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Abstract 
A micromechanical method is employed for the prediction of unidirectional composites in which the 

fiber orientation can possess various statistical misalignment distributions. The method relies on the 
probability-weighted averaging of the appropriate concentration tensor, which is established by the 
micromechanical procedure. This approach provides access to the local field quantities throughout the 
constituents, from which initiation of damage in the composite can be predicted. In contrast, a typical 
macromechanical procedure can determine the effective composite elastic properties in the presence of 
statistical fiber misalignment, but cannot provide the local fields. Fully random fiber distribution is 
presented as a special case using the proposed micromechanical method. Results are given that illustrate 
the effects of various amounts of fiber misalignment in terms of the standard deviations of in-plane and 
out-of-plane misalignment angles, where normal distributions have been employed. Damage initiation 
envelopes, local fields, effective moduli, and strengths are predicted for polymer and ceramic matrix 
composites with given normal distributions of misalignment angles, as well as fully random fiber 
orientation. 
 

1.0 Introduction 
It is well-known that a micromechanical analysis can provide the effective properties of composite 

materials from the knowledge of the constituent properties, their geometric arrangement, and their 
detailed interactions. However, the impact of fiber misalignment on the composite response, which often 
can occur in modern composites (Barwick and Papathanasiou, 2003), is typically not accounted for in 
design and analysis. A notable exception is the effect of longitudinal fiber misalignment on the 
compressive failure response of composites, which has been studied extensively in the literature (c.f., 
Budiansky, 1983; Wisnom (1990); Budianksy and Fleck, 1993; Schultheisz and Waas, 1996; Waas and 
Schultheisz, 1996; Liu et al., 2004; Basu et al., 2006; Numayr and Al Rjoub, 2013; Zhou et al., 2013; 
Ataabadia et al, 2014). Such misalignment can occur due to manufacturing deficiency and defects, curved 
surfaces, and fiber waviness, which was investigated by Kugler and Moon (2001). A standard approach to 
incorporating the effect of fiber misalignment in a unidirectional composite is to consider the anisotropic 
ply properties and perform a standard transformation to a desired fiber orientation (for instance, an in-
plane rotation, c.f. Jones (1975), Herakovich (1998)). While such a macromechanical approach will 
provide the effective properties of the ply, the associated local field distributions within the constituent 
materials are not available (as is always the case with the macromechanical approach). It is precisely 
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these local fields that dictate and drive the damage initiation and progression, yielding, failure, and other 
nonlinearities, which impact the macroscopic composite response and the performance of structures 
composed of composite materials. Alternatively, if one utilizes an appropriate micromechanical analysis, 
the local field variations within the composite constituents can be predicted based on the knowledge of 
the strain (or stress) concentration tensors, which are naturally given by the micromechanics theory. 
Consequently, the effect of fiber misalignment on the local fields in the composite can be captured 
through the use of these concentration tensors.  

In the present investigation, the micromechanical analysis known as the High-Fidelity Generalized 
Method of Cells (HFGMC) (Aboudi et al., 2013) is enhanced to capture the effects of possible fiber 
misalignment in unidirectional composites. In the latter reference, HFGMC has been shown to provide a 
reliable and robust micromechanical method for predicting the properties and nonlinear response of a 
wide array of composites. Further, it was shown that the strain (or stress) concentration tensors are 
fundamental to predicting both the local and global composite response and thus they are used herein to 
predict the effect of fiber misalignment on the composite behavior. In particular, the concentration tensors 
are employed in an averaging procedure to determine the effect of a known distribution of misalignment 
angles (i.e., orientation distribution function), or completely randomly fiber orientation, on the local fields 
in the composite. Consequently, the initial yield and damage surfaces, field distributions in the 
constituents, as well as the standard effective properties, can be predicted for the composite. 

Averaging based on orientation has been employed extensively within the microsphere model (Miehe 
et al., 2004), which was originally developed for analyzing rubber (Miehe and Göktepe, 2005; Göktepe 
and Miehe, 2005). Since then, the microsphere model has been used extensively in the analysis of 
biological materials. Menzel and Waffenschmidt (2009) used the model, with an evolving orientation 
distribution function, to simulate remodeling in soft tissues. Murtada et al. (2010) used the microsphere 
approach to analyze smooth muscles, wherein a specialized distribution of the muscle contractile fiber 
orientation, as a function of stretch, was employed. Alstrué et al. (200�!���	�����������-periodic von Mises 
orientation distribution function, and then a Bingham orientation distribution function (Alstrué et al., 
2010) in applying the microsphere model to blood vessels. Waffenschmidt et al. (2012) used the 
microsphere approach, with evolving orientation density functions, to model bone remodeling. Li et al. 
(2013) have recently applied the microsphere approach to structural composite materials, wherein a von 
Mises fiber orientation distribution has been employed. Orientational averaging was also recently 
employed by Modniks and Andersons (2013) to model the nonlinear mechanical response of short-flax-
fiber-reinforced composites using an analytical approach. While the approach and equations were general 
in terms of fiber misalignment distribution, results focused on a uniform distribution. 

