
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 

 

 

 

 

Progressive failure analysis (PFA) of non-crimp fabric (NCF) composite laminates 

subjected to low velocity impact loads was performed using the COmplete STress 

Reduction (COSTR) damage model implemented through VUMAT and UMAT41 

user subroutines in the frame works of the commercial finite element programs 

ABAQUS/Explicit and LS-DYNA, respectively. To validate the model, low velocity 

experiments were conducted and detailed correlations between the predictions and 

measurements for both intra-laminar and inter-laminar failures were made.  The 

developed material and damage model predicts the peak impact load and duration very 

close with the experimental results.  Also, the simulation results of delamination 

damage between the ply interfaces, in-plane matrix damages and fiber damages were 

all in good agreement with the measurements from the non-destructive evaluation 

data.   
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INTRODUCTION 

 

Carbon fiber composite materials are being widely used in aerospace applications 

and are being slowly introduced into the automobile industry to achieve better fuel 

economy, increased durability and improved driving experience.  Optimizing the 

weight of an automobile is a significant factor in achieving higher fuel economy, and 

to that end, composite materials are very promising due to their low densities.  Among 

the carbon fiber composite materials under consideration, the non-crimp fabric (NCF) 

preform is an attractive alternative to the traditional pre-pregnated tapes due to its low 

manufacturing cost and high efficiency.  The NCF material consists of multiple layers 

of unidirectional plies oriented at varying angles which are held together by transverse 

stitches.  A typical carbon fiber NCF composite laminate is shown in Figure 1. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1:  Photograph of a typical Non-Crimp Fabric (NCF) laminate. 

 

Since the use of NCF composites is gaining momentum, researchers are 

developing novel computational methods to evaluate the performance of these 

materials under varying load conditions.  Researchers in Refs. [1-3] have developed 

micro, macro and meso-scale material models to evaluate some of the material 

properties and strengths, which are extremely difficult to obtain by standard material 

characterization tests.  In Refs. [4-5], researchers have developed a meso-scale plane 

stress damage model to simulate damage in NCF cross-ply laminates subjected to 

tension and compressive loads.  The influence of out-of-plane imperfections in the 

NCF laminate due to the misalignment of the fibers was investigated in Ref. [5].   The 

extent of damage in a NCF composite sandwich panel under impact load was 

established using an ultrasonic C-scan in Ref. [6].   

Even though a good amount of research has been performed in simulating the 

damage progression in tape laminates subjected to impact loads [7-11], less effort has 

been dedicated to NCF composite laminates.  Hence, in the present investigation, a 2D 

stress damage model called COmplete STress Reduction (COSTR), previously 

developed for fiber and matrix damage predictions in tape laminates by the authors 

from NASA [12] for in-plane loads, was extended to out-of-plane loads for thin NCF 

laminates. This damage model will be implemented in the framework of the 



commercial software packages ABAQUS and LS-DYNA.  Though this approach was 

first developed for use in Abaqus for the aerospace industry, because the automotive 

industry relies heavily on LS-DYNA, the damage models developed for NCF 

composites will be incorporated into both codes.  In this manner it is anticipated that 

large real world problems such as the progressive failure of aircraft wings and 

fuselages, and crash of automobiles, can be simulated. NCF material preparation and 

low velocity dynatup impact tests were conducted at the General Motors R & D 

Facility.  Progressive failure analysis (PFA) of the NCF laminate, impacted by a 

hemispherical impactor at 5J, 10J & 12J energy levels was performed and analysis 

predictions for the overall panel response, such as impact load versus time duration, 

were compared with the experimental results.  Fiber damages within the plies and 

delamination damages between the layers were compared with X-ray and CT-scan 

data.  

 

 

PROGRESSIVE FAILURE ANALYSIS – DAMAGE MODELS 

 

During the low velocity impacts, composites are subjected to both intra-laminar 

and inter-laminar failures. Intra-laminar failures were studied previously for in-plane 

loads utilizing the COSTR damage model developed and implemented through a 

VUMAT user subroutine in ABAQUS/Explicit [12] for tape laminates.  The inter-

laminar failure, referred to here as delamination failure occurring between the layers 

of a composite, poses a major challenge for damage prediction and thus requires an 

advanced modeling strategy.  A brief description of the damage model will be outlined 

here.  For a detailed description of the model, readers are referred to refs. [12-13].  

