) :: nstate,nph,k0(nph),kf(nph),nxv(nph),nxbc,np
real(8),intent(in) :: xbc(nxbc),pv(np)
real(8),intent(out) :: phi
if(nstate.GT.1)return
phi=pv(1)
return
end subroutine phiobj

and, finally, the premads file is

1,5,1
2,1,50,2,0

where the last element of the second line, recall, indicates that the midpoint Euler dis-
cretization is specified.

Having assembled software for the cost function and modelling constraints, and AD-
processed the xdot, cineq, psibc, and phiobj routines, it remains to compute a converged
solution. The first two attempts to compute a solution for this very simple, nearly linear,
problem were unsuccessful. The initial guesses for vin were, respectively, all ones, and
all random numbers generated by Matlab’s rand() function. These attempts were both
unsuccessful – SNOPT was unable to compute a feasible iterate.

The next attempt to generate an initial guess for this problem was to solve a similar,
but less stringent, problem. The changes were to eliminate the state boundary conditions,
moving them to the cost function. In other words,

ψ = τ − ε, iebc = 1
φ = τ + α ∗

[
(x1(0)− a)2 + (x2(0)− b)2 + (x1(1))2 + (x2(1))2

]
This was also an unsuccessful problem, in that it did no better in leading to a feasible
solution. A successful initial guess was generated, however, by fixing τ , rather than letting
it vary freely. This was done by setting setting iebc to zero for the psibc constraint
τ − 1 = 0, and using all ones as an initial guess.

This latter guess was passed on to the original problem formulation laid out above, and
used successfully as an initial guess to obtain the time-optimal solution that satisfied the
state boundary conditions. It will be seen that this pattern plays out generically in using
MADS for solving OCPs. Initial guesses are most easily generated by relaxing path con-
straints, such as boundary conditions, instead getting a solution time history that satisfies
the discretization constraints, say (9). Final time should be treated warily in the search for
the initial guess.

Figure 1 displays the solution for a minimum-time trajectory from initial conditions
x(0) = 1, ẋ(0) = 1. The plot on the right displays the actual control time history (piecewise
constant) as dark red, and a continuous line drawn through the midpoints of the control
increments in lighter red. As mentioned in the tutorial’s introduction, the control history
is not perfectly “bang-bang,” having a little excrescence near the time t = 2.25s. Two
approaches for fixing this are given below:

27

0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x

dx
/d

t

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.5

0

0.5

1

time
u

Figure 1. Two-State Bang-Bang Problem with Constant Time Step

3.1.2 Break the problem into two phases

A cleaner control discontinuity can be obtained by breaking the problem into two phases
at the point at which the solution “bangs” from its maximum to its minimum value. This
is done by introducing continuity boundary conditions on the states, including separate
duration parameters for each phase, and setting the control to its appropriate constrained
value during each phase. Denoting the states as x11, x21 during the first phase and x12, x22

during the second, the revised formulation is

ẋ11 = x21, ẋ21 = u PHASE 1
ẋ12 = x22, ẋ22 = u PHASE 2 (xdot) (42)

φ = τ1 + τ2 (43)

c =

u− 1 ≥ 0
−u+ 1 ≥ 0

}
PHASE 1

u+ 1 ≥ 0
−u− 1 ≥ 0

}
PHASE 2

(cineq) (44)

ψ =

x11(0)− a
x21(0)− b

x11(1)− x12(0)
x21(1)− x22(0)

x12(1)
x22(1)
τ1 − ε
τ2 − ε

iebc =

0
0
0
0
0
0
1
1

(psibc) (45)

28

Note that the inequalities in (44) enforce u = 1 in phase 1 and u = 1 in phase 2. A
psibc code fragment implementing the boundary conditions in (45) is

x110=xbc(k0(1)+1)
x210=xbc(k0(1)+2)
x11f=xbc(kf(1)+1)
x21f=xbc(kf(1)+2)
x120=xbc(k0(2)+1)
x220=xbc(k0(2)+2)
x12f=xbc(kf(2)+1)
x22f=xbc(kf(2)+2)
tau1=pv(1)
tau2=pv(2)

psi(1)=x110-a
psi(2)=x210-b
psi(3)=x11f-x120 ! continuity across phases
psi(4)=x21f-x220 ! continuity across phases
psi(5)=x12f
psi(6)=x22f
psi(7)=tau1-epsilon
psi(8)=tau2-epsilon

The initial guess for this problem is assembled from the solution of the single-phase prob-
lem by using the MADS Matlab data utilities. Assume that the single-phase output data file
is “bangbang1out.dat” and that the corresponding premads file is “bangbang1premads.dat,”
and that the trajectory’s control discontinuity occurs near the 27th discretization interval.
The code fragment for generating the input data for the two-phase problem is

S=importMADS(’bangbang1premads.dat’,’bangbang1out.dat’,0);
% tau -- the duration of the single phase -- is needed to
% compute durations of the two new phases. In this case, the
% only element of S.p is tau. Note that, when there are
% other static parameters than ‘‘tau,’’ it is convenient to
% place the trajectory duration(s) at one end of S.p or the
% other.

tau=p(length(S.p));
bout=breaktrajMADS(S.x,S.u,27,tau);

% Overwrite various fields of S with two-phase data and
% write a new premads file.

S.p=bout.tau;
S.x=bout.x;
S.ndv=bout.ndv;
S.u=bout.u;

% The user is required to supply the following information for
% constructing the premads file for the new problem. Note that
% the new state, control, and trajectory constraint dimensions
% are identical with the old ones.

S.nph=2;
S.nxv=S.nxv*ones(2,1);
S.nuv=S.nuv*ones(2,1);
S.ncv=S.ncv*ones(2,1);
S.kodev=[0;0];

29

S.npsi=8;
writepreMADS(S,’bangbang2premads.dat’);

% Generate and write the input guess file for the two-phase
% problem using adduxMADS, but without adding any additional
% states or controls.

v=[];
for k=1:S.nph
v=[v;adduxMADS(S.x{k},S.u{k},S.nxv(k),S.nuv(k),0)];

end
v=[v;S.p];
save bangbang2in.dat v -ascii -double

3.1.3 Introduce variable discretization step size

In order for the bang-bang control to be perfectly realized in the foregoing, it was necessary
to break the problem into two phases, requiring an estimate of the point along the trajectory
at which to position the break, and a substantial increase in the complexity of the psibc
subroutine.

This can be avoided by allowing the integration intervals in the discretization to vary
along the trajectory so that the duration of the subarc with max control will naturally be
“τ1” and that with minimum control will be “τ2”. Despite the fact that MADS nominally
uses a fixed-step discretization, this can be achieved posing the time step as a control
variable, rather than a scalar parameter:

x′ = uτ (s)ẋ(s), 0 ≤ s ≤ 1 (46)

so that

τ =
∫ 1

0

uτds (47)

The increments uτ are prevented from behaving irresponsibly by penalizing deviation of uτ
from its average value, ∫ 1

0

(uτ − τ)2ds (48)

Additionally, in cineq, impose

uτ ≥ cτ > 0 (49)

where cτ is a user-selected constant. There are three things to be noted in this case:

1. Although the plant dynamics are scaled by uτ , in this case the elapsed time and
penalty computations must not be.

2. The duration τ is the terminal boundary value of the differential equation for (47).
This can be made to appear in the integral by imposing a boundary condition on τ
and a free static parameter, say, pτ , in psibc:

pτ = τ (50)

so that (48) would be expressed

φ̇τ = (uτ − pτ)2 (51)

30

for a total performance index of

φ = τ + kτφτ , kτ > 0 user− selected (52)

3. We generically deplore the use of penalty functions in trajectory optimization as being
an unacceptably vague way of expressing performance goals and constraints. In this
case, a penalty is introduced only to prevent a nonunique solution for the additional
(uτ)k and pτ degrees of freedom, rather than to compete with the principal goal of
minimizing τ .