The remainder of this paper is organized as follows. A brief description of the HFGMC methodology 
is provided, followed by details on the incorporation of the statistical fiber misalignment distributions. 
Results are then given exhibiting the impact of fiber misalignment on the properties, damage initiation 
envelopes, and critical values of the local field variables. Two classes of composite materials are 
examined: a polymer matrix composite (PMC) system, namely, graphite/epoxy, and a ceramic matrix 
composite (CMC) system. While the PMC system exhibits extreme mismatch in properties between the 
constituents, the CMC system has low mismatch between the fiber and matrix, but includes a very 
compliant fiber interfacial layer. 

2.0 High-Fidelity Generalized Method of Cells Micromechanical Model 
The HFGMC micromechanical model is employed herein to predict the effective behavior of 

unidirectional composites with known fiber misalignment. This theory has been fully described by Aboudi 
et al. (2013). The continuously reinforced (i.e., doubly periodic) version of HFGMC is briefly outlined in 
the following. The doubly periodic microstructure considered is shown in Figure 1(a) in terms of the global 
coordinates (x2,x3). The repeating unit cell, Figure 1(b), defined with respect to local coordinates (y2,y3), of 
such a composite is divided into N� and N� subcells in the y2 and y3 directions, respectively. Each subcell is 
labeled by the indices (��) with � = 1,�,N� and � = 1,�,N�, and may contain a distinct homogeneous  
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Figure 1.—(a) A multiphase composite with doubly-periodic microstructures defined with respect to global coordinates 

(x2, x3). (b) The repeating unit cell is represented with respect to local coordinates (y2, y3). It is divided into N� and 
N� subcells, in the y2 and y3 directions, respectively. (c) A characteristic subcell (��) with local coordinates 
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�� yy  whose origin is located at its center. 

 
 
material. The dimensions of subcell (��) in the y2 and y3 directions are denoted by h� and l�, respectively. A 
local coordinate system ),( )(
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2
�� yy is introduced in each subcell whose origin is located at its center. The 

local (subcell) constitutive equation of the elastic, anisotropic material is given by, 

 )()()( ������ ��� klijklij C  (1) 

where )(���ij , )(���kl , and )(��
ijklC  are the components of the stress, strain, elastic stiffness tensors, 
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The basic assumption in HFGMC is that the displacement vector )(��
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where ij�  is the applied (external) average strains, and the unknown terms )(
)(

��
lmiW  must be determined 

from the fulfillment of the equilibrium conditions, the periodic boundary conditions, and the interfacial 
continuity conditions of displacements and tractions between subcells. The periodic boundary conditions 
ensure that the displacements and tractions at opposite surfaces of the repeating unit cell are identical. A 
principal ingredient in the HFGMC micromechanical analysis is that all these conditions are imposed in 
the average (integral) sense.  
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As a result of the imposition of these conditions, a linear system of algebraic equations is obtained, 
which can be represented in the following form: 

 fKU �  (3) 

where the matrix K contains information on the geometry and properties of the materials within the 
individual subcells (��), and the displacement vector U contains the unknown displacement coefficients 

)(
)(

��
lmiW , which appear on the right-hand side of Equation (2). The vector f contains information on the 

applied average strains ij� . The solution of Equation (3) enables the establishment of the following 

localization relation which expresses the average strains � ����ij  in the subcell (��) to the externally applied 
average strains ij�  in the form, 

 klijklij A ��� ���� )()(  (4) 

where )(��
ijklA  is the strain concentration tensor components, of the subcell (��). The final form of the 

effective constitutive law of the multi-phase thermo-inelastic composite, which relates the average 
stresses ij�  and strains kl� , is established as follows: 

 klijklij C ��� �  (5) 

In this equation �
ijklC  are components of the effective stiffness tensor, which are given by, 

 )()(

11

1 ����
��

����

� ��
��

� pqklijpq

NN

ijkl AClh
HL

C  (6) 

Next, the components of stress concentration tensor, )(��
ijklB , which relate the average stresses in the 

subcell, )(���ij , to the average (global) stresses, ij� , are determined. By combining Equations (1), and (4), 
the subcell stresses are given by, 

 klpqklijpqij AC ��� ������ )()()(  (7) 

Then, using Equation (5), one obtains,  

 klijklij B ��� ���� )()(  (8) 

where,  

 ������� � rsklpqrsijpqijkl SACB )()()(  (9) 

and �
rsklS  are components of the effective compliance tensor. 

Consequently, with the present information provided by the HFGMC, the local elastic fields 
throughout the composite constituents are known, as are the composite effective (homogenized) 
properties. 
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3.0 Incorporation of Fiber Misalignment Distribution 
3.1 Transformation to Misalignment Angles 

Suppose that the fibers of the unidirectional composite are oriented in the x1-direction. In order to 
express a rotation of the fiber direction by angle � in the x1-x2 plane about the x3-axis (see Figure 2), the 
following transformation matrix must be employed, 

 

�
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�

�

�

�
�
�

�

�
��
���

�
100
0cossin
0sincos

�  (10) 

Subsequently, a rotation about the new x2-axis, namely /
2x , by an angle � is performed (see Figure 2) 

which can be expressed by the following transformation matrix, 
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The full transformation is then given by, 
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where ��T � .  