 

Intra-Laminar Damage Model 
 

The COSTR damage model for intra-laminar damage utilizes the Hashin-Rotem 

unidirectional failure criteria
 
[14] to detect fiber and matrix damages in a lamina. The 

failure criteria are expressed in terms of the in-plane stresses ij, the strengths in 

tension, X, compression, Y, and shear, SXY, respectively.  Two damage indices dF and 

dM are used to represent the fiber and matrix damage modes, respectively.  Each 

damage index has the value of zero (no damage) or 1.0 (complete damage). The 

previous stress degradation model, adopted to degrade the axial (11), transverse (22), 

and shear (12) stresses as a function of axial (ε11), transverse (ε22), and shear (ε12) 

strains respectively, after they reach their failure limits at a material point is shown in 

Figure 2(a).  When the damage parameter dM attains a value of 1.0, both the transverse 

and the shear stresses were reduced to zero instantaneously.  Similarly, when the 

damage parameter dF attains a value of 1.0, all of the in-plane and shear stresses at that 

material point were made zero. This type of instantaneous stress degradation to zero is 

characterized as a single-step or instantaneous degradation approach and hence the 

model was assigned the name COmplete STress Reduction (COSTR) damage model.  

This type of stress degradation approach is suitable for performing PFA of un-

configured laminated composite panels under quasi static loading conditions.   But, 

while analyzing configured panels (skin-stringer) or structures under dynamic loading 

conditions, this stress degradation approach generates an extremely large energy 

release in the model thereby causing all the elements along the crack paths to fail 



instantaneously.  This phenomenon has been studied and reported in Ref. [14].  To 

circumvent the above difficulties, the fiber stresses in the failed material point are 

reduced to a nominal percentage of the original strength (20% or so), and these 

stresses are maintained until the strain in the fiber direction reaches a value of 2.5 

times the elastic strain (εel
11) of the fiber.  However, the transverse and shear stresses 

are still degraded to zero instantaneously after the failure as they do not pose 

difficulties in the simulation. The stress degradation model used in the present study is 

shown in Figure 2(b).   

 

 

 

  

 
a) Previous Approach                                     b) Current Approach 

 
Figure 2. Stresses degradation approaches in COSTR damage model. 

 

Another characteristic of the COSTR damage model that differs from the standard 

ABAQUS/LS-DYNA damage model is the elimination of the influence of Poisson’s 

ratio in evaluating the axial stress in the fibers when the matrix has failed due to the 

transverse tension/compression or shear stress. It has been observed during the study 

that in some plies of a laminate, the transverse strain, shear strain or the combination 

of transverse and shear strains could result in significant distortion of the element 

without significant stress in the fiber direction.  An example of this phenomenon is a 

laminate consisting of 90° plies and loaded in the direction perpendicular to the fibers.  

To avoid excessive distortion of an element, a quadratic strain criterion, was 

formulated and implemented in the damage evolution procedure of the PFA 

methodology to eliminate badly distorted elements from the simulation.  The matrix 

strain failure criterion (MSFC) is defined as 

 

 

 

When the MSFC at a material point reaches a significant value, approximately 0.25, 

the material point is deleted. Once a material point is deleted it cannot be reactivated.  

The ABAQUS and LS-DYNA explicit solvers check for elements where all of the 

material points have been flagged as deleted and then, these elements are removed 

from further computations, thereby simulating virtual cracks in the finite element 

model. The COSTR damage model has been implemented through the VUMAT and 

UMAT41 [15] user written subroutines in the ABAQUS and LS-DYNA codes, 

respectively. 
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Inter-Laminar Damage Model 
 

The simulation of inter-laminar damage, i.e., delamination, between the 

sublaminate layers was accomplished using the cohesive zone model available in the 

