Simulation of VSPT Experimental Cascade under High and Low Free-Stream Turbulence Conditions

AIAA Joint Propulsion Conference July 2014 Cleveland, OH

Ali Ameri, OSU/ NASA Glenn Research Center Paul Giel, VPL / NASA Glenn Research Center Ashlie Flegel, NASA Glenn Research Center

Motivation

- A key goal of NASA's Rotary Wing (RW) project is to enhance use of civil rotorcraft to relieve airport congestion and increase capacity.
- A concept advocated is use of tilt rotor aircraft for vertical takeoff and landing.
- For fuel efficiency, the main-rotor speed needs to vary from 100% at takeoff to 55% at cruise.

- To avoid the added weight and complexity of transmission a variable speed power turbine (VSPT) can be used with a fixed gear ratio transmission.
- Such variations in the shaft speed of the VSPT lead to a wide range of incidence.

Conditions of VSPT

- Flow in the power turbine is characterized by:
 - Low Reynolds number < 100,000 (Re_{Cx2})
 - High turbulence intensity > (6%)
 - Unsteadiness- Multi-Stage
 - Large excursions from optimal incidence > 60 degrees
- Analysis tools are needed to handle physics of the VSPT.
- A need for models capable of predicting transition and responding to separation has been identified.

Our Earlier Work

- Selected and implemented transition/ turbulence model in our codes.
- Validated using available three-dimensional blade heat transfer data at high turbulence levels, indicating transition.
- Specifically, "GE2" blade data from earlier work of Giel et al. (GT2003-38839)

Present Work

- NASA has developed notional VSPT blade-set through previous study contract with Rolls-Royce.
- NASA has documented blade performance over wide incidence angle range at mission-relevant Reynolds numbers and Mach numbers.
- We need **To Validate** CFD tools for effect of incidence using NASA data from the notional blade.

- Data were obtained in NASA-GRC's Transonic Turbine Blade Cascade CW-22
- Large-scale, continuous running facility capable of wide range: Re, M, Tu with adjustable inlet angle.
- Blade/Tip/Endwall aero and heat transfer measurements.

Test Blade

Midspan section of VSPT second stage rotor: Dimensions and measurement stations.

Geometry	Value, mm (in)	
Axial Chord, C _x	180.57 mm (7.109")	Sta. 2
True Chord	194.44 mm (7.655")	$\beta_1 = -11.8^{\circ} \text{ max}$
Pitch, S	130.00 mm (5.119")	$\beta_1 = -2.5^\circ t_{-0} \frac{40.0^\circ}{i = -36.7^\circ} = 5$
Span, H	152.40 mm (6.000")	rol
Throat Diameter	72.85 mm (2.868")	B 34.2° revise 4
Leading Edge Dia.	15.16 mm (0.597")	Brau 1.0
Trailing Edge Dia.	3.30 mm (0.130")	passage
Stagger Angle	20.35°	
Inlet Metal Angle	34.2°	Sta. 0 $\int^{-2.0}$
Uncovered Turning	19.47°	v
Exit Metal Angle	-55.54°	$x'C_x = \frac{x/C_x}{0.415}$ $x/C_x = 1.070$

Experimental Cases for Num. Validation

- A wide Range of variables at various *Reynolds numbers*, *Mach numbers* and *incidence angles* and two *turbulence levels* were measured. (Full data was presented **earlier in this session**)
- Two cases representing *cruise* and *take off* were documented in detail and are used for this exercise.
- **3d** Blade surface pressure, wake total pressure and blade exit angle distributions were measured.

Test Configuration

- VSPT midspan section blade, $\beta_{1,des}$ = 34.2°
- Ten incidence angles: +15.8° to −51.0°
- 5 flow conditions each
- Inlet δ range: 1.16 1.69 inches for Low Tu
- Inlet δ range: 0.58 0.86 inches for High Tu
- Free-Stream Turbulence, Two conditions:
 - One with no turbulence grid installed
 - One with "blown grid" upstream (*Tu* = 0.24% - 12.0%)

Incidence	Zw				
Angle, <i>i</i>					
15.8°	1.22				
10.8°	1.13				
5.8 °	1.06				
0.0°	0.99				
-6.2°	0.92				
-16.1°	0.82				
-26.0°	0.74				
-36.7 °	0.65				
-46.0°	0.58				
-51.0°	0.53				
	Incidence Angle, <i>i</i> 15.8° 10.8° 5.8 ° 0.0° -6.2° -16.1° -26.0° -36.7 ° -46.0° -51.0°				

Inlet Flow Angles

Choice of Transition Model (Our Earlier Work)

- Surveyed the literature for suitable models.
- Eliminated models which use integral parameters (non-local) such as δ, Θ or any parameter that requires surveying the boundary layer profiles which would limit applicability to 3d flows.
- Identified $k_L k \omega$ models of Walters and Leylek as candidates (3 equation model.)
- Chose this model based on:
 - Ease and generality of use
 - Recommendations in the literature
 - Tests with transitional heat transfer blade surface data

Application to VSPT

- At low turbulence, WL model results were surprising! Did not agree with data.
- Identified improved $k_L k \omega$ model of Walters and Cokljat (3 equation model.)
- Results to compare with WL model at high and low turbulence models.