 
Figure 2.—Transformation from the original (un-prime) to rotated (prime) 

coordinate system through the rotation angles � and �. int
1x  is an 

intermediate x1 coordinate direction. 
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Consequently, the standard approach for transforming the fourth-order effective stiffness tensor �
ijklC , 

given the misalignment angles � and �, is as follows, 

 
�� � pqrslskrjqipijkl CTTTTC /

 
(13) 

Referring to Equation (6), it can be observed that, in the framework of micromechanics analysis, 
transforming the effective stiffness tensor �

ijklC  implies the transformation of, 

 )()()( ������ � pqklijpqijkl ACZ  (14) 

where ][ )()( ���� � ijklZZ  can be referred to as a mixed concentration tensor, as it relates the subcell stresses 
to the global strains, see Equation (7). Because this is a fourth-order tensor, its transformation is also 
given in the form of Equation (13).  

Equations (13) and (6) provide, 

 

/)(

11

)(

11

/ 11 ��
��

����

��
��

����

� ����
����

�� ijkl

NN

pqrslskrjqip

NN

ijkl Zlh
HL

ZTTTTlh
HL

C
 

(15) 

In order to determine the local stresses in the subcells in the global coordinates including the effects 
of fiber misalignment, through the use of Equation (7), one obtains, 

 klijklij Z ��� ���� /)()(  (16) 

The global stress-strain relations for the composite, including a fiber misalignment, can be expressed as, 

 klijklij S ��� � /  (17) 

where 1// ][ ��� � CS . Substituting (17) into (16) leads to the final form of the local stresses in the subcells 
in the global coordinates, including the effects of fiber misalignment. 

 klijklklpqklijpqij BSZ ����� ������� /)(//)()(  (18) 

3.2 Probability-Weighted Averaging 

Now consider a known statistical distribution of fiber misalignment, for instance, over a composite 
part, coupon, or structure. Herein a normal fiber misalignment distribution has been adopted with 
probability density function given by, 

 � �
�
�
�

�

�
�
�

�
�
	



�
�
 ��

�
�

�
2

2
1exp

2
1

s
x

s
xp  (19) 

where x is the random variable and � and s are the mean and standard deviation, respectively. Yurgartis 
(1987) and Jelf and Fleck (1992) have shown that local fiber misalignment angles in composites can be 
reasonably approximated by a normal distribution. Figure 3 shows an example of a normal distribution 
probability density function versus x/s for the case where � = 0. 
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Figure 3.—Normal distribution probability density function, where the random 

variable has been normalized by the standard deviation and with the mean 
equal to zero.  

 
In order to account for the known fiber misalignment variability with respect to angles � and �, see 

Equations (10) and (11), the following operation has been employed, 

 � � � � � � ������� � �
�

��

�

��

���� ddppZZ ijklijkl ,/)()(  (20) 

providing the probability-weighted average of the mixed concentration tensor. It should be noted that, in 
Equation (20), the transformed mixed concentration tensor is a function of both transformation angles, � 
and �. Therefore, Equation (20) is valid for any choice of probability density functions for either angle. 

Observing Equation (15), it is clear that the probability-weighted average of the effective stiffness 
tensor of the composite is given by, 

 )(

11

1 ��
��

����

� ��
��

� ijkl

NN

ijkl Zlh
HL

C  (21) 

Finally, from Equation (16), the subcell stresses in the presence of probability-weighted averaging, 
are given by, 

 klijklij Z ��� ���� )()(  (22) 

The global stress-strain relations for the composite, including probability-weighted averaging, can be 
expressed using Equation (17) as, 

 klijklij S ��� �  (23) 

-5 -4 -3 -2 -1 0 1 2 3 4 5

p(
x)

x/s
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where 1** �
� CS . Substituting Equation (23) into Equation (22) gives the final form of the subcell 

stresses, as follows, 

 klijklklpqklijpqij BSZ ����� ������� )()()(  (24) 

3.3 Fully Random Averaging 

In the case where the fibers within the composite are fully randomly oriented, the overall behavior of 
the composite is isotropic. The transformation of the mixed concentration tensor, Z(��), can be carried out 
using the three Eulerian angles, �E, �E, and �E, Aboudi et al. (2013). A fourth-order tensor transformation 
is applied to relate the original and transformed systems. In tensorial notation, this transformation is given 
by (Arridge, 1985), 

 )()( ��
    

��
    � ���� ijkkkjjiikji ZaaaaZ  (25) 

where iia   are given by 
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The mean value of )(��
    �kjiZ  for random orientation is given by, 

 
����� ���

    
��

�
��

    ��� dsin)(
0

2

0

2

08
1)(

2 ���� ijkkkjjiikji ZaaaaddZ
 

(27) 

Therefore, the effective isotropic stiffness tensor of the composite with fully random fiber orientations is 
given by Equation (21), and the subcell stresses are given by Equation (24). Note that Christensen and 
Waals (1972) used a fully random averaging approach, along with the concentric cylinder model, to 
predict the elastic properties of composites with random oriented fibers. Also, Luo and Daniel (2003) 
used a fully random averaging approach in conjunction with the Mori-Tanaka (1973) micromechanical 
method to predict the effective properties of nanocomposites. 