ABAQUS and LS-DYNA computer programs.  The onset of delamination was 

determined based on the inter-laminar quadratic normal and shear stress criterion and 

the delamination growth was based on a critical fracture energy criterion.  Damage 

was modeled as an irreversible process by including a damage parameter and this 

parameter is directly related to the dissipated fracture energy.  A detailed explanation 

of the cohesive zone model can be found in Ref. [13].  Among the analysis parameters 

for the cohesive layers, stiffness of the cohesive layer is an important parameter for the 

simulation, as lower stiffness values can make the laminate too compliant and higher 

stiffness values can cause spurious oscillations of the tractions in the element 

introducing numerical difficulties. Ref [16] provides the guidelines for stiffness 

determination and one such guideline for the mode-1 direction is given below: 
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where E3 is the Young’s modulus of the laminate in the thickness direction, t is the 

larger of the sub-laminate thicknesses above or below the cohesive layer, and  is a 

parameter that is much larger than 1.  A value of  equal to 50 is recommended in Ref. 

[15] and was used in the current study to obtain a stiffness of the cohesive layer. In 

calculating the stiffnesses KII and KIII for the mode-1 and mode-2 directions, E3 is 

replaced in the above equations with the shear moduli G12 and G13 of the laminate, 

respectively.   

 

 

DESCRIPTION OF NCF COUPON AND TEST SETUP  

 

An eight layer carbon fiber non-crimp fabric with a quasi-isotropic layup (0/              

-45/45/90/90/45/-45/0) from Sigmatex was used to manufacture plates with 

dimensions 431.8 x 431.8 x 1.8 mm at the General Motors Research Labs using resin 

transfer molding. The NCF fabric was made from T700 grade fiber. An epoxy resin 

with a fast curing agent was used for the resin transfer molding of the composite. The 

volume fraction of carbon fiber was determined to be close to 48%. Basic material 

characterization tests for stiffness and strength were conducted following ASTM 

standards to obtain the material properties in tension, compression, and shear. The 

material properties are listed in Table I. These material properties were validated by 

correlating the results with a three point bend test. For the low velocity impact tesing, 

square specimens of 101.6 mm wide were cut from the manufactured plates of NCF 

and were subjected to an impact using an INSTRON dynatup testing machine, 

equipped with a digital acquisition system. The test-specimen was restrained using a 

clamping fixture (upper and lower plates) which exposed a circular area of 76.2 mm 

diameter, and then impacted by a rigid tup at the center of the exposed area. A 

hemispherical steel impactor with a diameter of 25.4 mm and a weight of 7.0 kg was 

used.  Three levels of energy input (5J, 10 J and 12J) were studied.  The test setup is 

shown in Figure 3. 



 

 

 

 
TABLE I.  MATERIAL PROPERTIES OF NCF COUPONS  

Properties T700/Epoxy Description 

E11  (GPa) 102.0 Young’s modulus in fiber direction 

E22  (GPa) 7.08 Young’s modulus in the transverse  direction 

G12 (GPa) 3.16 In-plane shear modulus 

S11  (GPa) 1.63 Tensile strength in the fiber direction 

C11 (GPa) 1.43 Compressive strength in the fiber direction 

S22 (GPa) 0.068 Tensile strength in the transverse direction 

C22 (GPa) 0.30 Compressive strength in the transverse direction 

S12 (GPa) 0.05 In-plane shear strength 

ν 12 0.4 Poisson’s Ratio 

GIc (J/m2) 1062.0 Critical Fracture toughness in Mode 1 Direction 

GIIc, GIIIc (J/m2) 1276.0 Critical Fracture toughness in Mode 2 & 3 directions 

 

 

The cohesive damage model available in ABAQUS and LS-DYNA was used in 

simulating delaminations between the sublaminate layers.  The interfacial stiffness and 

strength parameters used in the analysis are given in Table II.  

 

 
TABLE II.  INTERLAMINAR PROPERTIES AND STRENGTH DATA 

Properties T700/Epoxy Description 

K11 (GPa) 781.4 Interfacial Stiffness in Mode 1 direction 

K12 (GPa) 360.1 Interfacial Stiffness in Mode 2 direction 

K22 (GPa) 360.1 Interfacial Stiffness in Mode 3 direction 

S33 (GPa) 0.06895 Interfacial strength in Mode 1 direction 

S13 (GPa) 0.08274 Interfacial strength in Mode 2 direction 

S32 (GPa) 0.08274 Interfacial strength in Mode 2 direction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 3:  Assembly of Non-Crimp Fabric (NCF) laminate & AL plate with cutouts. 

