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The problem of reconstructing the sky position of compact binary coalescences detected via
gravitational waves is a central one for future observations with the ground-based network of
gravitational-wave laser interferometers, such as Advanced LIGO and Advanced Virgo. Different
techniques for sky localization have been independently developed. They can be divided in two broad
categories: fully coherent Bayesian techniques, which are high latency and aimed at in-depth studies of all
the parameters of a source, including sky position, and “triangulation-based” techniques, which exploit the
data products from the search stage of the analysis to provide an almost real-time approximation of the
posterior probability density function of the sky location of a detection candidate. These techniques have
previously been applied to data collected during the last science runs of gravitational-wave detectors
operating in the so-called initial configuration. Here, we develop and analyze methods for assessing the self
consistency of parameter estimation methods and carrying out fair comparisons between different
algorithms, addressing issues of efficiency and optimality. These methods are general, and can be applied
to parameter estimation problems other than sky localization. We apply these methods to two existing sky
localization techniques representing the two above-mentioned categories, using a set of simulated inspiral-
only signals from compact binary systems with a total mass of ≤ 20M⊙ and nonspinning components. We
compare the relative advantages and costs of the two techniques and show that sky location uncertainties
are on average a factor ≈20 smaller for fully coherent techniques than for the specific variant of the
triangulation-based technique used during the last science runs, at the expense of a factor ≈1000 longer
processing time.
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I. INTRODUCTION

Ground-based gravitational-wave (GW) laser
interferometers—Laser Interferometer Gravitational Wave
Observatory (LIGO) [1], Virgo [2] and GEO-600 [3]—have

completed science observations in 2010 (S6/VSR2-3) [4] in
the so-called initial configuration, and are currently being
upgraded with the plan to start running again from 2015 at a
significantly improved sensitivity [5,6]. No detection was
achieved during this initial period of observations; how-
ever, the expectations are that by the time the instruments
reach design “advanced” sensitivity they shall routinely*tsidery@star.sr.bham.ac.uk
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detect gravitational-wave signals. One of the most prom-
ising candidate sources for detection are coalescing binary
systems of compact objects containing neutron stars and
black holes [7].
One of the key pieces of information to extract is the

source location in the sky. Once a detection candidate is
identified by search pipelines, the location parameters that
describe the source are reconstructed using a number of
techniques, both high and low latency [8,9]. In contrast to
traditional telescopes, gravitational-wave instruments are
all-sky monitors and the source location in the sky is
reconstructed a posteriori. Information about the source
geometry is primarily encoded in the relative time of arrival
of GW radiation at the different detector sites, together with
the relative amplitude and phase of the GWs as seen in
different detectors. Constraining the source location on the
sky will be an important element of the analysis because it
allows for follow-ups of the relevant portion of the sky with
electromagnetic instruments, possibly over a wide spectral
range, and could offer information about the environment
of a GW-detected binary [10–12]. The electromagnetic
signatures associated with the merger of the compact objects
are expected to be transient, so the time scale over which
the sky location information becomes available from the
gravitational-wave ground-based network is also important.
For this reason the problem of reconstructing the sky

position of GW sources with the network of ground-based
laser interferometers is an area of active work in preparation
foradvancedinstruments[13–18].Bytheendofobservations
with instruments in initial configuration, two main imple-
mentations had been used to determine the sky localization
uncertainty region of a coalescing binary candidate [8,9]:

(i) LALINFERENCE [19], a library of fully coherent
Bayesian analysis algorithms, computes the posterior
probability density function (PDF) on the sky location
and other parameters on the time scale of hours to
several weeks, depending on the specific signal. Using
two classes of stochastic sampling techniques,
Markov-Chain Monte Carlo [20–22] and nested sam-
pling [23–25],LALINFERENCEcoherentlyanalyzes the
data from all the interferometers in the network and
generates the multidimensional PDF on the full set of
parameters needed to describe a binary system before
marginalizing over all parameters other than the sky
location (a binary in circular orbit is described by 9
to 15 parameters, depending on whether spins of the
binary components are included in the model).

(ii) A much faster low-latency technique, that we will
call TIMING++ [8], uses data products from the
search stage of the analysis, and can construct sky
maps on (sub)minute time scales by using primarily
time-delay information between different detector
sites. In particular, the masses, time and phase of
arrival, and the amplitude of the signal are searched
for in each detector separately and the masses and

time of arrival are checked for consistency [26]. The
time of arrival and amplitude of the signal in each
detector are the intermediate data products used by
TIMING++ to construct the PDF of the sky location.