4.0 Practical Application 
The equations presented above are useful for assessing the impact of fiber misalign on, not only the 

effective properties, but also the local fields within composite materials. Given the local stress and strain 
fields, initiation of damage or other detrimental nonlinear mechanisms can be predicted for use as 
estimates of the composite allowables. This section provides a brief step-by-step example of how the 
presented methodology can be applied, prior to the results, which are presented in the next section. 
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Given a composite material with known fiber volume fraction and constituent material properties, the 
first step in applying the presented methodology is to discretize the composite repeating unit cell into a 
number of subcells. For example, consider a unidirectional graphite/epoxy composite with a fiber volume 
fraction of 0.6. The transversely isotropic graphite fiber properties are as follows: axial Young's modulus 
= 276 GPa, transverse Young's modulus = 15 GPa, axial shear modulus = 15 GPa, axial Poisson's  
ratio = 0.2, and transverse Poisson's ratio = 0.2. The isotropic epoxy matrix properties are: Young's 
modulus = 3.42 GPa and Poisson's ratio = 0.34. A 40 by 40 subcell discretization of the repeating unit  
cell can be considered, as shown in Figure 4. 

Next, the fiber misalignment present in the composite must be specified. Fully random fiber 
alignment is a special case, as described in Section 3.3. Otherwise, the methodology presented above 
considers a normal distribution of fiber misalignment, see Equation (19). The mean, �, and standard 
deviation, s, of the in plane (�) and out-of-plane (�) fiber angles within the composite fully characterizes 
the fiber misalignment. For example, with the mean fiber angles representing perfectly aligned fibers,  
�� = �� = 0, the standard deviations might be s� = 3° and s� = 2°. Then, based on Equation (21), the 
effective elastic properties of the this misaligned composite can be predicted, as can the effective stresses 
throughout the composite, based on Equation (24), given specified global composite level stresses. The 
results for the specified example are that the predicted effective axial Young's modulus of the composite 
is reduced from 164.7 GPa (in the perfectly aligned case) to 163.2 GPa (reduction of 0.9 percent), 
whereas, in response to a global uniaxial applied stress of 1 MPa in the 0° fiber direction, the maximum 
von Mises stress in the matrix increases from 21.3 to 23.3 Pa (increase of 9.4 percent). Hence, a slight 
reduction in axial modulus and a moderate reduction in the axial stress allowable might be warranted for 
use in design of such a composite with this fiber misalignment distribution. 
 
 
 
 

 
Figure 4.—Graphite/epoxy repeating unit cell 

divided into 40 by 40 subcells. The fiber 
volume fraction shown is 0.6.  
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5.0 Results and Discussion 
Results are shown for a polymer matrix composite (PMC) and a ceramic matrix composite (CMC) 

that exhibit the effects of fiber misalignment on the composite effective properties, local field 
distributions within the constituents, and the initial damage surfaces (envelopes). Both probability-
weighted averaging of the misalignment and the fully random fiber orientation case are presented. 

In order to generate the initial damage surfaces, two criteria were used, given the externally applied 
stresses, ij� , or strains, ij� , on the composite. The first is the traditional von Mises criteria, given by, 

 Yijijeq ����� ������ )()()( ˆˆ
2
3

 (28) 

where 3ˆ )()()(
ijkkijij !����� ������  are the subcell deviatoric stresses, ij!  is the Kronecker delta, and Y is the 

yield stress in simple tension. The second damage initiation criterion, suggested by Lemaitre and 
Chaboche (1990), is used to express the critical strain energy release rate associated with loss of stiffness 
in brittle materials, which are typically highly dependent on the state of triaxial stress, 3kkh ��� . The 
���	�����	��<�����"�������
���7����	���RQQV!���������������!�����������"�� 
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where )(��"  is the Poisson's ratio of the isotropic subcell and )(���h  is the subcell average hydrostatic 
pressure. The damage initiation criterion is then given by, 

 � � � �
crveq R ��� ���� 2

1

 (30) 

where �cr is a material parameter that specifies the stress at which damage initiates for a uniaxial state 
test. Thus, if the triaxiality function is 1 and �cr = Y, this damage initiation criterion is equivalent to the 
von Mises criterion, Equation (28). 