With the introduction of two additional states and one additional control, the problem
elevates from being completely trivial to being fairly simple. Since these additional variables
are being manipulated in four different user routines, it behooves the user to take measures
to avoid mistakenly picking off the wrong element of the xv or uv vectors in different routines.
Define a FORTRAN Module:

module bangMOD
implicit none ! enforce strong typing. Highly Recommended!
integer,parameter :: & ! ‘‘parameters’’ are compile-time fixed constants
& locx2=2 & ! elements of xv
& locxtau=3 &
& loctauint=4 &
& locu=1 & ! elements of uv
& locutau=2 &
& locptau=1 ! element of p
real(8),parameter :: &
& a=1 & ! initial value of x1
& b=1 & ! initial value of x2
& ctau=1d-6 & ! value of c_tau in u_tau constraint
& ktau=1d-2 ! penalty weight on penalty integral
end module bangMOD

The relevant code fragments are shown below. Only the fragment for subroutine xdot
shows the use of the module in the subroutine header, but similar “use” statements appear
in cineq, phiobj, and psibc.

xdot use bangMOD,only : locx2,locxtau,loctauint,locu,locutau,locptau
implicit none
integer,intent(in) :: nstate,kph,nx,nu,np
real(8),intent(in) :: xv(nx),uv(nu),pv(np)
real(8),intent((out) :: fv(nx)
real(8) :: x2,xtau,tauint,u,utau,avetau
x2=xv(locx2)
xtau=xv(locxtau)
tauint=xv(loctauint)
u=uv(locu)
utau=uv(locutau)
avetau=pv(locptau)

fv(1)=utau*x2
fv(locx2)=utau*u
fv(locxtau)=utau
fv(loctauint)=(utau-avetau)

31

cineq !use bangMOD,only : locu,locutau,ctau -- info only; belongs in declarations
u=uv(locu)
utau=uv(locutau)
c(1)=u+1
c(2)=1-u
c(3)=utau-ctau

phiobj !use bangMOD,only : loctauint,locxtau,ktau -- info only; goes in declarations
tauint=xbc(kf(1)+loctauint)
taufinal=xbc(kf(1)+locxtau)
phi=taufinal+ktau*tauint

psibc !use bangMOD,only : locx2,loctau,loctauint,locptau -- info only
iebc=0
psi(1)=xbc(k0(1)+1)-a ! plant boundary conditions
psi(2)=xbc(k0(1)+locx2)-b
psi(3)=xbc(kf(1)+1)
psi(4)=xbc(kf(1)+locx2)

psi(5)=xbc(k0(1)+locxtau) ! zero IC for utau
psi(6)=xbc(k0(1)+loctauint) ! zero IC for penalty integral
psi(7)=pv(locptau)-xbc(kf(1)+locxtau) ! place terminal value of utau in ptau

0 1 2 3
3

3.2

3.4

3.6

3.8

4

4.2

time

u τ

2 2.5 3 3.5

−1

−0.5

0

0.5

1

time

u

variable stepsize

fixed setsize

Figure 2. Two-State Bang-Bang Problem with Variable Time Step

This problem was solved, as in the case of uniform time step (UTS), with 50 discretization
intervals, i.e. nd = 50, and the penalty weight on variation in uτ was set to kτ = 1/100.

The initial guess for this problem was taken from the solution of the baseline case in
Section 2.1.1, using the following script to add the additional two states and one control to
the input data:

32

S=importMADS(’bangbang1premads.dat’,’bangbang1out.dat’,0);
tau=p(length(S.p));
S.nuv=S.nuv+1; % more controls
S.nxv=S.nxv+2; % more states
S.npsi=7; % more boundary conditions
S.ncv=3; % more trajectory constraints
writepreMADS(S,’varsteppremads.dat’);
vout=adduxMADS(S.x,S.u,S.nxv,S.nuv,0)
vout=[vout;tau];
save varstepin.dat vout -ascii -double

Figure 2 displays details of the solution. The plot on the left displays uτ as a function
of time. The plot on the right compares details of the control trajectory for the UTS case
and the variable time step (VTS) case. The VTS does provide a clean “bang” and, in fact,
returns a very slight improvement in terminal time – 3.4495s versus 3.4502s for the UTS
case. It’s also interesting, but not surprising that the bang is initiated a little later for the
VTS case.

3.1.4 Eliminate the Bangs

As was pointed out in Section 2.1, various functions of state and control variables can be
formulated to take the place of “u” in f(x, u, p), and these can be manipulated to control
their temporal behavior; for example, limiting bandwidth. In this subsection, an alternate
approach to enforcing limits on control accelerations is described — in order to illustrate a
useful trick available to the user with the ME discretization.

The ME discretization can be adapted to provide a multistep delay buffer. Generally,
this can be used to implement a sliding temporal window along the trajectory on which the
problem formulation can impose conditions. For the current problem, we require three time
steps for building up a numerical estimate for ü, and implement the following differential
equations in xdot without time scaling:

v̇1 = 2nd(−v1 + u)
v̇2 = 2nd(−v2 + 2v1 − u)

}
(53)

where nd is the number of discretization intervals. These ODEs, when ME-discretized give,
at the kth instant,

(v1)k = uk−1, (v2)k = uk−2 (54)

Assuming a constant time step, ü at the (k − 1)th instant is approximately

ük−1 ≈
(
nd

τ

)2

(u− 2v1 + v2)k (55)

where nd is the number of discretization intervals, and the expression for u̇ is

u̇k ≈
(
nd

τ

)
(u− v1)k (56)

Obviously, this trick can easily be adapted to the case of variable time steps by appropriately
modifying the numerical differentiation formulae.

33

With these control derivatives in hand, the bandwidth of the optimal control solution
can be limited either through a slovenly penalty function approach, such as adding a term
like

φü =
∫ τ

0

(u− 2v1 + v2)2dτ (57)

to the cost function, or by imposing a constraint on some function of the acceleration.
As an illustration of the latter approach, we consider the trade between |ü|max – rather

than the rms-like acceleration measure in (57) – and system performance. This trade can
be explored either by fixing τ and minimizing |ü|max or vice versa. Pretend that our double-
integrator is actually a physical system, and that the value of |ü|max plays an important role
in its cost of manufacture. Pretend, further, that there is a range of potentially acceptable
τ and that we want to find the “knee in the curve” in the relationship between |ü|max and
τ . Since we know what τ we can tolerate, constrain τ and minimize |ü|max by solving the
problem of minimizing

φ = pddmax (phiobj) (58)

subject to

−pddmax ≤
(
nd
τ

)2 (u− 2v1 + v2)k ≤ pddmax (cineq)
pddmax ≥ 0 (psibc)

}
(59)

0 = ψτ = τ − τgiven (psibc) (60)

and, implemented in xdot and psibc,

ẋ1 = τx2,
ẋ2 = τu,
v̇1 = 2(−v1 + u),
v̇2 = 2(−v2 + 2v1 − u),

x1(0) = a, x1(1) = 0
x2(0) = b, x2(1) = 0

boundary values free
boundary values free

 (61)

Note that the acceleration constraints in (59) are indexed on the kth instant rather than the
(k + 1)th. This is necessary in order to have u in its proper place in the u, v1, v2 sequence
of points.

Finally, why specify τ via the constraint (60) rather than by merely using the constant
τgiven as the duration parameter? The lagrange multiplier associated with ψτgiven in (60) is
available from SNOPT (and hence, MADS) upon successfully converging a solution, and will
supply useful information in computing the trade between τgiven and |ü|max. In particular,
as is well-known, express a hypothetical cosntrained minimization problem as

x∗ = arg minc(x)=0 L(x)
L = φ(x)− λ(c(x)− δ)|δ=0

}
(62)

where δ is a hypothetical small variation in the constraint setting. By differentating L by δ
it’s easy to see that

L∗δ = λ∗ (63)

Thus, for our trade, the sensitivity of minimum peak control acceleration with respect to
fixed terminal time constraint setting is λ∗τ given.

Figure 3 displays solutions to this problem for several values of τgiven corresponding to
0.5%, 1%, 2%, and 5% degradation in τ from the perfect “bang-bang” value of τ = 3.4495s.
The plot on the right displays the resulting control histories for each τgiven. The plot on the
left displays a hermite spline that uses the pddmax solution data and the associated lagrange

34

3.45 3.5 3.55 3.6 3.65

2

4

6

8

10

12

14

16

τ (s)

pe
ak

 c
on

tr
ol

 a
cc

el
er

at
io

n
(1

/s
2)

hermite spline interpolation
MADS solution points

0 0.5 1 1.5 2 2.5 3 3.5
−1

−0.5

0

0.5

1

time (s)

u

0.5% degradation

1% degradation

2% degradation

5% degradation

Figure 3. Two-State Bang-Bang Problem with Variable Time Step

multipliers for (60) to provide an estimate of peak |ü| away from the MADS solutions. The
hermite spline used here is a cubic polynomial y(s) defined on the interval 0 ≤ s ≤ x that
satisfies the boundary conditions

y(0) = ȳ(0) y′(0) = ȳ′(x)
y(x) = ȳ(x) y′(x) = ȳ′(x)

}
(64)

where the barred quantities are data. Thus, the lagrange multpliers provide “free” data that
permit a cubic fit between pairs of solutions points, rather than the quartuples of solution
points that are needed with cubic splines that operate only on point values. In this case,
the ȳ are the constrained system performance, i.e. the peak acceleration magnitudes, and
the ȳ′ are the lagrange multipliers for the constraints (60). Table 3.1.4 displays the values
of τgiven, pddmax, and the lagrange multiplier λψτ .