CFD Tool, Glenn-HT

- Full compressible Reynolds-Averaged Navier-Stokes Formulation and Conjugate Heat Transfer
- Multi-block structured grids
- Finite Volume formulation
- Second order central differencing, 4th order artificial dissipation with eigenvalue scaling or,
- Second order upwind schemes, Hunyh, AUSM
- Multi-stage explicit Runge-Kutta time integration with local time stepping
- Multi-grid convergence acceleration
- Dual-Time-Stepping for unsteady simulations
- Parallel processing via MPI

3-D Grids

For this work a fine grid was generated (half-span):

- Grid ~ 7x10⁶ nodes and a stretching ratio of 1.1 away from the walls with y+<1
- A coarse grid was also used for startup and for ensuring grid convergence by coarsening Grid by a factor of 2 in each index direction.

Cruise Condition

- Blade is operated at $i = +5.8^{\circ}$ as would occur due to slowing down of rotation
- Reynolds number=5.4e5
- $Tu_{in} = 0.3\%, 12.0\%$
- Turbulence length scale

- computed from matching Tu at the two stations.
- δ_{in} at the end walls=25% Span at Low Tu, leads to highly 3d flow. At high Tu 12.0% Span

Inlet Angle β ₁	Exit Re _{cx}	Press. Ratio	Exit M _{IS}	δ _{inlet} [inch]	Tu _{in} % at -1.5 C _x	Tu _{in} % at -0.5 Cx
40.0 °	536,000	1.412	0.72	1.44	0.4	0.3
40.0 °	536,000	1.412	0.72	0.7	19	12

Takeoff Conditions

- Blade incidence is $i=-36.7^{\circ}$
- Nominal Reynolds number=5.3e5.
- *Tu* =0.3%, 8.5%
- δ_{in} at the endwalls=25% span at Low Tu ϵ 12% span at high Tu.
- Turbulence length computed from matching *Tu* at the two stations.

Inlet Angle β ₁	Nominal Exit Re _{Cx}	Press. Ratio	Exit M _{IS}	δ _{inlet} [inch]	Tu _{in} % at -1.5 C _x	Tu _{in} % at -0.5 Cx
-2.5 °	532,000	1.348	0.67	1.50	0.4*	0.3*
-2.5°	532,000	1.348	0.67	0.75	15.0	8.5

Turbulence Length Scale

In general:

- Turbulence length scale is input at the inflow boundary.
- Value is usually guessed based on heuristic arguments,
 -- examples include, size of turbulence generator bar, span of the passage or the hydraulic diameter of the passage, ...
- In this case Tu was measured at X=-1.50*Cx and at -0.5*Cx.
- By matching the decay of turbulence, length scale was computed at the inlet to the computational domain at -0.5*Cx .

Turbulence Length Scale-Issues

- Issues arise when FST (12%) is present and the decay is to be matched using large values of length scale.
- The problem arises due to excessive entropy generation in the flow at high turbulence intensities.
- For one of the conditions, length scale was dialled down to avoid this excessive loss while the transition location held steady.
- Experiments (Mahallati et al.) suggest that at higher FST the effect of length scale is negligible on transition.
- However, this is still an open issue and needs to be resolved but can be handled.

Transition, Cruise, Low Tu

Pressure Distribution- Cruise, Low Tu

Pressure Distribution- Cruise, Low Tu

Transition Takeoff, Low Tu

Pressure Distribution- Takeoff, Low Tu

Pressure Distribution- Cruise, Low Tu

C_{pt} for the Cruise incidence, Low Tu

Probe Data 7% x=1.07CX

$$C_{pt} = \frac{P_{t1} - P_{t_{-}x}}{P_{t1} - P_{s2}}$$

The wake total pressure loss coeff.
 measure C_{pt} over the half-span is well predicted.

C_{pt} for the Takeoff incidence, Low Tu

$$C_{pt} = \frac{P_{t1} - P_{t_x}}{P_{t1} - P_{s2}}$$

Probe Data 7% x=1.07CX

The wake total pressure loss coeff.
 measure C_{pt} over the half-span is well predicted.

Transition, Cruise, High Tu

Pressure Distribution, Cruise, Hi Tu

$$C_{ps} = (P - P_{s2})/(P_{t1} - P_{s2})$$

Pressure Distribution, Cruise, Hi-Tu

Transition, Takeoff, Hi Tu

Pressure Distribution, Takeoff, High Tu

Pressure Distribution, Takeoff, High Tu

C_{pt} for the Cruise incidence, High Tu

$$C_{pt} = \frac{P_{t1} - P_{t_{x}}}{P_{t1} - P_{s2}}$$

Probe Data 7% x=1.07CX

CFD

The wake total pressure loss coeff.
 measure C_{pt} over the half-span is conservative.

C_{pt} for the Takeoff incidence, High Tu

$$C_{pt} = \frac{P_{t1} - P_{t_{x}}}{P_{t1} - P_{s2}}$$

Probe Data 7% x=1.07CX

The wake total pressure loss coeff.
 measure C_{pt} over the half-span is well predicted.

Summary and Conclusions

- For the VSPT, flow transition/separation has been identified as an important process.
- Large variations in incidence angles require models that can reasonably compute these flows.
- Numerical modeling and validation with companion experimental data of the 3-D flow in a 2-D transonic linear cascade at the two incidence angle conditions corresponding to Takeoff and Cruise were made.

Summary and Conclusions

- The inlet turbulent length scale, which determines the decay rate of turbulence, was determined from the data.
- At low Tu, WL model missed separation entirely due to early transition while WC model predicted a laminar boundary layer and the subsequent separation as described by the data.
- At higher Tu the two models performed similarly and results were quite satisfactory. At the takeoff condition WC model shows separation on the pressure side while WL model does not.
- Losses are generally better predicted with the WC model.