To generate a damage initiation surface in a given global stress plane, ij�  – kl�  (e.g., 11�  – 22� ), 
the stress components are expressed as, 

 #��#�� sincos RR klij  (31) 

where R is the radial distance from the origin at a point located on the initial damage surface in the  
ij� – kl�  stress plane and # is the corresponding polar angle. For a given #, the local (subcell) stress 

components are readily determined (in terms of R) by substituting Equations (31) into Equation (8). These 
expression for the local stresses can then be substituted into either initiation criterion, Equation (28) or 
Equation (30). This provides the value of R/Y or R/�cr corresponding to damage initiation at the specified 
polar angle #. 

As stated earlier, normal distributions for the fiber misalignment angles has been presently adopted, 
see Equation (19). In order to perform the integration including the normal distribution in Equation (20), 
finite limits of integration must be determined. Assuming that the average fiber misalignment angle (for 
both � and �) is � = 0, Figure 5 shows the probability density functions for various value of the standard 
deviation, s. It is clear that it is sufficient to utilize $4s as the limits of the infinite integrations in Equation 
(20) since wider limits will have negligible contributions (see Figure 3). 



NASA/TM—2014-218313 11 

 
Figure 5.—Normal probability density functions versus a misalignment angle are 

shown for various values of the standard deviation, s, where the mean is taken to 
be zero.  

5.1 Polymer Matrix Composite 

The first application considers the 0.6 unidirectional graphite/epoxy composite described previously 
in Section 4.0. The same constituent properties and same 40 by 40 subcell discretization of the repeating 
unit cell, as shown in Figure 4, have been considered. 

The HFGMC theory has been extensively validated versus experiment data, and extensively verified 
versus detailed finite element models, in both the linear and nonlinear regimes for polymer, metal, and 
ceramic matrix composites (c.f., Aboudi et al., 2013; Bednarcyk et al., 2004; Pineda et al., 2013; 
Matzenmiller and Kurnatowski, 2010). In order to verify the fully random fiber orientation averaging 
procedure, described in Section 3.3, comparison has been made to results for the effective Young's 
modulus and effective Poisson's ratio based on the equations presented by Christensen and Waals (1972). 
These equations are as follows, 
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where �
11E  , �"12 , �

23K , �
12G , and �

23G  are the effective composite axial Young's modulus, axial Poisson's 
ratio, transverse plane strain bulk modulus, axial shear modulus, and transverse shear modulus, 
respectively. Note that these equations assume transverse isotropy, with five independent material 
constants. Christensen and Waals (1972) used the concentric cylinder assemblage (CCA) model to predict 
the effective composite properties for use in Equations (32) and (33). Figure 6 compares the predicted 
fully random (isotropic) effective graphite/epoxy composite properties predicted by the present fully 
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random averaging approach implemented within HFGMC with the Christensen and Waals (C&W) (1972) 
equations (32) and (33), as a function of fiber volume fraction, normalized by the isotropic matrix 
properties. In addition to the CCA model, predictions are shown for the Self-Consistent Scheme (Hill, 
1965), the Mori-Tanaka (1973) Method, the Method of Cells (MOC) (Aboudi, 1989), and HFGMC, 
wherein the C&W averaging equations have been used. Note that, in the case of the CCA model, as done 
by Christensen and Waals (1972), the lower bound estimates were used for the composite transverse 
properties. As shown, the present averaging approach matches closely with these other predictions. It 
should be noted, however, that these other, simpler micromechanics theories cannot provide a reliable 
estimate of the local field distributions, and they all lack shear coupling (see Aboudi et al., 2013). Slight 
(<1 percent) differences exist between the present fully random averaging approach and the C&W 
averaging equations when using HFGMC with the square fiber packing arrangement represented by the 
employed repeating unit cell (see Figure 4) because, as is well-known, such a packing arrangement leads 
to six rather than five independent material constants associated with transverse isotropy. As mentioned 
previously, the C&W averaging equations assume transverse isotropy, whereas the present averaging 
approach includes no such assumption. While the present averaging approach, involving concentration 
tensors, produces accurate composite effective properties, the strength of the method involves its ability to 
predict local fields.  

The remainder of the PMC results focus on the 0.6 volume fraction composite shown in Figure 4. 
Figure 7 exhibits the predicted initial damage surfaces for the von Mises criterion, Equation (28), and the 
damage-based criterion, Equation (30), for various values of the standard deviation of the misalignment 
angles, s� and s� under normal loading in the fiber (x1) and transverse (x2) directions. Also shown in the 
figure are the envelopes for the fully random case. In the absence of misalignment (s = 0), the envelopes 
exhibit the expected shape in that the strength in the fiber direction (x1) is more than 40 times that in the 
transverse (x2) direction. As can be seen in Figure 7(a) and (b), the effect of an in-plane misalignment 
angle, �, distribution, rotates the initial damage envelope such that the composite becomes weaker in  
the axial direction and stronger in the transverse direction. The fully random envelope, which represents 
an isotropic material, is nearly elliptical. The effect of the hydrostatic stress, which is included in the 
damage-based criterion through the trixiality function, Rv, can be clearly observed by comparing  
Figure 7(a) and (b). 
 