Table 1. Data From MADS Solutions for Various Values of τgiven
τgiven pddmax λτ given

3.4668 15.598 −1.071(103)
3.4840 7.8212 −2.021(102)
3.5185 3.8812 −5.121(101)
3.6220 1.5223 -9.8350

3.1.5 Problem Summary

This example has provided several things useful to the aspiring MADS user. They are listed
below, associated with the subsection in which they appear:

35

1.1 1. Code fragments shown for casting a simple problem in MADS format. In particu-
lar, treatment of boundary conditions and cost is demonstrated, and an informal
discussion of measures to be taken in using an autodifferentiation code for prepar-
ing the model for MADS is given.

2. Description of obtaining an initial guess, including a warning that the user needs
to be wary of allowing free terminal time problems to freely vary terminal time.

3. The impact of fixed discretization stepsize on the fidelity with which discontinu-
ous phenomena are preserved from the continuous time problem is demonstrated.

1.2 1. Brief description of breaking the original problem into two subarcs in order to
recover the “bang-bang” control behavior is provided. Multiple-subarc problems
will be dealt with in more detail in the next example

1.3 1. Technique for allowing variable discretization time step in the context of a single
arc.

2. Demonstrated use of psibc to make state boundary values available to the system
differential equations.

1.4 1. Demonstration of using the structure of the midpoint euler discretization (kode =
0) to model time derivatives of the optimal control solution. This permits direct
manipulation of the temporal characteristics of the control without resorting to
ineffective artifices such as placing filters into the plant dynamics to bandlimit
the control.

2. Code for changing the structure of a single-phase MADS run’s output data to
provide an input guess for a MADS problem with that different structure. A
subsequent problem will demonstrate breaking a run into multiple phases and
changing the discretization density.

3. Demonstration of minimizing a variable’s maximum value. The same approach
can be used for constraining the same.

4. Demonstration and discussion of using lagrange multipliers that are output by
SNOPT to provide better continuous realization of the variation of constrained
system performance with constraint settings. This is of particular importance for
getting the best possible performnace surveys when it is not feasible to perform
a large number of MADS runs.

3.2 Goddard Problem

The Goddard problem [8] is a nonlinear optimal control problem in which a sounding rocket
travels vertically to maximize its peak altitude. For the version of the problem considered
here, the rocket flies through an atmosphere whose density decays expontially with altitude,
the trajectory is terminated at its peak altitude, and an inequality constraint is imposed
on the maximum dynamic pressure to which the rocket is exposed. The dynamics, taken
from [8], have nondimensionalized states r – radius from Earth’s center, V – speed, and m
– mass. The state equations are

ṙ = V (65)

V̇ =
T −D
m

− 1
r2

(66)

ṁ = −T/c, c = 1/2 (67)

36

where T is the control, thrust, satisfying

0 ≤ T ≤ 3.5 (68)

and D = KD q̄(r, V) is drag, with KD = 620, and

q̄ =
V 2

2
exp (β(1− r)) , β = 500 (69)

is dynamic pressure. The dynamic pressure constraint is simply

q̄max ≥ q̄(r, V) (70)

Note that this is a state inequality constraint; that is, the control, T , does not appear in
(70). The boundary conditions for the trajectory are

r(0) = 1 V (0) = 0 m(0) = 1
V (tf) = 0 m(tf) = 0.6

}
(71)

The problem is solved by determining the thrust history that maximizes the terminal altitude
when the rocket runs out of fuel; that is,

φ = −r(tf) (72)

Aside from the nonlinearity of the plant and the presence of a state inequality constraint,
the problem introduces us to an additional complication in the form of a “singular arc,”
described in Chapter 8 of [5]. Loosely speaking, a singular arc is a finite-length subinterval of
a continuous-time optimal trajectory during which the trajectory cost function’s sensitivity
to control vanishes to first order. In other words, to first order, the optimal control problem
simply doesn’t care what the control does during a singular arc. There is, indeed, an optimal
solution for the control, but its computation typically requires recourse to the calculus
of variations (COV) to obtain higher-order necessary conditions for optimality, which are
solved as a system of equations. The MADS user, on the other hand, uses first derivative
information to directly minimize the cost function via NLP. In this case, it will be seen that
the singular arc exhibits itself by a tendency toward ugly, jittery, behavior in the control
during the singular arc.

This example will carry the user through solving the Goddard problem several different
ways, and at several different levels of complexity. Although the basic problem is nearly
trivial to solve, the user does have choices available in how to organize plant and inequality
constraints, whether to suppress numerical artifacts in the control during singular arcs, or
whether to optimze the distribution of discretization intervals to improve accuracy.

Before beginning the Goddard solutions, we propose guidelines for coding them – and
the user’s own problems. There are three main considerations in setting up problems in
MADS.

• Separate Plant Code:
There are typically more states and controls in the optimization problem than in the
plant model. This was seen in the min-time linear problem of Subsection 3.1, and
will be particularly seen in the Goddard problem. Because of this, the plant-specific
modelling – particularly the plant dynamics – should be coded separately, to facilitate
reliable re-use.

• Named Scalars from Vectors:
Nonlinear models are characterized by scalar computations. Therefore, readability of
code will be enhanced by separating these variables out from MADS state, control,
and parameter vectors. For example, if xv = [r, V, m] is the state vector, then the
plant dynamics will be more readable using scalars than vector references.

37

r=xv(1)
V=xv(2)
m=xv(3)
T=uv(1)
D=620*exp(500*(1-r))*V**2/2
fv(1)=r
fv(2)=(T-D)/m-1/r**2
fv(3)=2*T

This is still seriously flawed, though. Consistent naming is needed throughout the
problem code, and hardwiring this variable name indexing scheme in each MADS user
routine would be horribly fragile; moreover, hardwiring plant dynamical parameters
reduces code clarity and makes it difficult to update the model.

• Use a MODULE to Set Indices and Parameters:
MADS uses four user-supplied routines to instantiate any trajectory problem, and
plant information is used by each of them, so that having a single location in the
user code for defining shared indices and parameters is essential. The FORTRAN
MODULE provides an easy means to have such sharing. For our example,

module rocketMOD
implicit none ! enforce strong typing (highly recommended!)
integer,parameter :: & ! ‘‘parameters’’ are compile-time fixed constants
& locr=1, & ! radius
& locV=2, & ! speed
& Locm=3, & ! mass
& locT=1, & ! thrust (control)
& nxp=3, & ! plant state dimension
& nup=1, & ! plant control dimension
& kxp=1, & ! index beginning plant state
& kup=1 ! index beginning plant control

real(8),parameter :: &
& KD=620, & ! drag coefficient
& beta=500, & ! atmospheric density lapse rate
& ISP=0.5D0, & ! specific impulse
& mEmpty=0.6D0, & ! rocket empty mass
& Tmin=0, & ! min thrust
& Tmax=3.5D0 ! max thrust
end module rocketMOD

This permits us to rewrite the plant dynamics as

subroutine rocket(xp,up,fp)
! note that ‘‘only’’ keyword prevents ‘‘rocket’’
! from seeing nxp, nup, mEmpty, Tmin, Tmax

use rocketMOD,only : locr,locV,locm,locT,KD,beta,ISP
implicit none
real(8),intent(in) :: xp(3),up(1) ! state and control
real(8),intent(out) :: fp(3) ! state rate
real(8) :: r,V,m,T,D
r=xp(locr)

38

V=xp(locV)
m=xp(locm)
T=up(locT)
D=KD*exp(beta*(1-r))*V**2/2
fp(locr)=V
fp(locV)=(T-D)/m-1/r**2
fp(locm)=T/ISP
end subroutine rocket

This approach is used throughout the examples, described below. Note that the source
code for each example is located in Appendix GoddardAppx.