 



FINITE ELEMENT MODEL DESCRIPTION 
 

A three-dimensional (3D) finite element model of the square plate was developed 

to simulate the coupled inter- and intra-laminar damage. The thickness of the model 

was divided into five sub-laminate sections with a cohesive layer of zero thickness 

between each of them.  The pictorial representation of the plate model, which consists 

of sub-laminate sections and the cohesive layers, is shown in Figure 4(a).  The finite 

element mesh for each of the sub-laminates and the cohesive layers is shown in Figure 

4(b).  Each sublaminate layer was modeled using one solid element in the thickness 

direction.  The sub-laminate sections were discretized using the 8-node continuum 

shell reduced integration element (SC8R) available in the ABAQUS™ element library 

[13] and continuum solid elements in LS-DYNA.  The SC8R element is a 3D element 

with translational degrees-of-freedom (DOF) using only linear interpolation functions.  

It differs from a 3D solid element in that it employs composite lamination theory and 

therefore provides an ability to discretize 3D bodies with multiple sublaminates 

through the thickness.  The element size used in discretizing the planar regions of the 

sub-laminates ranges from 0.5 mm by 0.5 mm in the center under the impactor to a 

size of 1.5 mm by 1.5mm close to the edges of the plate.  The cohesive layers were 

modeled using a zero thickness ABAQUS™ 8-node cohesive element known as 

COH3D8 [16], and in LS-DYNA, cohesive elements were defined with material 

model MAT_COHESIVE_MIXED_MODE.  An in-plane discretization of 0.5 by 0.5 

mm was used in the cohesive layers.  The sub-laminate sections and the cohesive 

layers were connected using ABAQUS™ and LS-DYNA “tie” boundary conditions, 

in each approach respectively, to maintain the continuity between the sub-laminate 

sections before the damage occurs.  The assemblage of the five sub-laminate sections 

and four cohesive layers through the thickness defines the complete plate model. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:  Modeling procedure of NCF plate & finite element mesh. 

 

The nodes on the sublaminate surfaces which are in contact with the top and 

bottom support plates were constrained in the out of plane direction only.  Additional 

boundary conditions were applied to the nodes along the vertical and horizontal center 

 

(a) Schematic Diagram of Sub-laminate & 

Cohesive layers 

 
 

 
(b) Finite Element Mesh 

Sub-Laminate Layer 

Cohesive 

Layer 



lines of all the sublaminate layers as shown in Figure 5 in order to suppress spurious 

element distortions due to shock waves.  The plate was impacted with an impactor at 

an initial velocities of 1.12 m/sec, 1.68 m/sec and 1.85 m/sec to produce the desired 

5J, 10J and 12J energy levels.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5:  Finite element mesh with prescribed boundary conditions. 

 

The impact simulation was performed using the ABAQUS™ and LS-DYNA 

explicit double precision solvers for each of the energy levels.  Since the plate is 

severely constrained and the effective width of plate was rather small, the elements 

under the impactor can show spurious hour-glass modes due to the under integrated 

elements.  Hence, an additional viscous stiffness was added in all the sublaminate 

elements to eliminate zero energy modes in the plate in the respective codes.    

 

RESULTS AND DISCUSSION  

 

PFA results such as impact load history and delamination damage at certain 

critical interfaces of the NCF plate for the impact energy levels of 5J, 10J & 12J are 

compared with experimental test results in the following sections. For the sake of 

brevity, the comparative simulation results for LS-DYNA and the ABAQUS/COSTR 

damage model were presented only for the 5J test case. 

 

5J Impact Energy 

 

The load history curves obtained from the PFA and two tests for the 5J energy 

level impact cases are presented in Figure 6.  From Figure 6, it can be noticed that the 

contact duration and the peak impact load obtained from the analysis (green) are in 

good agreement with the test data (purple).  The raw load history curve from the 

analysis was oscillatory, due to the contact disturbances occurring in the simulation. 