These two approaches were initially designed to serve
different purposes: a thorough parameter reconstruction
and a low-latency sky localization technique, trading off
accuracy for computational speed.
The goal of this paper is twofold. Several parameter

estimation approaches have been, and continue to be,
developed in preparation of the advanced instruments
coming online in 2015. Algorithms may be tuned in specific
ways to serve different purposes. The first goal of this paper
is to provide fair and rigorous methods to compare different
approaches in order to inform future developments. One of
the most actively investigated parameter estimation aspects
is sky localization reconstruction. It is therefore natural to
apply these comparison methods to the algorithms used up to
now to check the consistency of the results, quantify relative
benefits and identify the areas that need the most attention in
the future. The second goal of this paper is to provide the first
rigorous comparison of the two sky localization techniques
described above. We examine the sky location PDFs for a
large number of simulated signals from coalescing compact
binaries with total masses of up to 20M⊙ in simulated
stationary, Gaussian noise. Although our signal distribution
is not astrophysically motivated, it allows us to statistically
examine the self consistency of both techniques by testing
whether the claimed uncertainty regions match the actual
probability that the source is found at those sky locations.
Furthermore, by comparing the uncertainties in sky location
across the code outputs we gain an understanding of the
systematic behavior of each technique. Many of these
comparison methods have now become the routine test bed
in the development effort for gravitational-wave data analysis
and may have applicability in other areas of astronomy.
The paper is organized as follows. In Sec. II we describe

two techniques used to determine the sky location of a
candidate coalescing compact binary. In Sec. III, we
evaluate the correctness of the two techniques using a
simulated population of binaries over a wide range of
the parameter space, comparing their sky localization
capabilities and latency time scales. Sec. IV contains our
conclusions and pointers to future work.

II. LOCATION RECONSTRUCTION METHODS

Gravitational-wave interferometers are, by design,
sensitive to sources across much of the sky. Because of
this, position reconstruction estimates rely largely on time
delays between sites in a multiple detector network, i.e.,
triangulation. Using only time-delay information, there is
generally a degeneracy in the position reconstructed. For a
two-detector network, this degeneracy is a conical surface
of constant time delay around the line connecting the two
detectors, whose projection onto the sky plane yields a ring.
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For a three-detector network, this degeneracy is broken into
two regions symmetric about the plane defined by the
detectors: the intersections of two rings on the sky. A four-
(or more) detector network will generally identify a single
region in the sky. However, time delays are not the only
source of sky location information. Though the observed
amplitude of gravitational waves depends only weakly on
the source location, it typically helps to break these
degeneracies in two and three detector networks; further
information is contained in the relative phasing between
detectors [18]. In this section we outline the two methods
considered so far for position reconstruction.
We can formalize the problem we want to address as

follows. The data,

djðtÞ ¼ njðtÞ þ hjðt; ~θÞ; (1)

from each gravitational-wave interferometer in the network
j ¼ 1;…; N, where N is the number of instruments, is a
sum of the noise njðtÞ and any signal hjðt; ~θÞ, where ~θ is a
vector that describes the set of unknown parameters that
characterize the GW source. For this study we consider
coalescing binaries of compact objects with approximately
circular orbits and negligible spins; ~θ is a nine-dimensional
parameter vector: two mass parameters (the two component
masses m1;2, or an alternative combination of these, e.g.,
the symmetric mass ratio η ¼ m1m2=ðm1 þm2Þ2 and the
chirp mass M ¼ η3=5ðm1 þm2Þ), the distance to the
source D, the source location in the sky (described by
two angles that identify the unit vector ~Ω, e.g., right
ascension α and declination δ), the orientation of the binary
(polarization ψ and inclination of the orbital plane ι) and the
reference phase ϕ0 and time t0. To simplify notation, we
define

~θ ¼ f ~Ω; ~βg; (2)

where ~β is the parameter vector that does not contain the
sky location parameters, right ascension and declination.
Regardless of the specific technique that one decides to
adopt, the goal is to evaluate pð ~ΩjdÞ, the marginalized joint
posterior density function of the sky location parameters
given the observations.
A straightforward application of Bayes’ theorem allows

us to calculate the posterior probability density for a model
with parameters ~θ given the data, d, using

pð~θjdÞ ¼ pðdj~θÞpð~θÞ
pðdÞ : (3)

The prior probability density, pð~θÞ, encapsulates all our
a priori information about the expected distribution of
sources in distance, masses or other parameters in the
model. The likelihood pðdj~θÞ is the probability of gen-
erating the data set d given an assumed signal with

parameters ~θ. The evidence pðdÞ is used to normalize
the integral of the posterior over the entire parameter space
to unity.

