Lunar Impactor – Lunar science with a versatile cubesat platform

Cubesat probes at Reiner Gamma swirl

I. Garrick-Bethell*, H. Sanchez, B. Jaroux, M. Bester, P. Brown, D. Cosgrove, M. Dougherty, J. Halekas, D. Hemingway, P. Lozano, F. Martel, C. Whitlock

*University of California, Santa Cruz
University of California, Berkeley
NASA Ames Research Center
Imperial College London
Massachusetts Institute of Technology
Jet Propulsion Laboratory

Lunar Swirls

- Magnetized crust associated with unique surface markings.
- One of the most enigmatic features on the Moon.
- At the intersection of multiple science disciplines:
 - Lunar magnetism
 - Lunar surface water
 - Lunar dust
 - Lunar surface spectroscopy
 - Moon-plasma interactions
 - All priorities of 2007 National Academies lunar science report

Reiner Gamma swirl (visible with binoculars)

Objective: Near-surface measurements

- Fly a 3-axis magnetometer into the heart of Reiner Gamma.
- Provides insight into all science questions.
- Other instruments also possible

Getting to the Moon: Option 1

Navigation (JPL)

30 cm

Spiral to the Moon out of geosynchronous orbit

Propulsion (MIT) **⋄**

Getting to the Moon: Option 2

→ Planetary Hitch Hiker enables other mother-daughter architectures

Conclusions

- Cubesats enable first-of-akind measurements of the Moon.
- Architecture enables future near-Earth missions, such as small asteroid targets.
- Cubesats are an exciting technology that engages students and the general public.

Acknowledgments and Partners

- UC Berkeley Science and Mission Operations
- NASA Ames Mission Planning
- MIT Propulsion and Trajectory Planning
 - Imperial College London Magnetometer
 - Jet Propulsion Laboratory Transponder
 - Open to other interested partners

Lunar surface water

 Surface hydroxyl/water abundances are anticorrelated with bright parts of lunar swirls.

Clementine 750 nm reflectance

H₂O/OH abundance derived from M³

- Lunar Prospector: global map of magnetic fields.
- Origins of the Moon's magnetic field still debated:
 - A past lunar dynamo?
 - Or impact processes?
 - → Next step:

Magnetic field measurements near the surface would constrain their origin.

Other swirls exist throughout the Moon

1998: Lunar Prospector magnetion field strength at 30 km (0-30 nT)

Status/Challenges Ahead

- Challenges for a cubesat-only approach:
 - Long-duration testing of propulsion system.
 - Relatively high power (~30 W)
 - Approaches to radiation protection/mitigation.

Getting to the Moon: Option 1

1. Cubesat ride-share to geosynchronous orbit

Cubesat communication and navigation via Deep Space Network

>Enables frequent cubesat access to the Moon via release in geosynchronous orbit.

Planetary HitchHiker

- 2012 KARI-NASA Ames collaboration with university partners
 - Kyung Hee University
 - U€ Berkeley
 - UC Santa Cruz

Orbiting mother ship < 100 kg Carries two probes.

Piggyback ride to GTO

SS/Loral Comm Sat GTO Deployment

Max Volume: 80cm(W) x50cm(H) x40cm (D)

Alterative: ESPA ring ride share

Trajectory and Targeting Studies

Baseline impact trajectory:

- Impacting angle: 4.3 degs
- •Mother-Daughter range at Impact: 224 km
- ·Impact target diameter: 10 km
- •Nominal deployment DV: 3.2 m/s
- •DV magnitude error tolerance: 3 cm/s
- •DV pointing error tolerance: 5 degs
- ·Impact speed: 2219 m/s
- •Time spent travelling through anomally: ~13.5 s

→ Picked to minimize impacting angle but

- Daughter impacts moon near Reiner-Gamma (red trajectory)
- Mothership flies overhead (green trajectory)
- Reiner-Gamma anomally 1 deg or 30 km in diameter (blue disc)
- Impact error ellipse 10 km in diameter (red disc)

Longitude from center of albedo anoma

CINEMA Magnetometer - 1

- Anisotropic magneto-resistance (AMR).
- Three Honeywell HMC1001 sensors
- PC104 board-based
- Two three-axis assemblies, one on a 1-meter boom
- < 2 nT sensitivity</p>
- 112 grams total, one board
- Half-board possible with FPGA electronics
- Current model ~50 grams.
- Measurement frequency of 200 Hz possible.

CINEMA Magnetometer (ICL)

Propulsion - 1

- Plasma propulsion –
 complex but *
 efficient.
- Large molecule liquid salt — "plasma" in a liquid state.
 - Extract ions,
 accelerate them.

Solid salt

Propulsion - 2

- Micro-fabricated emitters.
- Porous metal tank
 wicks salt to emitter
 head by capillary
 action.
 - Accelerated by extraction grid.

MIT Space Propulsion Laboratory

Propulsion - 3

- Three-axis control.
- Primary propulsion for
- transit to the Moon.
- Specific impulse > 2000 s.
 - Thrust and *Isp* scale with input power and voltage.
- Currently, undergoing longduration testing.
- 1U cubesat demo next year.
- Rad hard parts available.

MIT Space Propulsion Laboratory

- Body fixed panels & one-time deployment
- Spiral to lunar from GEO impact takes ~120 days,
 2 km/s delta-v.
- Requires ~400 grams of propellant.

Spiral from Earth Trajectory Simulations

- Impact of the Moon, as seen from the Earth.
- Challenge: impacting at low (<20°) angles.

Communication and Navigation

- JPL cubesat transponder (LMRsat).
 - Digital version available in early 2014.
 - Doppler + range.
 - Xsband 2 W omni output.
- Deep Space Network 34meter dish required to close links for telemetry, science data, and ranging.
 - Expensive, ~\$1000/hr, but necessary.
- Berkeley 11-meter dish also available.

DSN compatible cubesat transponder (JPL)

CINEMA Magnetometer - 2

0.9 meter boom