The organization of the remainder of this Section is as follows: In Subection 3.2.1, an
initial guess for the problem is generated. Next, (Subsection 3.2.2,) the problem is solved
directly, with and without a dynamic pressure constraint. Subsection 3.2.3 introduces an
adhoc but effective penalty function which can be used to correct singlarity-induced freaks
in the direct solution.

3.2.1 Obtaining an Initial Guess

Because the problem is substantially nonlinear, it will not do to simply choose random
numbers as the initial guess for the Goddard problem. Yet, at the same time, we would
prefer to keep the initial guess workload as low as possible. Experience indicates that
boundary conditions are frequently the most difficult constraints to satisfy in generating a
feasible trajectory in MADS. If an optimal MADS trajectory can be obtained for boundary
conditions that have been “relaxed” in some way by starting from a random initial guess,
perhaps such a solution will be an adequate initial guess for the problem with boundary
conditions enforced.

It is reasonable to initially try solving a trajectory problem with the rocket dynamics as
per (65-67) and cost function (72), but with the boundary conditions relaxed. This is done
by moving them over to cost as penalty terms:

φ = −r(tf) +K ∗ (r(0)− 1)2 + V 2(0) + V 2(tf) + (m(0)− 1)2 + (m(tf)− 0.6)2 (73)

where K > 0.
The highlights of the code are summarized below. Since this is a problem with free ter-

minal time, the trajectory duration is introduced as an element of the MADS pv vector, and
used to scale the RHS of the plant differential equations. The code fragment in subroutine
xdot is

call rocket(xv(kxp),uv(kup),fv(kxp))
tau=pv(loctau)
fv=tau*fv

The code implementing (68) in subroutine cineq is

if(iecinflag.EQ.1)then
iecinv=1 ! all cineq constraints are inequalities
return

endif
T=uv(locT)
cv(1)=Tmax-T
cv(2)=T-Tmin

39

and the implementation of the cost function (73) in subroutine phiobj is

r0=xbc(k0(1)+locr)
rf=xbc(kf(1)+locr)
V0=xbc(k0(1)+locV)
Vf=xbc(kf(1)+locV)
m0=xbc(k0(1)+locm)
mf=xbc(kf(1)+locm)
phi=-rf+K*((r0-1)**2+V0**2+Vf**2+(m0-1)**2+(mf-mEmpty)**2)

For this problem, psibc implements only a constraint ensuring that optimal duration τ∗ is
not zero or negative:

ψ = τ − τmin > 0 (74)

The parameters τmin and mEmpty pertain to the problem definition, rather than the plant
description. As such, they are placed in a separate module file:

subroutine GGUESSMOD
implicit none
real(8) :: &
& taumin, &
& K
end GGUESSMOD

An initial guess for this problem is generated from random numbers in makeGGUESS.m,
given in the Appendix, is essentially

randmag=0.01
P.nxv=3;
P.nuv=1;
P.nav=2;
P.ndv=200;
P.np=1;
P.nph=1;
P.kodev=0;
P.nbc=1;
vin=randguessMADS(P.nxv,P.nuv,P.ndv,P.np,randmag)+1;
save GGUESS_vin.dat vin -ascii -double
name=’GGUESS_premads.dat’;
writepremadsMADS(P,name)

The files generated by this code correspond to the main routine code

program GGUESS
use GGUESSMOD,only : taumin,K
taumin=1D-4
K=100
Finput=13
open(13,file=’GGUESS_vin.dat’,status=’old’)
Fpremads=14
open(14,file=’GGUESS_premads.dat’,status=’old’)
Foutput=15
open(15,file=’GGUESS_vout.dat’,status=’unknown’)
call batchMADS(Finput,Fpremads,Foutput,info)
end program GGUESS

40

Finally, the solution is organized for plotting in Matlab by executing

S=importMADS(’GGUESS_premadst.dat’,’GGUESS_vout.dat’,0)

where S contains the solution data in a form suitable for graphics. The details of importMADS,
recall, are given in Section 1.3.2.

0 0.05 0.1 0.15 0.2
1.005

1.01

1.015

1.02

1.025

1.03

1.035

V

r

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5

2

2.5

3

3.5

time

T

Figure 4. Initial Guess for Goddard Problem

Figure 4 displays the solution to this problem. Note that the altitude boundary condi-
tions are seriously violated, and that the thrust profile is substantially different from that
in Figure 5, lacking the intermediate thrust arc that appears in the optimal solution. Ef-
fectively, the solution has moved the starting point for the trajectory to a higher altitude,
where the atmosphere is thinner, reducing drag, so that the “bang-bang” thrust solution
produces optimal altitude gain.
This section has provided the following:

• It has provided and illustrated advice on organizing a MADS problem. The key points
are –

1. Separate plant-related code from the rest of the MADS problem code, because
the MADS formulation may introduce additional states, control, and parameters.

2. Provide a consistent, globally available, index to identify each individual element
of state, control, and parameter vectors.

3. Place these in MODULEs, separating the MODULE or MODULEs dedicated to the plant
dynamics from those that will carry values related only to the particular problem
formulation.

• It has discussed a philosphy for starting MADS solutions from initial guesses that
consist only of random numbers. This was demonstrated by posing a problem with
boundary conditions eliminated and replaced by a penalty function. While we do not
claim that it will always work, it’s a good place to start.

41

3.2.2 Simple Solution with Dynamic Pressure Constraint

This subsection provides the direct, unconstrained solution for the Goddard problem, and
demonstrates two approaches for imposing constraints that involve states in cineq. The
unconstrained problem is posed by retaining xdot and cineq from Subsection 3.2.1, and
moving the boundary conditions from the penalty function (73) to psibc from phiobj. In
psibc,

if(iebcflag.EQ.1)then
iebcvec=0 ! The boundary conditions are equalities
iebcvec(6)=1 ! The constraint on tau versus taumin is inequality
return

endif
psi(1)=xbc(k0(1)+locr)-1
psi(2)=xbc(k0(1)+locV)
psi(3)=xbc(k0(1)+locm)-1
psi(4)=xbc(kf(1)+locV) ! Not theoretically necessary, but sharpens the problem
psi(5)=xbc(kf(1)+locm)-mEmpty
psi(6)=pv(loctau)-taumin

and, in phiobj,

phi=-xbc(kf(1)+locr)

Note that for the very simple and unrepetitive expressions in psibc and phiobj, here,
we’ve not bothered to break out individually named scalar variables. The code, as written,
is perfectly readable.

Assuming that the initial guess has been stored in GGUESS.mat as a importMADS struc-
ture “S,” the script for setting up the inputs for the MADS run will be

load GGUESS % Assume this .mat file contains the structure S from using
% importMADS on GGUESS_vout.dat and GGUESS_premads.dat

randmag=0.0;
P=S; % Mostly, this problem is structured the same as GGUESS.
P.nbc=6; % This problem has a different number of boundary conditions
vin=adduxMADS(S.x{1},S.u{1},P.nxv,P.nuv,randmag); % This reorganizes S.x and

% S.u back into a vector...
vin=[vin;S.p]; % and the duration parameter is tacked onto the end
save G1unc_vin.dat vin -ascii -double
name=’G1unc_premads.dat’;
writepremads(P,name)

We now solve the problem, operate on the output and “premads” files with importMADS,
and save the resulting structure in G1unc.mat. Figure 5 displays the resulting altitude/speed
and thrust plots. The most noticeable feature of the displayed solution is the noisy appear-
ance of the thrust history. Why is this? The optimal trajectory for this case is “singular”,
and can be explained by informal appeal to variational optimal control theory.

In variational optimal control, the Minimum Principle [6], [7], states that the optimal
trajectory minimizes the problem’s hamiltonian function, H, where, for ẋ = f(x, u),

H = λT f(x, u), λ̇ = −fTx λ (75)

42

0 0.05 0.1 0.15
1

1.005

1.01

1.015

V

r

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

2.5

3

3.5

time
T

Figure 5. Goddard Solution Without Dynamic Pressure Constraint

and λ is a vector roughly analogous to the instantaneous value of trajectory of lagrange
multipliers. Because H is to be minimized by thrust T (t), its partial derivative trajectory
HT provides a useful diagnostic. When HT 6= 0, optimality requires

T ∗ =

 Tmin for HT > 0
Tmax for HT < 0

some intermediate value for HT = 0
(76)

The “singularity” in this problem arises from the fact that, since T enters the dynamics
linearly in (66), T is absent from HT , so that it cannot be used to determine optimal T ∗.
Additionally, HTT is identically zero (hence singularity.) In practical terms, up to second
order, the optimal trajectory simply “doesn’t care” about the particular value of T when
H = 0. This, in turn, means that for our direct minimization solution process, the absence of
performance impact due to thrust deprives the solution iterations information necessary to
settle on a locally unique thrust trajctory, even though those iterations satisfy the solution
algorithm’s convergence criteria.