A. LALINFERENCE

The evaluation of pð~θjdÞ is notoriously difficult in
high-dimensional problems with complex likelihood func-
tions, as is the case for coalescing compact binaries in a
network of laser interferometers. We have developed a
set of sampling algorithms within the LSC Algorithms
Library (LAL) [27], collected under LALINFERENCE [19],
specifically for the analysis of gravitational-wave data, and
for what is relevant here, coalescing binary signal models.
The library contains two main stochastic parameter-
space exploration techniques: Markov-Chain Monte Carlo
(LALINFERENCE_MCMC [22]), and nested sampling
(LALINFERENCE_NEST [24] and LALINFERENCE_BAMBI

[28]). Different algorithms are included to validate results
during the development stage and to explore a range of
schemes to optimize the run time. These techniques have
been used to analyze a set of hardware and software
injections as well as detection candidates during the last
LIGO/Virgo science runs [9]; a technical description of the
algorithms will be reported elsewhere [19].
The output of a LALINFERENCE run is a list of

“samples,” values of ~θ drawn from the joint posterior
probability density function. The density of samples in a
region of parameter space is proportional to the value of the
PDF. For the specific sky localization problem we are
considering here, the marginalized posterior probability
density function on the sky location is simply

pð ~ΩjdÞ ¼
Z

pð ~Ω; ~βjdÞd~β; (4)

where pð ~Ω; ~βjdÞ≡ pð~θjdÞ is derived using Eq. (3). If we
could extract an infinite number of samples then we would
be able to map out the PDF perfectly; however, these are
computationally intensive algorithms, see Sec. III D for
more details, and we typically have ∼1000 independent
samples. The finite number of samples can introduce both
stochastic and systematic bias, and so we have imple-
mented a two-step kD-tree binning process to estimate the
PDF that removes the systematic issues [29].
The fully coherent Bayesian analysis takes into account

the search stage of the analysis only to set the prior range for
the arrival time of a gravitational wave around the observed
detection candidate. However, thematched-filtering stage of
a search already offers processed information that can be
used to generate approximate posterior density functions
pð ~ΩjdÞ. This is the approach taken in TIMING++.

B. TIMING++

TIMING++ [8] takes the parameters of the waveform that
best fit the data in each detector, as found by the initial
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search [26], and assumes that the posterior of interest is
only a function of the arrival times in each detector, tðiÞ, and
the amplitude of the signal in each detector, AðiÞ. That is, we
write

pð ~ΩjdÞ ≈ pð ~ΩjtðiÞ; AðiÞÞ; (5)

where ~Ω is the location on the sky. We further assume that
the information in the arrival times and amplitudes can each
be replaced by a single quantity so that

pð ~ΩjdÞ ≈ pð ~ΩjtðiÞ; AðiÞÞ ∝ fðΔtrss;scð ~ΩÞ;ΔArssð ~ΩÞÞ
≡ fðΔtrss;sc;ΔArssÞ; (6)

where fðΔtrss;sc;ΔArssÞ is an empirically derived distribu-
tion function and Δtrss;sc and ΔArss are described in the
following. For a source at position ~Ω, the arrival time at
detector i allows us to predict the arrival time at any other
fiducial point, which, for the sake of simplicity, we choose
to be the geocenter. In the absence of noise, the predicted
geocentric arrival times, computed separately from each
detector’s measured arrival time, should coincide. The
summed squared differences of the predicted arrival times
at the geocenter between detector pairs give us a measure of
how far we expect to be from the true location:

Δtrss ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i>j

ððtðiÞref − tðiÞgeoð ~ΩÞÞ − ðtðjÞref − tðjÞgeoð ~ΩÞÞÞ2
s

; (7)

where tðiÞgeoð ~ΩÞ is the difference between the arrival time of
a signal from ~Ω at detector ðiÞ and at the geocenter, and
tðiÞref is the time the signal crosses a reference frequency in
the band of detector i. This vanishes in the idealized case of
no noise for the true location. By appropriately choosing
the reference frequency we minimize the correlation
between the determined mass and phase in the waveform
and the recovered time of arrival [30]. This is important
since the parameters of the waveform are determined
separately in each detector. Moreover, we expect that these
errors in timing will scale inversely with the signal-to-noise
ratio (SNR) of the system in the high-SNR regime:

Δtrss ¼ Δtrss;sc
10

ρ
; (8)

where ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiP

iρ
2
i

p
is the combined SNR, ρi is the SNR

measured in detector i, and the factor of 10 is chosen as a
fiducial SNR. We use the SNR-corrected Δtrss;sc in place of
Δtrss to remove this dependence on SNR.
Incorporating the amplitude of the signal is more com-

plicated. The SNR is a function not only of sky location but
also of luminosity distance, inclination and polarization of
the signal. Because this method is designed for low-latency
sky localization, a somewhat ad hoc measure of amplitude

consistency between detectors is used. The starting point is
the fact that

ρi ∝
1

DðiÞ
eff

; (9)

where Deff is an effective distance, defined by

Deff ¼ D

�
F2þ

�
1þ cos2ι

2

�
2

þ F2
×cos2ι

�−1=2
; (10)

and Fþ;× ¼ Fþ;×ð ~Ω;ψÞ are the antenna beam pattern
functions; see Eqs. B9 and B10 of Ref. [31]. While the
matched filter detection pipeline produces an estimate of
Deff separately in each detector, it is not invertible to obtain
any of the quantities in Eq. (10) directly. With that in mind,
we define