These oscillations in the load were smoothened by passing it through filters provided 

in the ABAQUS post processing tool. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6:   Comparison of load versus time curve from ABAQUS/VUMAT simulation and dynatup 

experiment 

 

Figure 7 presents the comparison of load history curves for the LS-DYNA user 

defined COSTR damage model and test results. It can be observed that the damage 

model implemented in LS-DYNA provides excellent correlation with the 

experimental results and also agrees well with the ABAQUS/COSTR simulation.  A 7 

point averaging available in the LSPOST program was used to smooth the contact 

force curves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7:  Comparison of load versus time curve from LS-DYNA UMAT 41 simulation and 

dynatup experiment 

 

 



The simulated delamination at certain critical ply interfaces for the 5J impact load 

is presented in Figure 8, along with the NDE ultrasound measurements.  The general 

orientation of the delamination damage showed fair agreement at the various 

interfaces in comparison with the NDE data. The layers in the NCF plate are 

numbered such that the layer that comes in contact with the impactor was numbered as 

layer 1 and the bottom most layer was numbered as layer 8.  The cummulative 

delamination through the entire thickness from the ABAQUS/VUMAT simulation 

was compared with the damage measured using ultrasound NDE techniques and is 

shown in Figure 9(a). From the figure, good agreement is observed between the 

predictions and the experimental measurements. Similarly, the simulation results for 

the cumulative delamination in the laminate from the LS-DYNA/UMAT41 simulation 

was compared with ultrasound NDE results and presented in Figure 9(b). A good 

correlation with the experiment and both the simulation results was observed, 

confirming a successful implementation of the COSTR damage model in the LS-

DYNA code.  In all of the delamination pictures below, the region in white indicates a 

complete delamination of interfaces, the region in red indicates areas which are 95% 

of complete delamination and the region in blue implies an intact bonding of the 

interfaces. 

No fiber failure was predicted in any of the plies in the simulations, matching the 

experimental observations.  The matrix damage predicted from the simulation in the 

elements was not significant, and hence, is not presented.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 8:  Delamination at certain interfaces. Left hand side - PFA, Right hand side - NDE technique. 
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(a):  Left hand side – ABAQUS/VUMAT simulation, Right hand side - NDE technique. 

 

 

 

 
 

 

 

 

(b):  Left hand side – LS-DYNA /UMAT41 simulation, Right hand side - NDE measurements. 

 

Figure 9:   Overall delamination of NCF laminate for a 5J impact load.  

 

 

10J Impact Energy 

 

The load history curves and delamination damage obtained from the 

ABAQUS/COSTR PFA were compared with the four experiments with 10J impact 

energy and are presented in Figure 10.     
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Figure 10:  Load history curve for 10J impact energy case. 

 

It can be seen from the figure that the contact duration and the impact load 

obtained from the analysis are in very good agreement with the test data. Similar to the 

5J impact energy case, the load history curve obtained from the analysis was 

oscillatory, and by passing through the multi-pass filters provided in the ABAQUS 

post processing tool, these oscillations were smoothed out.  

The delamination at certain critical ply interfaces for the 10J impact load is 

presented in Figure 11.  The ultrasound scans for this specimen were taken looking up 

from the bottom, starting from the 8
th
 layer (non-impact side).  The general orientation 

of the delamination at the interface of layers 6-7 was predicted fairly well.  However 

the NDE data at other interfaces show poor correlation with the simulation, but this 

may be due to the masking effect of the damage at the interface of layers 6-7. The 

areas of cumulative delamination of the laminate, determined from PFA, and the 

experimental measurements from the NDE ultrasound are presented in Figure 12.  

These show a good agreement and are a better assessment of the total damage area in 

the laminate.  

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 
Figure 11:  Delamination at certain interfaces. Left hand side - PFA, Right hand side - NDE 

technique. 
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Figure 12:  Overall delamination of NCF laminate for a 10J impact load. Left hand side - PFA, 

Right hand side - NDE technique. 

 

For the 10J impact energy level, a significant amount of matrix damage was 

predicted in all of the plies as presented in Figure 13.  The region with matrix damage 

is indicated in red and the undamaged regions are indicated in blue.  The matrix 

damage predicted in the plies is due to the in-plane transverse tension/compression 

stress, or shear stresses, reaching the failure limit either individually or in combination.  