Figure 6 displays the optimal trajectory ofHT for this problem, and the sequence of Tmax,
followed by some intermediate value, followed by Tmin is clear. This Figure, incidentally,
was generated by using MADS to emulate a variational solution to the Goddard problem,
posing a discretization of the variational necessary conditions for optimal control as a penalty
function to be minimized by meeting the boundary conditions and constraints.

This singular behavior is not a mere curiosity. It most frequently occurs in problems in
which the dynamics are linear in one or more control variables – a category that includes
aerospace systems that involve propulsion. An extremely coarse cure for this issue would
be to introduce a nonlinearity in T into the problem dynamics, such as an integral thrust

43

0 0.05 0.1 0.15 0.2
−0.05

0

0.05

0.1

0.15

0.2

time

∂
H

* /∂
 T

Figure 6. Hamiltonian Thrust Partial Derivative for Goddard Problem

penalty,

φpenalty = −r(τ) +
∫ τ

0

T 2dt (77)

Such a penalty would cure the thrust jitters, since the additional state for the penalty
integral is nonlinear in T . The cure comes at the cost, however, of moving the performance
goal away from maximizing the terminal altitude, and toward minimizing thrust usage. We
are no longer solving the original problem. Short of adopting a full variational solution,
it is best to introduce the needed nonlinearity in a way that only neglibly affects optimal
performance, particularly during the nonsingular problem phases.

Let’s introduce a dynamic pressure constraint:

q̄max − q̄(r, V) ≥ 0
q̄ = V 2

2 exp(β(1− r))

}
(78)

This is the first instance, in this tutorial, of a state inequality constraint. Since, in MADS,
control is held constant across each discretization interval, expressing a control-only in-
equality is straightforward. What of the case where states are involved in the constraint
expression, as in (78)? States appear at different instants in cineq, and in the discretization
logic that calls xdot. In cineq the state is available at the beginning (xj) and end (xjp1) of
each discretization interval. Depending on the value of kode, xdot may be called with the
midpoint average (xj + xjp1)/2, for kode = 0, or with several extrapolated values, when
using the Runge Kutta (RK) discretizations, kode = 1, 2.

In the case.of the RK discretizations, there is no choice but to compute inequality con-
straint quantities in cineq using state values from xj or xjp1. In the mindpoint Euler
case, however, the user has the option of computing a constraint quantity, say “y,” in xdot,
assigning a state, say xv(locy), to it and using an expression like

44

fv(locy) = 2 ∗ nk ∗ (y− xv(locy))

to propagate it, so that the current value of y is available to cineq at xjp1(locy). Recall
that we introduced this trick in the Minimum-Time Double Integrator problem in Subsection
2.1.4.

Why would one chose to compute y this way? The most direct motivation for doing
this would be when computation of y is tightly integrated with the software called in xdot
for computing the RHS of the plant ODEs. Extracting y from the existing plant dynamics
computations might be preferable, from a software point of view, to redundantly coding the
logic for computing y. Furthermore, if the computation of y is not only tightly integrated
with the plant dynamics, but also expensive, the user has further incentive to compute y in
xdot.

If the user chooses to set the problem up with cineq-related quantities computed in xdot,
it must be remembered that they’re being computed at the midpoint of the integration
interval, i.e. at (xj+xjp1)/2 in the notation of the cineq argument list. The practical
implications of this are explored in the remainder of this example.

The dynamic pressure constraint (78) is implemented in subroutine calcqbar:

subroutine calcqbar(xv,qbar)
use rocketMOD,only : c,kD,beta,locr,locV,nxp
implicit none
real(8),intent(in) :: xv(nxp)
real(8),intent(out) :: qbar
real(8) :: dexp
real(8),parameter :: ONE=1.D0

real(8) :: r,V
r=xv(locr)
V=xv(locV)
qbar=dexp(beta*(ONE-r))*V**2/2
end subroutine calcqbar

For the formulation in which qbar is computed in xdot with kodev=0, the relevant lines of
xdot and cineq are

real(8) :: tau,qbar
call rocket(xv(kxp),uv(kup),fv(kxp))
tau=pv(loctau)
fv(kMain)=tau*fv(kMain)
call calcqbar(xv(kxp),qbar)
fv(locqbarm)=2*nk*(qbar-xv(locqbarm))

and

if(iecflg.EQ.1)then
iecin=1
return

endif
cv(1)=Tmax-uv(locT)
cv(2)=uv(locT)-Tmin
cv(3)=qbarmax-xjp1(locqbarm)

respectively. With qbar computed in cineq, the code in xdot is

45

call rocket(xv(kxp),uv(kup),fv(kxp))
tau=pv(loctau)
fv=tau*fv

and

if(iecflg.EQ.1)then
iecin=1
return

endif
cv(1)=Tmax-uv(locT)
cv(2)=uv(locT)-Tmin
call calcqbar(xj(kxp),qbar)
cv(3)=qbarmax-qbar

Note the differences in xdot. For the kodev=0 case, (the former,) the time scaling is
restricted to fv(kMain), rather than to all of fv. The index vector is set in G1MOD.f90,
given below:

module G1MOD
use rocketMOD,only : nxp
implicit none

integer,parameter :: &
& locqbarm=nxp+1 ! state for carrying qbar to cineq

integer,parameter :: &
& loctau=1 ! time-scaling parameter in pv

real(8),parameter :: &
& mfinal=0.6D0 ! empty mass

integer :: kmod
integer,parameter :: & ! indices identifying states to be time-scaled. The

! lag state carrying qbar is *not* time-scaled.
& kMain(nxp)=(/(kmod,kmod=1,nxp)/)

real(8) :: &
& taumin, & !
& qbarmax !
end module G1MOD\

The index vector kMain is initialized to kMain=[1,2,3], above, and the state variable for
passing qbar is given the index locqbarm=nxp+1, appending it the plant state vector as a
fourth state.

Both of the above versions of the qbar-constrained problem were started using the uncon-
strained solution as an initial guess. For the former case, the additional state xv(locqbarm)
was added to the input guess vector using the script

S=importMADS(’G1unc_premads.dat’,’G1unc_vout.dat’,0);
randmag=0.0;
P.nxv=4; % note additional state
P.nuv=S.nuv;

46

P.nav=3; % additional inequality constraint
P.ndv=S.ndv;
P.np=S.np;
P.nph=S.nph;
P.kodev=S.kodev;
P.nbc=S.nbc;
vin=adduxMADS(S.x{1},S.u{1},P.nxv,P.nuv,randmag); % This will add a state
vin=[vin;S.p];
save G1_vin.dat vin -ascii -double
name=’G1_premads.dat’;
writepremads(P,name)

The script converts the “G1unc” output from a column vector to a importMADS structure,
and then uses “adduxMADS” to create a new vector with the fourth state appended.

0 0.1 0.2
0

5

10

time

qb
ar

 (
X

 1
0−

4)

0 0.1 0.2
0

1

2

3

T

time
0 0.1 0.2

0

1

2

3

T

time

0

5

10

qb
ar

 (
X

 1
0−

4)

0

1

2

3

T

0

1

2

3
T

0

5

10

qb
ar

 (
X

 1
0−

4)

0

1

2

3

T

qbar in xdot
0

1

2

3

T

qbar in cineq

Figure 7. Thrust Solution Behavior for Several Values of qbarmax

Figure 7 compares the behavior of the optimized thrust for several values of qbarmax
(unconstrained maximum q̄ is roughly 1.2(10−3), and for q̄ computed in xdot versus q̄ com-
puted in cineq. Scanning from the left, the first column displays the q̄ histories (taken from
the cases where q̄ was computed in cineq). The middle column displays the corresponding
optimized thrust histories where q̄ was computed in xdot, and the third column shows the
corresponding thrust histories with q̄ computed in cineq. All of these runs successfully
converged.