A2 ≡ 1

F2þð ~Ω;ψ ¼ 0Þ þ F2
×ð ~Ω;ψ ¼ 0Þ

; (11)

and use

ΔArss ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i>j

�
DðiÞ2

eff −DðjÞ2
eff

DðiÞ2
eff þDðjÞ2

eff

−
AðiÞ2 − AðjÞ2

AðiÞ2 þ AðjÞ2

�
2

s
(12)

as a measure of the consistency of the calculated and
observed difference in response functions between each
detector pair. In contrast to Eq. (7), this quantity is typically
not zero in the absence of noise as A2 ¼ Deff=D only when
inclination and polarization are both 0. However, the use of
amplitude reconstruction in this manner has been deter-
mined empirically to improve position reconstruction
estimates. In contrast to Δtrss;sc, there is no adjustment
for SNR in ΔArss. Grover et al. [18] showed that phase
consistency between detectors can provide additional
information on sky location and significantly reduce sky
localization uncertainty; however, phase consistency was
not included in TIMING++.
Putting together our previous assumptions,

pð ~ΩjdÞ ≈ pð ~ΩjtðiÞ; AðiÞÞ
∝ pð ~ΩÞfðΔtrss;sc;ΔArssÞ
≈ pð ~ΩÞftðΔtrss;scÞfAðΔArssÞ; (13)

where pð ~ΩÞ is the prior on the sky location and in the third
line we have assumed that fðΔtrss;sc;ΔArssÞ can be written
as the product of two other empirical distributions,
ftðΔtrss;scÞ and fAðΔArssÞ. In this work we assume isotropic
priors on the sky location. In the low-latency search for
compact binaries and associated electromagnetic counter-
parts for which TIMING++ was designed, a restrictive prior
that limited consideration to only areas of the sky
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containing galaxies was imposed, as described in [8]. In
practice, ftðΔtrss;scÞ and fAðΔArssÞ are measured before-
hand using simulations, where Δtrss;sc and ΔArss are
computed from the recovered arrival times and effective
distances, respectively, and the true (known) sky location,
~Ωtrue. This amounts to evaluating Δtrss;sc (ΔArss) according
to Eq. (7) [Eq. (12)] at ~Ωtrue using the time of arrival
(effective distance) from the matched filter pipeline.
A kernel density estimator is then used to estimate the
distribution of these quantities. When a candidate is found,
Δtrss;sc and ΔArss are computed across a fixed grid on the
sky, and the likelihood is taken from the previously
simulated distributions and the result is normalized, leading
to an inherently fast method.

III. TESTING

The goal of this study is to compare the relative
performances in terms of sky localization of TIMING++
and LALINFERENCE and in doing so to develop a set of
criteria and general tools that can be applied to many
parameter estimation problems in which different tech-
niques are considered. The tests should ensure that each
algorithm separately is self consistent, and then provide fair
methods of making comparisons.
For the specific problem considered in this paper,

TIMING++ and LALINFERENCE both evaluate the posterior
probability density function pð ~ΩjdÞ; see Eqs. (4) and (13).
For a given model assumption and data realization, there
is an exact PDF of which the algorithms produce an
approximation. There are many effects that can distort
the recovered PDF from the true one. They can be grouped
in two broad categories.
Irrespective of the algorithm that is used, the assump-

tions on the elements that enter the PDF calculation may
differ from the actual problem, and therefore produce a bias
in the results. For the problem at hand, they can be
summarized as follows: (i) the model waveform family
does not describe the actual signal contained in the data;
(ii) the noise model is incorrect; and (iii) the choice of
priors does not match the actual ones that describe the
problem, and, in the specific case considered here, the
priors from which the source parameters have been drawn.
Each of these enter the calculation of the PDF; see Eq. (3).
In the test described here, the signal model (the waveform
family) is exactly known, and the same waveform family is
used for the signal generation and the likelihood calcu-
lation. The statistical properties of the noise—Gaussian and
stationary drawn from a known distribution—are also
known. It is, however, important to emphasize that in
the case of LALINFERENCE the noise power spectral density
(PSD) is estimated from the data surrounding the signal,
and as a consequence it does not exactly describe the
distribution from which the noise is drawn. For the
TIMING++ analysis, on the other hand, the noise PSD is taken
to be exactly the one used to generate the noise realizations.