 

 
 
Figure 6.—Comparison of the present fully random averaging approach within HFGMC with the Christensen and 

Waals (C&W) (1972) Equations (32) and (33) using various micromechanics theories for the predicted normalized 
fully random isotropic graphite/epoxy composite properties as a function for fiber volume fraction. (a) Effective 
Young's modulus, E3-D. (b) Effective Poisson's ratio, "3-D. 
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Figure 7.—Initial damage surfaces for the graphite/epoxy composite. (a) von Mises criterion, Equation (28), in the  

�11–�22 plane, where an in-plane fiber misalignment angle, �, has been considered. (b) Damage-based criterion, 
Equation (30), in the �11–�22 plane, where an in-plane fiber misalignment angle, �, has been considered. (c) von 
Mises criterion, Equation (28), in the �11–�22 plane, where both an in-plane fiber misalignment angle, �, and an out-
of-plane misalignment angle, �, have been considered. (d) Damage-based criterion, Equation (30), in the �11–�22 

plane, where both an in-plane fiber misalignment angle, �, and an out-of-plane misalignment angle, �, have been 
considered. 

 
 
 
 
Figure 7(c) and (d) show the initial damage surfaces in the presence of equal in-plane, �, and out-of-

plane, �, misalignment angle distributions. It can be seen that the effect of incorporating misalignment out 
of the x1-x2 plane is to reduce the size of the failure envelopes significantly as the reinforcing influence of 
the fiber is lost for both the axial and transverse directions. 

Figure 8 shows the initial damage surfaces for the damage based criterion in the �11–�12 plane for 
various values of the standard deviation of the misalignment angles. Also included is the fully random 
case. Note that the surfaces based on the von Mises criterion are not shown as they are quite similar to 
those shown in Figure 8 since the hydrostatic stress effect is relatively small. In fact, the greatest value of 
the triaxiality function, Rv (see Equation (29)), throughout the matrix material for all points on all damage 
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surfaces shown in Figure 8 is 1.16, whereas, for the damage surfaces shown in Figure 7, this value is 5.15. 
It can be observed in Figure 8 that the initial damage envelopes both rotate and reduce size as the fiber 
misalignment angle distribution standard deviations are increased. It should be noted that, contrary to the 
cases shown in Figure 7, where additional fiber misalignment causes only minor strengthening in the 
transverse direction, in Figure 8, it can be observed that significant longitudinal shear strengthening 
occurs with additional in-plane misalignment (as one might expect). 

It is of interest to examine the variation of various composite properties with respect to the in-plane 
misalignment angle �. Figure 9 shows a number of such properties, normalized with respect to their 
values in the absence of misalignment. This figure shows that, while the effective axial Young's modulus, 

�
1E , decreases with additional misalignment, the transverse Young's modulus, �

2E , and the axial shear 
modulus, �

12G , increase. The axial and transverse Young's moduli are relatively insensitive to small 
amounts of misalignment, whereas the axial shear modulus is very sensitive. It is worth mentioning that, 
by applying an in-plane transformation, the initially orthotropic composite material becomes monoclinic 
and the effective stiffness tensor component /

1212
�C , see Equation (13), is greatly influenced by this 

transformation. As a result of the employed averaging procedure, see Equation (20), the additional 
monoclinic terms in the effective stiffness matrix vanish (assuming the mean misalignment angle, � = 0), 
but the strong effect remains on �

1212C , which is the effective axial shear modulus, �
12G . Note, however, 

that, as mentioned in the Introduction, the dependence of the effective elastic properties on the 
misalignment could also be determined using a macromechanical analysis (provided the presented 
probability-weighted averaging procedure were performed). The influence on damage initiation surfaces, 
however, could not be determined. 

Also shown in Figure 9 are the variations of the areas of the damage initiation envelopes predicted 
using the von Mises, Avm, and damage-based, AD, criteria in the �11–�22 plane. The decreasing trends in 
these values indicate the overall loss of strength of the material in this plane due to fiber misalignment. 
However, for very large standard deviations of the misalignment angle, this trend appears to reverse. 
 
 
 

 
Figure 8.—Initial damage surfaces for the graphite/epoxy composite. (a) Damage-based criterion, Equation (30), in 

the �11–�12 plane, where an in-plane fiber misalignment angle, �, has been considered. (b) Damage-based 
criterion, Equation (30), in the �11–�12 plane, where both an in-plane fiber misalignment angle, �, and an out-of-
plane misalignment angle, �, have been considered. 

 

-60

-40

-20

0

20

40

60

-4 -2 0 2 4�� 1
1/

�� c
r-

m

�12/��cr-m

Note: Scales are not equal
s� = 0%

fully 
random

s� = 10%

s� = 25%

-60

-40

-20

0

20

40

60

-4 -2 0 2 4�� 1
1/

�� c
r-

m

�12/��cr-m

Note: Scales are not equal
s� = s� = 0%

fully 
random

s� = s� = 10%

s� = s� = 25%

s� = s� = 5%

(a) (b) 



NASA/TM—2014-218313 15 

 
Figure 9.—Effect of in-plane fiber misalignment on the graphite/epoxy 

composite effective axial shear modulus �
12G , transverse Young's modulus 

�
2E , axial Young's modulus �

1E , area of the von Mises criterion damage 
initiation envelope Avm, area of the damage-based criterion damage 
initiation envelope AD, and strength, all normalized with respect to their 
pristine values.  