47

Obviously, Figure 7 demonstrates that computing the state constraint quantity in xdot
leaves the user vulnerable to misbehavior in the control solution. The reason for this is that
satisfying the constraint at the midpoint of each discretization interval does not guarantee
that the constraint rate is zeroed. At this point, Murphy’s Law takes charge. This does not
necessarily mean that it never makes sense to compute the constraint quantity in xdot, but
it certainly indicates that additional measures need to be taken in this case, before the user
can be confident of acceptable results.

There is more to be seen in this Figure. Observe how the q̄ profile for qbarmax = 7(10−4)
falls off at the end of the active constraint arc, signalling a probable singular arc. This
tentative diagnosis is supported by the choppy behavior of the thrust solution in column
three. Alternatively, for qbarmax = 5(10−4), the active constraint arc completely eliminates
the singular arc, giving a very crisp Tmax−constrained−Tmin thrust profile. For qbarmax =
7(10−4), however, close examination of the thrust profile shows a little rounding of the thrust
history near the end of the active constraint arc. Is this a very short singular arc? The
only way to tell for sure is by solving the corrsponding variational optimal control problem,
which can be quite intricate, per Chapter 8 of [5].

The user may very likely not care about the forensic details that are opened up by a full
variational analysis, but would just like to tame bad control behavior on singular arcs. One
way of doing this is assign a penalty function designed to suppress jitter without interfering
with large control movements. This approach is described in the sequel. Before proceeding,
quickly review what has been introduced in this Subsection:

• Two different approaches for imposing a state inequality constraint were described
and demonstrated, and pros and cons of each were discussed.

• One approach (computing constraint quantities in xdot) requires an additional state.
Logic for adding states to an input guess was demonstrated.

• Logic for restricting time scaling of the state derivative to a subset of the states was
shown.

3.2.3 A Penalty Function to Smooth Out Singular Jitter

The easiest, and least elegant, way to suppress singularity-induced control jitter is to pe-
nalize it. Looking at Figure 7, the reader will agree that control jitter is characterized by
persistent, large, acceleration; so, it would make sense to penalize control acceleration. At
the same time, however, it would be best if the penalty did not suppress or distort the rapid
“bang-bang” control shifts associated with leaving Tmax and moving to Tmin; they are, after
all, optimal. A compromise penalty would penalize control acceleration more heavily when
control rates are low, with the expectation that superfluous acceleration (jitter) would dis-
appear, leaving necessary accleration (step changes) relatively intact. Such a penalty would
take the form

Jpen =
∫ 1

0

ü2

εpen + u̇2
dt (79)

where it should be noted that we recommend that the penalty state be integrated from 0 to
1, i.e., without time scaling. This could be implemented directly by redefining the control
variable to be thrust acceleration, i.e., u = T̈ and appropriately introducing additional
states to realize (79) and T . MADS approximates (79) in subroutine ddpenMADS, which
differences across time steps to model acceleration and rates:

d

dt
Jddpen =

a2

εpen + v2
− + v2

+

,

 a = Tk − 2Tk−1 + Tk−2

v− = Tk−1 − Tk−2

v+ = Tk − Tk−1

(80)

48

where the (·)k subscripts denote the time index in MADS. Implementing the time differ-
encing in ddpenMADS requires three states, and the penalty integral introduces a fourth
state.

This penalty is applied to the problem of Subsection 3.2.2 by adding the states needed
for ddpenMADS and Jddpen, and including the penalty in the performance index:

φ = −r(τ) +KpenJddpen(1) (81)

where Kpen ≥ 0 is user-specified. The variables are organized in

module SLO1MOD
use rocketMOD,only : nxp
implicit none

integer,parameter :: &
& locqbarm=nxp+1, & ! carry qbar to cineq (4)
& locddpv=locqbarm+1, & ! 3-element state for ddpen (5)
& locddpint=locddpv+3 ! ddpen penalty integral (8)

integer,parameter :: &
& loctau=1 ! time-scaling parameter in pv

integer :: kmod
integer,parameter :: & ! indices identifying states to be time-scaled. The

! ddpen states not time-scaled.
& kMain(nxp)=(/(kmod,kmod=1,nxp)/)

real(8) :: &
& taumin, & !
& qbarmax, & !
& epsvdd, & ! denominator bias term in ddpen
& Kddp ! weighting term for ddpen penalty
end module SLO1MOD

and the logic in xdot becomes

call rocket(xv(kxp),uv(kup),fv(kxp))
call calcqbar(xv(kxp),qbar)
fv(locqbarm)=2*nk*(qbar-xv(locqbarm))

! Note that 4th argument of ddpenMADS is ‘‘3’’ That is the number of
! states that the user needs to make available to ddpenMADS, and the
! subroutine checks to see that the user has at least declared that he has
! provided the right number of states.

call ddpenMADS(nk,uv(kxp),xv(locddpv),3,epsvdd,fv(locddpv),fv(locddpint))

tau=pv(loctau)
fv(kMain)=tau*fv(kMain)

there is no change in cineq, but the integral state Jddpen does require a zero initial condition,
so that the logic becomes

psi(1)=xbc(k0(1)+locr)-1
psi(2)=xbc(k0(1)+locV)

49

psi(3)=xbc(k0(1)+locm)-1
psi(4)=xbc(k0(1)+locddpint) ! zero I.C. for penalty integral
psi(5)=xbc(kf(1)+locV)
psi(6)=xbc(kf(1)+locm)-mfinal
psi(7)=pv(loctau)-taumin

The cost function is implemented in phiobj as

rf=xbc(kf(1)+locr)
phi=-rf + Kddp*xbc(kf(1)+locddpint)

Unconstrained solutions for Kpen = {10−3, 10−2, 10−1} and εpen = 10−2 were obtained using
the solution from Figure 5 as an initial guess, and the results are displayed in Figure 8. The
left panel dispays the falloff in altitude performance as percentages for the several values of
Kpen. The right panel displays the T time histories for the Kpen = 10−3 and 10−1 cases.
If one enlarges the thrust profile for Kpen = 10−3, small jitters are visible, but there is a
substantial improvement from the behavior shown in Figure 5. The profile for Kpen = 10−1

is smooth, but shows very little similarity to the optimal solution. Nonetheless, referring
to the Figure’s left panel, there is only 0.03% degradation in altitude performance. This is
a consequence of the presence of the singular arc – recall that the optimal performance is
almost entirely insensitive to the particular thrust profile over a significant portion of the
trajectory.

−3 −2 −1
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

K
 pen

 exponent

P
er

ce
nt

 A
lti

tu
de

 D
eg

ra
da

tio
n

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

2.5

3

3.5

time

T

Kpen=1e−3
Kpen=1e−1

Figure 8. Variation of Altitude Performance and Thrust Behavior with Kpen

Solutions were next generated using the jitter penalty, for the same values of qbarmax
as those displayed in Figure 7. Figure 9 displays the resulting thrust profiles. In the left
column of the Figure, all runs used the solution for Kpen = 10−3 from Figure 8 as the
initial guess, and Kpen and εpen were selected as displayed on each panel. The Figure’s right
column display thrust for the case where the solutions were “walked in,” i.e., the solution for

50

qbarmax = 9(10−4) is started from the unconstrained case, that for qbarmax = 7(10−4) is
started from the solution for qbarmax = 9(10−4), and so on. We see that the latter approach
provides cleaner-looking solutions for less intrusive Kpen, εpen settings.

0 0.05 0.1 0.15 0.2
0

1

2

3
K

pen
=1

ε
pen

=10−1

qbarmax=5e−4

time

T

0 0.05 0.1 0.15 0.2
0

1

2

3
K

pen
=10−2

ε
pen

=10−1

time

0

1

2

3
K

pen
=10−2

ε
pen

=10−1

qbarmax=7e−4

T

0

1

2

3
K

pen
=10−3

ε
pen

=10−1

0

1

2

3

T

K
pen

=10−2

ε
pen

=10−1

qbarmax=9e−4
0

1

2

3
K

pen
=10−2

ε
pen

=10−1

Figure 9. Comparison of q̄-constrained Thrust Profiles with Jitter Penalty

We most particularly note, however, that all of these q̄-constrained runs required heavier
jitter penalties than the unconstrained case from Figure 8. Recall that, in the unconstrained
case, the singular arc jitter exists because the optimization is largely oblivious to the value of
T ; therefore, a very small penalty suffices to correct the jitter. In the actively q̄-constrained
cases, the optimization is taking advantage of the midpoint Euler discretization , settling
on a choppy T solution to maximize terminal altitude. A heavier penalty is required to
compete with this, and the overall T solution suffers additional distortion.