A different set of effects that can affect the recovered
PDF are more fundamentally intrinsic to the algorithms:
(i) the assumptions that go into the likelihood calculation
are not perfect, (ii) there are algorithmic issues that produce
errors, and (iii) PDFs cannot be reconstructed perfectly
from a finite number of samples (postprocessing).
The likelihood calculation makes assumptions about the
form of the noise and so is linked to the previously
mentioned noise issue. For TIMING++, the likelihood is
calculated using a mix of approximations and simulated
runs. This is a point of possible bias entering the results of
the TIMING++ runs; measuring its extent is part of our
investigation.
As well as the obvious statement that the algorithm must

be working correctly, it was found with LALINFERENCE
that the way that the results are processed to create a
continuous PDF from discrete samples from the posterior
can also introduce noticeable distortions. This is linked to
the finite sampling issues mentioned previously and fixed
with two-stage kD-trees [29].
While in theory the sources of bias due to the test itself

are straightforward to control, any erroneous results may
either be due to code issues or a failure to properly treat the
setup issues, both of which may give very similar dis-
tortions in the final PDF. This leads to a cycle of code
checking and test setup checking while codes are being
developed. This is particularly true of the LALINFERENCE-
type algorithms that, with the correct setup, should pre-
cisely recover the PDF, creating a stringent checking
mechanism for the codes’ self consistency.

A. Test population

To set up a rigorous comparison test bed we have
considered 360 mock inspiralling compact binary signals
from a population of binary sources and “injected” the
waveforms into Gaussian and stationary noise representing
observations with the three-detector network consisting of
the two LIGO detectors at Hanford, Washington and
Livingston, Louisiana and the Virgo detector near Pisa,
Italy. The power spectrum of the noise was chosen to mimic
the LIGO sensitivity achieved during the last science run
[4] and was the same for all the instruments of the network,
including Virgo. A subset of this population has been
recently used for other parameter estimation studies;
see Refs. [18,32]. The noise data were generated with
the infrastructure used for the NINJA-2 project [33]. The
low-frequency cutoff was set to 40 Hz.
The source distribution was chosen to test these two

sky localization approaches over a large range of signal-to-
noise ratios and physical parameters that describe stellar
mass binary systems, rather than being astrophysically
motivated. The mass distribution was uniform in compo-
nent masses with 1M⊙ ≤ m1;2 ≤ 15M⊙ and a cutoff on the
total mass m1 þm2 ≤ 20M⊙. The sky position and ori-
entation of the systems with respect to the interferometers
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were distributed uniformly. For distances between 10 and
40 Mpc the logarithm of the distance was uniformly
distributed in order to give a broad range of network
SNRs above the detection threshold.
The waveforms used to generate, and then analyze, the

signal are restricted post-Newtonian approximations of the
inspiral phase, with spins of the binary components set to
zero. The time-domain TaylorT3 and TaylorT4 approxim-
ants of the LAL [27] at second post-Newtonian order in
phase, in which the differential equations that describe the
evolution of a characteristic orbital velocity and phase of
the system are Taylor expanded in terms of the character-
istic velocity of the two inspiralling objects [34], were used
for TIMING++ and LALINFERENCE, respectively. The pre-
cise forms of the two families of waveforms have phase
differences from post2.5-Newtonian order and above, which
has no effect for the purpose of these comparisons; the
crucial factor for these tests was that each code used
the same waveform family for injection and subsequent
recovery of the signal. It was necessary to use different
waveforms in each code due to compatibility issues of the
implementations.
The synthetic data containing GW signals added to noise

were processed using the standard matched-filter search
pipeline IHOPE [26] used in the LIGO/Virgo analyses in this
parameter range; see, e.g., Ref. [35] and references therein.
LALINFERENCE was run on all the 360 injections, with a flat
prior on the time of arrival over a range of�100milliseconds
around the time of the injection. TIMING++ uses an addi-
tional criterion that the SNR must be greater than 5.5 in each
of three detectors; 243 candidates passed this cut. Figure 1
gives an example output PDF from one of the runs. For the
self-consistency tests described in Sec. III B we used all the
results available for each algorithm. For the comparisons

between the codes in Sec. III C, we only used those data sets
for which results from both methods are available.

B. Self-consistency checks

We describe the PDF via credible levels (CL): the
integrated probability, in our case pð ~ΩjdÞ, over a given
region of the parameter space. In particular we consider the
smallest region, or minimum credible region (CRmin), for a
given CL; in our case, this corresponds to the smallest
region in the sky that contains the given probability that the
source is in that location. More formally, for a given CL,
any credible region (CR) must satisfy

CL ¼
Z
CR

pð ~ΩjdÞd~Ω: (14)