 
 
 

A final curve plotted in Figure 9 shows the impact of fiber misalignment on the predicted strength  
of the composite loaded in axial tension, as dictate by the maximum von Mises stress, )(���eq , see  
Equation (28), in the matrix constituent material. That is, this ‘strength’ corresponds to the global uniaxial 
tensile stress for damage initiation in the matrix, predicted based on the maximum local von Mises stress 
throughout the matrix. It can be readily observed that the impact of fiber misalignment on this axial 
strength, which can only be predicted by a micromechanical analysis, is substantial (for example, at  
s� = 4%, 16 percent reduction), and much greater than the impact on the axial Young's modulus, �

1E  (for 
example, at s� = 4%, only 1.2 percent reduction). Initially, as small amounts of misalignment are 
introduced, this curve decreases rapidly with increasing s� due to increased stress (particularly shear) in 
the matrix. At greater values of s�, the normal distribution flattens (see Figure 5), and the strength curve 
in Figure 9 levels off, approaching the value for fully random fiber in the x1-x2 plane (0.124). 

In order to further investigate effect of the fiber misalignment on the composite, Figure 10 shows 
surface plots of AD, Avm, the aforementioned von Mises stress based strength, and the effective axial Young's 
modulus ( �

1E ), all normalized by their pristine values as in Figure 9. By adding the effect of out-of-plane 
misalignment, �, it can be observed that the effect of the latter misalignment is greater than that of in-plane 
misalignment on AD and Avm (Figure 10(a) and (b)). As for the strength and effective axial Young's modulus, 
it appears that the effects of both in-plane and out-of-plane misalignments are similar. It is also clear that, 
across all values of both misalignment angle standard deviations, the effect on the effective axial Young's 
modulus, which could be calculated using the macro approach, is significantly less than the other measures 
of composite performance. The fall off in the effective Young's modulus is also much less steep. 
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Figure 10.—Surface plots as a function of the standard deviations s� and s�. (a) The area, AD, of the damage initiation 

envelopes predicted using the damage-based criterion in the �11–�22 plane. (b) The area, Avm, of the damage 
initiation envelopes predicted using the von Mises criterion in the �11–�22 plane. (c) The strength of the composite 
loaded axially, as dictate by the maximum von Mises stress, )(���eq . (d) The effective axial Young's modulus, �

1E . 

Figure 11 shows the normalized von Mises equivalent stress distributions in the composite with no 
fiber misalignment (pristine) subjected to global uniaxial stress loading in the fiber and transverse 
directions. Also shown is the corresponding distribution for the case where the fibers are fully randomly 
oriented, whose response, as mentioned previously, is isotropic, which yields identical equivalent stress 
distributions irrespective of the orientation of the applied uniaxial loading. Comparing Figure 11(a) to 
Figure 11(c), it is clear that the stresses in the fiber increase and the stresses in the matrix decrease by 
introducing random fiber orientations. The opposite result can be observed when comparing Figure 11(b) 
to Figure 11(c). Thus the effect of random fiber orientation on the composite behavior is significant. 
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Figure 11.—von Mises equivalent stress distributions normalized by the applied global uniaxial stress for the 

graphite/epoxy composite. (a) Pristine composite subjected to axial stress 11� . (b) Pristine composite subjected to 
transverse stress 22� . (c) Fully random fiber distribution subjected to either axial or transverse stress. 

 

5.2 Ceramic Matrix Composite 

A second application considers a 0.26 fiber volume fraction unidirectional SiC/SiC composite. The 
isotropic SiC fiber properties are as follows: Young's modulus = 400 GPa and Poisson's ratio = 0.17. The 
isotropic SiC matrix properties are: Young's modulus = 335 GPa and Poisson's ratio = 0.18. In addition, 
there is a BN-based compliant interfacial layer whose volume fraction is 0.1. Its isotopic properties are as 
follows: Young's modulus = 5 GPa and Poisson's ratio = 0.22. A 28 by 28 subcell discretization of the 
repeating unit cell, which now includes an explicit BN interfacial phase, has been considered, as shown in 
Figure 12. 
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Figure 12.—SiC/SiC CMC repeating unit cell 

divided into 28 by 28 subcells. The fiber 
volume fraction is 0.26 and the interfacial 
layer volume fraction is 0.1. 

 
 
 

 
Figure 13.—Initial damage surfaces for the SiC/SiC CMC composite. Damage-based criterion, Equation (30), 

in the �11–�22 plane, where (a) an in-plane fiber misalignment angle, �, has been considered, and (b) both 
an in-plane fiber misalignment angle, �, and an out-of-plane misalignment angle, �, have been considered.  