Before proceeding further, let’s review where we are in solving the Goddard problem.
We saw in Figure 8 that, using ddpenMADS, we could obtain a fairly clean, fairly undistorted
unconstrained solution. We also saw that, even if we did penalize singularity-induced jitter
so heavily that the thrust profile changed significantly from the true optimal solution, it
wouldn’t matter have much impact on performance. In imposing an inequality constraint
on q̄, we saw, from Figure 7, that we had our best results computing the constraint in cineq
rather than in xdot. The trajectory for qbarmax = 9(10−4), though, is marred by an untidy
singular arc that follows the active constraint arc.

What can be done about this latter case? The simplest thing would be to apply a
ddpenMADS penalty to the problem, while using cineq to compute q̄. The result, for Kpen =
10−4, εpen = 10−2 is shown in Figure 10. Like the lightly penalized unconstrained case
in Figure 8, it provides a “pretty good” solution, probably good enough for any practical
application.

What – in all of these singular cases – if we want cleaner results? Consider, again, the
qbarmax = 9(10−4) case from Figure 7. It is easy to see that the optimal trajectory goes
through four distinct phases: max thrust – max q̄ – singular arc – min thrust. Conceptually,
we could partition the trajectory and apply each phase’s appropriate constraints, one at a

51

0 0.05 0.1 0.15 0.2
0

2

4

6

8

10

x 10
−4

time

qb
ar

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

2.5

3

3.5

time
T

Figure 10. Comparison of q̄-constrained Thrust Profiles with Jitter Penalty

time: Require:

Phase 1 . . . Tmax = T, qbarmax ≥ q̄
Phase 2 . . . Tmax ≥ T ≥ Tmin, qbarmax = q̄

Phase 3 . . . Tmax ≥ T ≥ Tmin, qbarmax ≥ q̄, ddpenMADS

{
Kpen = 10−4

εpen = 10−1

Phase 4 . . . T ≥ Tmin, qbarmax ≥ q̄

The result is shown in the upper plots in Figure 11. The lower pair of plots in the Figure
are the data from Figure 10. There are clearly some differences between the two problem
formulations, but we will defer their discussion until after showing code fragments for setting
up the four-phase problem.

Multi-phase problems have several key differences from single-phase problems, that must
be kept in mind:

1. Each phase will have its own duration. For this problem, the relevant lines of xdot
are

call rocket(xv(kxp),uv(kup),fv(kxp))
tau=pv(loctau0+kph)
fv(kMain)=tau*fv(kMain) ! time-scale only the rocket plant states

if(kph.EQ.3)then
call ddpenMADS(nk,uv(locT),xv(locddpv),3,epsvdd,fv(locddpv),fv(locddpint))

endif

where loctau0 is set in the problem’s MODULE file as

52

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

time

qb
ar

 ×
 1

03

0 0.05 0.1 0.15 0.2
0

1

2

3

T
time

0

0.2

0.4

0.6

0.8

1
qb

ar
 ×

 1
03

0

1

2

3

T

Figure 11. Comparison of One- and Four-Phase q̄-constrained Cases with Jitter Penalty

integer,parameter :: &
& loctau0=0 ! zero-base pointer for the taus for four phases

2. Each phase may have a different pattern of equality and inequality constraints in
cineq. Here,

if(iecflg.EQ.1)then
select case(kph)
case(1)
iecin=(/0,1/) ! Tmax, q bounded

case(2)
iecin=(/1,1,0/) ! T bounded, qmax

case(3)
iecin=(/1,1,1/) ! T and q bounded (singular)

case(4)
iecin=(/0,1/) ! Tmin, q bounded

end select
return

endif

call calcqbar(xj(kxp),qbar)
select case(kph)
case(1)
cv(1)=Tmax-uv(locT) ! T=Tmax
cv(2)=qbarmax-qbar ! qbarmax >= qbar

case(2)
cv(1)=Tmax-uv(locT) ! Tmax>=T

53

cv(2)=uv(locT)-Tmin ! T>=Tmin
cv(3)=qbarmax-qbar ! qbarmax=qbar

case(3)
cv(1)=Tmax-uv(locT) ! Tmax>=T
cv(2)=uv(locT)-Tmin ! T>=Tmin
cv(3)=qbarmax-qbar ! qbarmax>=qbar

case(4)
cv(1)=Tmin-uv(locT) ! T=Tmin
cv(2)=qbarmax-qbar ! qbarmax>=qbar

end select

3. If the user is constructing the multi-phase problem from a single-phase one, it is critical
not to forget that terminal boundary conditions no longer occur for xbc(kf(1)+ . . .).
This is very easy to forget. The best policy is to express terminal values in terms of
xbc(kf(nph)+ . . .). This is always correct, regardless of changes to the problem code.
For phiobj, the code becomes

rf=xbc(kf(nph)+locr)
phi=-rf + Kddp*xbc(kf(3)+locddpint) ! ddpenMADS only on phase 3

Note that because the ddpenMADS states only exist during phase three, the terminal
value of the penalty integral is hard-wired to that phase.

4. A multi-phase problem introduces boundary conditions at the intermediate phase
boundaries. In this case, we require that the plant states be continuous, and we
need to initialize the penalty integral – xv(locddpint), referred to in phiobj, above
– to zero at the beginning of the third phase. The easiest way to handle continuity
boundary conditions is to set up an index vector. Suppose that states 1, 3, and 4 are
to be continuous across the phase 1/2 boundary. Define

integer,parameter :: k134(3)=(/1,3,4/)

and use it in psibc as follows:

psi(kpsi+k134)=xbc(kf(1)+k134)-xbc(k0(2)+k134)
kpsi=kpsi+3

where kpsi at the beginning of the code fragment was the number of psi elements
defined thus far. For our problem, the relevant lines of psibc are

if(iebcflag.EQ.1)then
iebc=0
iebc(16:19)=1
return

endif
! initial conditions

psi(1)=xbc(k0(1)+locr)-1
psi(2)=xbc(k0(1)+locV)
psi(3)=xbc(k0(1)+locm)-1
kpsi=3 ! 3

! continuity of plant traj from Tmax to qmax arcs

54

psi(kpsi+kMain)=xbc(kf(1)+kMain)-xbc(k0(2)+kMain)
kpsi=kpsi+nxp ! 6

! continuity from qmax to singular
psi(kpsi+kMain)=xbc(kf(2)+kMain)-xbc(k0(3)+kMain)
kpsi=kpsi+nxp ! 9

! initial condition for ddpenMADS integral
psi(kpsi+1)=xbc(k0(3)+locddpint)
kpsi=kpsi+1 ! 10

! continuity from singular to Tmin
psi(kpsi+kMain)=xbc(kf(3)+kMain)-xbc(k0(4)+kMain)
kpsi=kpsi+nxp ! 13

! terminal conditions
psi(kpsi+1)=xbc(kf(nph)+locV)
psi(kpsi+2)=xbc(kf(nph)+locm)-mEmpty
kpsi=kpsi+2 ! 15

! bounds on taus
do k=1,nph
psi(kpsi+k)=pv(loctau0+k)-taumin

enddo
kpsi=kpsi+nph ! 19

Note, in the fragment above, the initialization of the penalty integral as psi(10) and
imposition of τj ≥ taumin, j = 1, nph. The index vector kMain has already been
defined for use in time-scaling the plant equations of motion.