We can then find the smallest region such that this still
holds, which we call CRmin. By considering the full range
of probabilities we can map out the PDF with a set of
contours that bound each CRmin.
While the analysis of a single GW signal will not tell us

very much about the correctness of the analysis, consid-
ering how CL and CRmin are related over a large number of
GW signals gives us statistical information: Does a given
credible level really correspond to the probability of finding
the source in that location? For each run and a given CL
we can check if the injection’s parameter coordinates fall
within the associated CRmin; if there are no sources of bias
in the analysis, this should happen with probability CL in
order for the credible regions to be meaningful. We can plot
a cumulative figure, over all injected signals and the full
range of CLs, of the proportion of injections found within a
given CL’s CRmin. We expect this to be diagonal, up to
statistical fluctuations arising from a finite number of
injections. Deviations from the diagonal indicate that the
parameter estimation algorithm does not correctly evaluate
the PDF, or other sources of bias are present, e.g., the priors
used in the analysis do not match the distribution of the
injected source population.
The results of this test from all the signals detected out of

the 360 injections in each of LALINFERENCE and
TIMING++ is shown in Fig. 2. The error bars are calculated
from the expected variance in the number of injections that
fall within a givenCR. For aCLofp, andn runs, thevariance
on the number of sources foundwithinCRmin isnpð1 − pÞ if
the fraction of injections that fall within a given CRmin is
really described by the binomial distribution, as expected.
The error bars on the fraction of injections found within a
given CRmin are given by the standard deviation normalized
by the number of runs,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 − pÞ=np

.
We can see here that LALINFERENCE produces results

that indeed follow the expected relation; we can therefore
conclude that the algorithm is self consistent. During the
LALINFERENCE development, parallel to this investigation,
this test was used as one of the primary tools to check the

FIG. 1 (color online). An output PDF of the sky position from
the two codes. The contour lines label the 50% and 90% credible
regions for TIMING++ while the light and dark shaded regions
show the 50% and 90% credible regions, respectively, for
LALINFERENCE. The star indicates the source location.
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algorithm. As well as checking sky location, this test was
done in each of the model parameters separately, though
rather than using the minimal CL it is easier and sufficient
to use a connected credible region whose lower bound is
the lowest value of the parameter being investigated.
On the other hand, the results obtained with TIMING++

show a significant deviation from the expected behavior:
the calculated CRs for TIMING++ do not represent the
“true” CL. As the results are above the expected behavior,
the sky regions are too large. This shows that TIMING++ is
not “self-consistent.” This is not necessarily unexpected
because TIMING++ is purposefully an approximation in
favor of speed; it is useful to note that TIMING++ is over
conservative.
From these results it also follows that we need to be

cautious when designing comparisons between TIMING++
and LALINFERENCE applied to the same GW signal. We
consider these comparisons in the next section.

C. Comparisons

We can now turn to comparisons between TIMING++ and
LALINFERENCE, and we consider two different figures of
merit for this.
For a self-consistent code, the CRmin of a chosen CL is a

natural metric of the ability of the algorithm to localize the
source. This is equivalent to stating the expected smallest
region of the sky that needs to be scanned by a follow-up

observation to have a given probability that the actual
source location is covered. Here, we will consider the 50%
minimum credible region, and therefore set CL ¼ 0.5.
While this is natural for the fully coherent Bayesian codes,
the same is not true of TIMING++. We saw in the previous
section that TIMING++ is not self consistent: it does not
provide the correct CRs at a given CL but actually over-
states it.
It is, however, still interesting and possible to know the

size of the CRmin that relates to the true CL. From the self-
consistency test we have a relation between the output CRs
and the true CLs from TIMING++. This means we can
compare the output areas of the minimal credible regions of
the true 50% CL by using the quoted 23% CRmin from
TIMING++ and the 50% from LALINFERENCE. In other
words, we are correcting for the lack of self consistency of
TIMING++ and can produce a fair comparison of the two
methods.
Figure 3 shows the fraction of signals whose 50%

CRmins were smaller than a given area. We can see that
even after the corrections to the CLs are implemented,
TIMING++ gives significantly larger CRmins. This happens
because the PDFs returned from TIMING++ are not quite the
same shape as the “correct” PDFs that LALINFERENCE is
returning; the differences are not simply a rescaling of the
width of the peak.
While this test was quite natural from the Bayesian

framework point of view, another piece of information that
would be passed to follow-up telescopes would be a list of
the most likely “pixels” on the sky. One can easily consider
a follow-up strategy in which these tiles are observed by
telescopes in order, until a possible counterpart of the GW-
detected source is imaged (or one runs out of pointings).
This searched area is equivalent to the size of the CRmin

FIG. 2 (color online). For each CL we plot the number of
injections that fall within the associated minimum credible region
CRmin for all the signals analyzed with LALINFERENCE, bottom
(red) curve, and TIMING++, top (green) curve. The error bars
correspond to the binomial error; see text for more details. A self-
consistent algorithm gives results that lie along the diagonal line
of this plot. Results that fall above the expected line, as is the case
for TIMING++, highlight an algorithm that is overcautious in its
estimation of CRmin.