 
 

Figure 13 shows the predicted initial damage surfaces for the CMC for the damage-based criterion, 
Equation (30), for various values of the standard deviation of the misalignment angles, s� and s�, under 
normal loading in the fiber (x1) and transverse (x2) directions. Also shown in the figure are the envelopes 
for the fully random case. The CMC behaves quite differently than the PMC previously considered. In the 
longitudinal (fiber) direction, the CMC exhibits much less mismatch in properties between the fiber and 
matrix, and the interfacial compliant layer, which is in parallel with the fiber and matrix, has only a minor 
effect. In contrast, in the transverse direction, the interfacial compliant layer (now in series with the fiber 
and matrix) introduces a great deal of property mismatch. This is exactly opposite to the PMC, wherein 
the longitudinal direction property mismatch it much larger (80:1) compared to the transverse mismatch 
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(4:1). As a result, the effect of relatively small amounts of fiber misalignment on the CMC is considerably 
less compared to the PMC. Furthermore, also in contrast to the previously considered PMC, the addition 
of out-of-plane fiber misalignment, see Figure 13(b), does not exhibit a significant effect. 

Figure 14 shows the variation of various composite properties with respect to the in-plane 
misalignment angle �, normalized with respect to their values in the absence of misalignment. Note that 
the scale of the ordinate axis in Figure 14 is significantly smaller than that in Figure 9 for the PMC. As 
such, it is clear that the effect of misalignment on the various properties for the CMC is considerably less 
pronounced. The strength remains the property most affected by the fiber misalignment, but the trend 
reversals in the Avm and AD, observed in Figure 9 are now absent. 

Finally, the normalized local von Mises equivalent stress distributions in the CMC are shown in 
Figure 15. Figure 15(a) and (b) show the stress distributions in the pristine composite loaded in the axial 
and transverse directions, respectively. The compliant layer can be clearly observed. The induced stress 
concentrations are significantly higher in the transversely loaded case, Figure 15(b), due to the compliant 
layer's influence, which isolates the fiber. Figure 15(c) shows the fully random CMC case, which, 
compared to the axially loaded pristine case, Figure 15(a), exhibits greater stress in the matrix and lower 
stress in the fiber. 

 
 
 
 
 
 

 
Figure 14.—Effect of in-plane fiber misalignment on the SiC/SiC CMC composite 

effective axial shear modulus �
12G , transverse Young's modulus �

2E , axial 
Young's modulus �

1E , area of the von Mises criterion damage initiation envelope 
Avm, area of the damage-based criterion damage initiation envelope AD, and 
strength, all normalized with respect to their pristine values. 
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Figure 15.—von Mises equivalent stress distributions normalized by the applied global uniaxial stress for the SiC/SiC 

CMC. (a) Pristine composite subjected to axial stress 11� . (b) Pristine composite subjected to transverse stress 

22� . (c) Fully random fiber distribution subjected to either axial or transverse stress. 
 

6.0 Conclusions 
A micromechanical formulation has been presented that is capable of predicting the effects of statistical 

distributions of fiber misalignment on the behavior of composite materials. The key unique feature is the 
ability of the method to predict not only effective composite properties, but also local fields. This is possible 
because this approach is based on the establishment of the composite concentration tensors, which include 
the effects of the fiber misalignment. It is thus possible (although not done herein) to predict the complete 
nonlinear response of the composite, including interfacial debonding and progressive damage. This 
approach was applied to the case of linear elasticity and perfect bonding, excluding progressive damage. 
However, in the absence of fiber misalignment, imperfect debonding and progressive damage have been 
addressed by Aboudi et al. (2013). In all cases presented, normal distributions of in-plane and out-of-plane 
fiber misalignment angles have been considered. It has been shown that the effect of these fiber 
misalignments are more significant in PMCs as compared to CMCs due to the fact that PMCs have 
significantly greater property mismatch. In the case of the PMC, the substantial variations of the initial 
damage surfaces with the standard deviation of the misalignment angles have been illustrated. Fully random 

(a) (b) 

(c) 
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fiber orientation has also been considered and shown to have a major impact on the initial damage surfaces 
and local field distributions when compared to the pristine composite. 

It should be noted that the presented approach to capturing the effects of fiber misalignment is 
applicable to any micromechanical approach that can accurately predict the strain concentration tensor of 
a composite, including the finite element method. Due to the proven ability of the HFGMC model to 
analyze various nonlinear effects, the proposed method could also be extended to consider material 
nonlinearity such as damage and inelasticity within the constituents and to consider the thermal-
mechanical response of composites. Additional potential applications include analysis of composites with 
given fiber paths, short/nano fiber composites with known fiber alignment/waviness (c.f., Yu et. al, 2011) 
and multiscale analysis within laminated plate theories and finite element analyses, which could be used 
to capture misalignment effects on the response of woven composites. Application to biological materials, 
as has been done with the microsphere model, is also possible. 
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