Although this multi-phase problem has a substantially more complicated temporal struc-
ture than the corresponding single phase one, it is easy to create an initial guess, starting
from a compatible single phase solution. Assume that we are starting from the solution for
qbarmax = 9(10−4), from Figure 7, in the upper right corner. The first step in preparing
the initial guess for for the multi-phase problem is to plot whatever variable (frequently a
control) most clearly displays the switching structure, simply against index, e.g.,

S=importMADS(’SinglePhase_premads.dat’,’SinglePhase_vout.dat’,0);
plot(S.u{1});grid on;

The user then observes the index number(s) where the structure changes, and records them.
For this problem, we have bv=[19 62 77] for four phases. The “S” structure and bv are
saved together:

save SinglePhase S bv

and that .mat file is made available to a script like

load SinglePhase % provide S and bv
tau=S.p;
bout=breaktrajMADS(S.x{1},S.u{1},bv,tau); % Note that

% construct dimensions for four-phase initial guess
P.nxv=[3 3 7 3]; % extra states for ddpenMADS in singular arc
P.nuv=[1 1 1 1];
P.nav=[2 3 3 2]; % see cineq...
P.kodev=[0 0 0 0]; % kodev only *needs* to be 0 during phase 3
P.nbc=19;
P.nph=4;

55

P.ndv=bout.ndv;
P.np=4; % p vector will hold four taus.

randmag=0;
vin=[];
for k=1:P.nph % Note adding extra states in phase 3
vin=[vin;adduxMADS(bout.x{k},bout.u{k},P.nxv(k),P.nuv(k),randmag)];

end
vin=[vin;bout.tau];

save FourPhase_vin.dat vin -ascii -double
name=’FourPhase_premads.dat’;
writepremads(P,name)

Subsection 2.3.2 describes how to use breaktrajMADS, andadduxMADS, and we have already
used the latter in setting up the initial guess for the single-phase problem with ddpenMADS.
The function breaktrajMADS is used to partition the trajectory into subintervals delimited
at the the integration intervals given in bv. The output of breaktrajMADS,”bout,” includes
the “ndv” vector, bout.ndv, and the vector of subinterval durations, bout.tau, in addition
to the state and control trajectories for each subinterval. Note that the input guess has
three states, so additional states are added only in the third phase, where P.nxv = 7.

We now return to Figure 11, to compare the single-phase and four-phase solutions.
Before that, though, a housekeeping comment is needed regarding the falloff in T in the
four-phase case (upper right plot) at the end of the max−q̄ arc. The falloff in T lasts for
one integration interval, and induces a corresponding violation of the q̄ = qbarmax equality
constraint for that phase. Why did this happen? It is the result of computing q̄ in cineq
as a function of xj, the “current” value of the state when cineq is called. Recall that for a
trajectory with nd integration intervals, the state appears at nd + 1 instants. By imposing
the q̄ constraint on xj values, the terminal value of q̄ was unconstrained. This situation can
be treated in several ways:

• Brute Force
The constraint could be doubled, imposed at both xj and at xjp1. This works, but
is wasteful of computation, since it involves 2(nd − 1) redundant evaluations of the
constraint.

• Additional Boundary Condition
The missing constraint could be imposed in psibc via

call calcqbar(xbc(kf(2)+kxp),qbar)
psi(kpsi+1)=qbarmax-qbar ! This element has iebcvec(kpsi+1)=0

The is computationally efficient, but has a downside in that it requires that q̄ be
computed separately in psibc.

• Compute the Constraint in xdot
This issue does not come up when q̄ is computed in xdot, because it results in the con-
straint being imposed at the midpoints of the integration intervals: All state instants
participate in the constraint. The downside, here, is that there is a vulnerability to
control jitter on the active constraint arc. The jitter, as we’ve seen, can be treated
using a penalty, as seen in this subsection. It is actually more effective, though, to
constrain the constraint rate – in this case dq̄/dt to zero. This will be demonstrated
in the next subsection.

56

• Set the Problem Up Cleverly
We observed the temporal pattern of active constraints in the single-phase case, before
breaking it up into the four-phase problem, so we knew that the first phase, for which
qbarmax ≥ q̄, terminates with that constraint active, and that the state trajectory
is continuous. Because of this, the first qbarmax = q̄ constraint in the second phase
is redundant, when q̄ is computed using xj. We would do better in this case to use
xjp1. The problem in Figure 11 can always be avoided by laying out the problem
thoughtfully.

Having described how we set up the four-phase problem, and how we should have set it
up, we return to Figure 11 to compare the single-phase and four-phase solutions. The most
obvious differences appear in the thrust profiles in the Figure’s right column. The jitter-
suppressed “singular” arc in the four-phase case is nothing like that in the single-phase one.
Not only is it, to say the least, difficult to assign it a plausible physical interpretation, but
it is very short. It follows an elongated max−q̄ arc that carrys T all the way back to its
Tmax boundary. This latter difference has a serious impact on the trajectory, increasing the
time spent on the max−q̄ constraint boundary by roughly 20%. This is visually evident in
the Figure’s left column, in which the four-phase q̄ history, at the top, essentially lacks the
q̄ dropoff during the singular arc that was seen in the bottom, single-phase, plot.

Which of these trajectories is the (most) optimal one? It happens that the altitude gain
for the single-phase problem is slightly less than .01% better than that for the four-phase
one, but that’s certainly not very significant. If it is important to know what the optimal
solution is, without the distortions of jitter penalties, misbehaving singular arcs, or other
numerical artifacts, then it is necessary to formulate and solve the problem as a variational
optimal control problem. While this can be quite difficult – indeed, practically impractical
for practical problems - the next Subsection will use MADS COV support routines to lay
out an approximate variational solution.

Before leaving this Subsection, review what has been introduced here. This Subsection
has focused on dealing with singular arcs using an heuristically motivated penalty function,
implemented in ddpenMADS that targets large control accelerations accompanied by relatively
small control rates. New material introduced in this Subsection included

1. application of ddpenMADS to problems with an active state constraint arc implemented
by computing the constraint function in xdot. It was seen that, while the measure
nowhere produces perfect results, it benefits from gradually “walking the solution in;”
that is, solving a sequence of problems with increasingly stringent constraint settings,
using each solution as the initial guess for the next.

2. The details of setting up a multiple-phase problem from a single-phase one were
demonstrated, and various subtleties were discussed for posing state constraints in
a multi-phase setting that uses cineq to compute the constraint function.

57

References

1. Gill, P. E., Murray, W. M., and Saunders, M. A., “User’s Manual for SNOPT Version 7:
Software for Large-Scale Nonlinear Programming,” University of California, San Diego,
April 2007.

2. Hascoët, L. and Pascual, V., “The Tapenade Automatic Differentiation tool: Principles,
Model, and Specification,” ACM Transactions On Mathematical Software, Vol. 39, No.
3, 2013.

3. Huntington, G. T., Benson, D. A., and Rao, A. V., “A Comparison of Accuracy and
Computational Efficiency of Three Pseudospectral Methods,” AIAA Paper 2007-6405,
2007 AIAA Guidance, Navigation, and Control Conference, Hilton Head, SC, August
2007.

4. Neidinger, R., “Introduction to Automatic Differentiation and MATLAB Object-
Oriented Programming,” SIAM Review, Vol. 52, No. 3, 2010.

5. Bryson, A. E., and Ho, Y.-C., Applied Optimal Control, Hemisphere Publishing, New
York, 1975.

6. McShane, E., “On Multipliers for Lagrange Problems,” American J. Math., 1939, Vol.
61.

7. Pontryagin, L., The Mathematical Theory of Optimal Processes, Wiley, New York, 1962.

8. Seywald, H. and Cliff, E. M., “Goddard Problem in Presence of a Dynamic Pressure
Limit,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 16, No. 4, 1993, pp.
776-781.

58

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

2. REPORT TYPE

Technical Memorandum
 4. TITLE AND SUBTITLE

MADS Users' Guide

5a. CONTRACT NUMBER

 6. AUTHOR(S)

Moerder, Daniel D.

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

L-20256

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified
Subject Category 08
Availability: NASA CASI (443) 757-5802

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

MADS (Minimization Assistant for Dynamical Systems) is a trajectory optimization code in which a user-specified
performance measure is directly minimized, subject to constraints placed on a low-order discretization of user-supplied plant
ordinary differential equations. This document describes the mathematical formulation of the set of trajectory optimization
problems for which MADS is suitable, and describes the user interface. Usage examples are provided.

15. SUBJECT TERMS

Guide; MADS; Users

18. NUMBER
 OF
 PAGES

63

19b. TELEPHONE NUMBER (Include area code)

(443) 757-5802

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

 473452.02.07.03.02.01

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/TM-2014-218532

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

10 - 201401-

	Introduction
	Problem Formulation and Software Interface
	Excursus: Custom Problem Formulations in MADS
	Subroutines To Be Provided By The User
	Producing and Operating On A MADS Solution
	Formats for MADS Solution Data
	Matlab Functions for Operating On MADS Data

	Setting Up and Executing a MADS Run
	Autodifferentiation for MADS

	Tutorial Examples
	Linear System Minimum Time to Origin
	Baseline Problem
	 Break the problem into two phases
	 Introduce variable discretization step size
	Eliminate the Bangs
	Problem Summary

	Goddard Problem
	Obtaining an Initial Guess
	Simple Solution with Dynamic Pressure Constraint
	A Penalty Function to Smooth Out Singular Jitter