FIG. 3 (color online). The fraction of detected signals whose
associated true (corrected) 50% CRmin covers less than a given
area on the sky. We can see that LALINFERENCE gives much
tighter constraints than TIMING++ on the location of a source.
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whose boundary passes through the source’s true location
on the sky. Furthermore, by considering this area for both
approaches we bypass the need to correct for the true
relation between probability and CL. Figure 4 shows the
fraction of sources that would be imaged after only
the given area is searched over, for each source, using
the CRmins as discussed above. We can see that there is a
significant difference between the two sky localization
approaches; for example, 76% of sources would be found
after searching 20 deg2 if we followed the output of
LALINFERENCE, whereas we would only have found
38% of the injections by following TIMING++.
To gain a better feel for the difference in the calculated

areas for the two methods, we compared the areas injection
by injection. We plot the areas of the true (corrected) 50%
CR found by each code where the injections are sorted by
SNR (Fig. 5). For the LALINFERENCE results we can see
the expected scaling of the area∝ 1=SNR2. We also plot the
ratio of the 50% CRmin areas determined by the two codes
in Fig. 6. We can see that there is significant spread around
the typical factor of 20 difference between the calculated
CRmin areas.
These results should not be taken as a statement on

the expected sky localization accuracy as the underlying
injection distribution is not astrophysical. The set of injec-
tions was chosen to test and compare the codes over a wide
region of parameter space and should be treated as such.

D. Run time

TIMING++ has been set up with speed in mind and so the
run time to extract the sky location after data is received is
on the order of minutes [8]. Prior to the analysis, the
distributions pðΔtrss;scj ~ΩÞ and pðΔArssj ~ΩÞ need to be
generated, and this is done with large scale simulations.
Despite being computationally expensive—the simulations

require on the order of days to weeks—this step is done
prior to the actual analysis and therefore has no impact on
the latency of the online analysis.
While considering code speed, we need to specify the

specific sampler used in LALINFERENCE. Here, we report
results for LALINFERENCE_MCMC, the sampling method
that was used for this study. A comparison between different
samplers in LALINFERENCE will be reported elsewhere.

FIG. 4 (color online). The fraction of sources where the
injection would have been imaged after searching less than the
given area in a telescope greedy algorithm.

FIG. 5 (color online). The sky area of the 50% true (corrected)
minimum credible region for each of the sources as a function of
the optimal network SNR of the signal. While there is some
scatter, the areas from LALINFERENCE [solid (red) dots] scale as
∝ 1=SNR2, as one would expect, while the areas from TIMING++
[open (green) circles] are closer to ∝ 1=SNR.

FIG. 6 (color online). The ratio of recovered areas of the 50%
true (corrected) CRs using LALINFERENCE as the baseline. While
there is some scatter, LALINFERENCE is consistently producing
smaller areas than TIMING++ by a factor which is roughly 10 for
low SNRs and approximately scales with SNR.
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There are two main metrics of computational cost that we
consider here: the so-called “wall time” (the time an analysis
job takes from start to finish), and the total processing (CPU)
time. LALINFERENCE_MCMC is designed to take advantage of
multiple cores and runs in parallel on different processors.
The parallel chains explore likelihoods at different contrast
levels (“temperatures”). We find that roughly 10 chains are
optimal for improving sampling and convergence for the
data sets considered in this study; therefore, CPU times are a
factor of ten larger than wall times.
The important quantity to report for LALINFERENCE is

the time required to output a new independent sample of the
posterior PDF. The precise number of samples that we
deem necessary to describe the PDF is a balance between
speed and precision; as mentioned earlier, finite sample-
size issues are a concern for postprocessing, and we have
found that we require at least 1000 independent samples.
In Fig. 7 we show the fraction of the analysis runs that

output a single independent sample within a given wall
time. This quantity was derived by dividing the total wall
time of each injection run by the number of independent
samples generated in that run. From this graph we can see
that 90% of the runs had output 1000 independent samples
in ∼14 hours of wall time. The runs were done on nodes
composed of Intel Nehalem E5520 processors (2.26 GHz)
with Infiniband double data rate interconnects.

IV. DISCUSSION

In this paper we have considered two sky localization
algorithms, LALINFERENCE and TIMING++, used during
the final science run of the LIGO and Virgo instruments in
initial configuration. Our goal was to assess the relative
benefits and costs of the two approaches, and to develop a

strategy as well as practical tools to evaluate the consis-
tency of the results and inform the future direction of
development. We are now applying these tools to a number
of parameter estimation research projects.
For the study presented in this paper we have considered a

synthetic data set representing a three-detector network. GW
signals generated during the inspiral phase of the coales-
cence of binary systems with a total mass smaller than 20M⊙
and nonspinning components were added to Gaussian and
stationary noise representative of the sensitivity of initial
LIGO. We have chosen the range of source parameters in
order to best explore the performance of the algorithms. This
is important for testing purposes, but one cannot draw
conclusions about the actual performance of the GW instru-
ments in future observations from these simulations. To
address that question, one would need to consider an
astrophysically motivated population of sources, e.g., bina-
ries distributed uniformly in volume, and then consider sky
localization only for those signals that pass a detection
threshold of the search pipeline.
As discussed in Sec. III, posteriors can be systemati-