From Figure 13, it is seen that the matrix damage was occurring parallel to the fibers 

in the 0
o
 and 90

o
 plies (see the layer-8 and layer-4&5 plots). However for the 45

o
 plies, 

the damage was oriented parallel to, or and at some angle to the fibers (see the layer-6 

and layer-3 plots).  No fiber damage was predicted in any of the plies in the simulation 

and none was observed in the experiments. 

 

     

   

   
 

Figure 13:  Matrix damage in plies - PFA. 
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12J Impact Energy 

 

The load history curves obtained from PFA and four experiments for the impact 

test case of 12J energy level are presented in Figure 14.  The magnitude of the impact 

load and the contact duration from the simulations are in good agreement with  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 14:  Load history curve for 12J impact energy case. 

 

the test data.  The NCF plate had extensive matrix damage in all of the plies and fiber 

failure in some plies.  The test data shown in Figure 13 indicates that this damage 

occurs at around 3.1 milliseconds, accompanied by a load drop.  The PFA simulation 

predicts similar behavior in the load history curve. 

The delamination at certain critical ply interfaces for the 12J impact load is 

presented in Figure 15.  As the non-destructive evaluation results for the delamination 

damage at each of the interfaces was not available, only simulation results are 

presented. The cumulative delamination damage in the NCF plate predicted from the 

PFA was compared with the NDE results and is presented in Figure 16.  From this 

figure, we can see a good agreement in the overall size of the delamination between 

the PFA and experimental results.  The length of delamination damage from the test 

data (69 mm) was larger than the predicted delamination from the PFA data. This is 

due to the fact that few fiber tows in the outer layer of the laminate from the non-

impact side debonded from the rest of the laminate and the PFA was unable to capture 

this phenomenon as layers 7 & 8 were modeled with one element in the thickness 

direction thereby restricting the relative displacement between them. However, the 

delamination damage in the rest of the plies matches well with the PFA data.  Again, 

as mentioned in the previous sections, the white region indicates a complete 

delamination of the interfaces, the red region indicates areas which are 95% of 

complete delamination of the interface, and the blue region denotes intact bonding of 

the interfaces. 

 



 

  

  

 
Figure 15:  Delamination at certain interfaces. Left hand side - PFA, Right hand side - NDE 

technique. 

  

 

 

 
Figure 16:  Overall delamination of NCF laminate for a 12J impact load. Left hand side - PFA, 

Right hand side - NDE technique. 

 

For the 12J impact energy level, a significant amount of matrix damage was 

predicted from the PFA in all the plies, and is presented in Figure 17.  The region with 

matrix damage is indicated in red while the undamaged regions are indicated in blue.    

It can be observed from Figure 17 that the matrix damage is again occurring parallel to 

the fibers in the 0
o
 and 90

o
 plies (see layer-8, layer-4&5).  However, in the 45

o
 plies 



(layer-2 and layer-3) , the damage is oriented in parallel to, or at some angle relative to 

the fibers.   Note the circumferential damage in layer-1 at the circular clamping 

boundary. 

 

 

 

  
Figure 17:  Matrix damage in plies - PFA. 

 

 

 

Figure 18 presents the comparison of fiber damage in the outer 5 plies (from layer- 

4 to layer-8 where layer- 8 is the bottom most layer) predicted from simulation and CT 

scan measurements.  Complete fiber failure regions are indicated in white and partial 

fiber failure areas are indicted in blue. Undamaged areas are indicated in red. Note 

from the figure that the fiber damage predicted in the simulation (white regions) 

matches well with the fiber failure determined from the CT scan data. The fiber 

damage in layers 7 & 8 are identical in shape and size in the simulation due to the fact 

that the relative displacements between these two layers have been restricted on 

account of modeling procedure adopted in this work. 

 

 

 

 

 

   

   



 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18:  Fiber damage in plies - PFA. 

 

CONCLUSION 

 

Low velocity impact tests and progressive failure analysis of thin NCF 

laminated composites were successfully performed for 5J, 10J and 12J energy levels. 

The Complete Stress Reduction (COSTR) damage model was newly implemented in 

the LS-DYNA framework using a user subroutine based on the previous 

ABAQUS/VUMAT implementation. Both of the implementations were assessed in 

predicting the fiber, matrix, and delamination damages under the low velocity 

 

 
 

 
 

 

  



transverse impact and found to be in good agreement with the damage identified 

through NDE technique used during testing.  
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