cally biased because of incorrect models, inaccurate
priors, insufficient sampling or improper postprocessing
to estimate credible regions.
Incorrect models are always a concern in parameter

estimation. Our likelihood model, pðdj~θ; HÞ, could be
incorrect because of inaccuracies in the waveform models,
noise models or calibration errors. Waveforms may not
include certain features (e.g., in this study, we did not allow
for spinning binary components) or are affected by limi-
tations in the accuracy of waveform models; efforts are
under way to develop more accurate and complete models
[36,37] and to account for waveform uncertainty directly in
parameter estimation. Real detector noise is neither sta-
tionary nor Gaussian; promising strides have been made in
accounting for noise nonstationarity [38], shifts in spectral
lines and even glitches in the noise. The impact of
calibration errors on parameter estimation was analyzed
in the context of advanced detectors [39]. In this study, our
models were correct by construction, as we used stationary,
Gaussian noise, assumed perfect calibrations and employed
the same waveform families for injections and templates.
In this paper, we explicitly made sure that the priors

assumed by LALINFERENCE were identical to the injection
distribution to guarantee that inaccurate priors did not
introduce a bias in the results, and our code development
efforts and thorough testing ensured that insufficient
sampling was not a concern.
We did find early in our studies that our initial approach

to postprocessing could lead to systematically understated
posterior credible regions. We addressed this by developing
a more sophisticated postprocessing procedure (see below
and [29]).
There is an important difference between self consis-

tency and optimality of the results. Self consistency is a

FIG. 7 (color online). The cumulative distribution of wall times
for LALINFERENCE_MCMC to output a new independent sample
across the runs performed to generate the results reported in this
paper. With 10 cores used for each run, CPU times were a factor
of 10 larger.

RECONSTRUCTING THE SKY LOCATION OF … PHYSICAL REVIEW D 89, 084060 (2014)

084060-9



requirement of any code that claims to provide reliable
credible regions: the credible regions corresponding to a
given confidence level must include the true source
parameters for a fraction of signals equal to that confidence
level. Optimality refers to an algorithm’s ability to return
the smallest credible region among all self-consistent
credible regions. A self-consistent algorithm need not be
optimal. When it comes to our ability to optimize, we must
consider both the main algorithm and the postprocessing of
the results.
As has been shown here, the proportion of available

information that is utilized in the analysis can significantly
affect the accuracy of parameter estimation. LALINFERENCE
uses the data taken from all detectors coherently and thereby
recovers small credible regions while staying self consistent.
TIMING++, on the other hand, purposefully makes simplifi-
cations, using intermediate data products from the incoherent
analysis of individual detector data, and hence the recovered
credible regions, even after a correction for self consistency,
are much larger. The trade-off lies in the runtime of the
analyses: TIMING++ returns a sky location within minutes
of the completion of the search, whereas LALINFERENCE
takes approximately half a day (wall time) for the specific
waveform family and network considered here.
Optimality is also important for the postprocessing of the

algorithms’ output to generate marginalized PDFs and
credible regions. A binning scheme is traditionally applied
in which the parameter space is split into a uniform grid and
the average density of samples in each region found. Using a
greedy approach based on this scheme to calculate optimal
credible regions (CRmin), self consistency is broken [29]. For
LALINFERENCE we have therefore implemented a more
sophisticated way of setting up the initial bins known as a
kD-tree so that the resolution of bins follows the density of
the samples. A two-stage approach to ordering bins and
estimating their contribution to the posterior is required to
satisfy self consistency while managing to get close to
optimality. This method will be described in full elsewhere
[29]. While we have successfully applied this to two-
dimensional posteriors in this study, we cannot currently
extend this scheme to higher dimensions: the number of
LALINFERENCE output samples required for accurate kD-
tree PDF interpolation grows exponentially with the number
of dimensions and so the runs become impractically long.

While we have outlined the procedure for testing that an
algorithm and its implementation report self-consistent
results, it is difficult to check for optimality. One approach
is to set up runs where the posterior PDFs are known, which
was indeed done as part of the LALINFERENCE testing and
validation [19]. By design these will be simple analytic
functions and there is no general prescription that will test
for all circumstances.
The work that we have reported here, and the tools that

we have developed and described, have already been
important in the further development of LALINFERENCE.
A new low-latency sky localization pipeline has also been
developed [40]. It is important for future work that while we
strive to improve on our methods in both speed and
accuracy, we continue to validate these methods against
the tests described here in order to have a reliable analysis
when the next generation of detectors begins collect-
ing data. As we move toward simultaneous and tar-
geted electromagnetic observations of gravitational-wave
sources, it is ever more important that sky localization be
performed accurately and self consistently.
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