

An Overview of High Temperature Seal Development and Testing Capabilities at the NASA Glenn Research Center

Jeffrey J. DeMange and Shawn C. Taylor
The University of Toledo

Patrick H. Dunlap, Bruce M. Steinetz, Joshua R. Finkbeiner &

Margaret P. Proctor

NASA Glenn Research Center

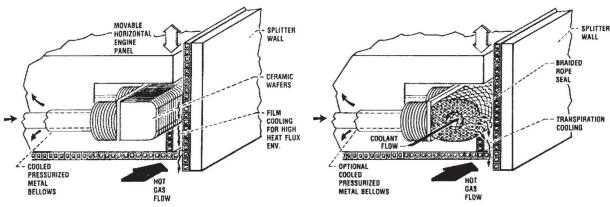
AIAA Propulsion and Energy Forum and Exposition 2014
50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
Cleveland, OH
July 28-30, 2014

This research was funded by the U.S. Government under NASA Contract NNC08CA35C and NNC13BA10B. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Government.

Content of Discussion

- Our Story: History of Thermal Seals Work at NASA GRC
 - Vehicles/Programs
 - > Technologies
- Our Tools: Current Test Capabilities
 - Leakage/flow
 - Load/resiliency
 - > Durability
- Our [Desired] Path Technology Thrusts
- Conclusions

OUR STORY:


HISTORY OF THERMAL SEALS DEVELOPMENT AT NASA GRC

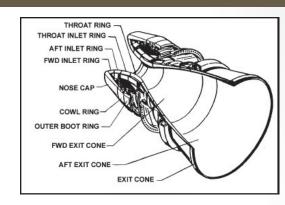
The Beginnings at GRC

NASP

- Time: Mid 1980's Early 1990's
- Vehicle: NASP (National Aerospace Plane)
 - Passenger space plane
 - M25 (New York to Tokyo in 2 hrs)
- Advanced hypersonic propulsion system with variable flow path geometry
 - Need to minimize core flow leakage around variable geometry
 - Developed specialized/unique seals
 - Wafer seals
 - Braided rope seal

Wafer Seals

Braided Rope Seal


Amidst the Tragedy

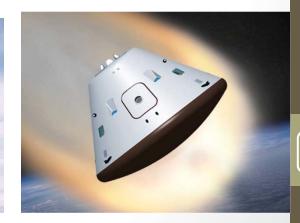

Space Shuttle Challenger

- Time: 1990's 2000's
- Vehicle: Challenger (1986)
- Loss of crew and vehicle due to o-ring field joint failure in starboard SRB during STS-51-L
- Redesign effort to improve reliability of SRB joints
- C-fiber rope seal developed at GRC (nozzle joint)
 - Survived 5500°F for 3X mission life
 - Successful motor testing
 - Implementation in SRB in 2003
 - Used on Atlas V SRB since 2003

Shuttle SRB Nozzle

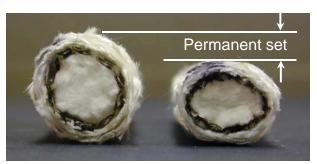
Carbon Fiber Rope Seal

The Hypersonics Age



FALCON

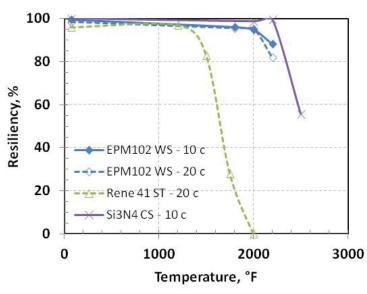
- Time: 2000 Current
- Vehicles
 - > X-38 CRV
 - > X-37 OTV
 - > Falcon
 - Orion MPCV
- Control surface and acreage TPS thermal seals
- Significant testing of thermal seals against hot structure materials
 - > C/C and C/SiC CMC's
 - Acreage tile



X-38 Orion MPCV

6

The Push for Better Performance



Thermal Barrier Permanent Set

- Time: 2002 Present
- Permanent set noted in Shuttle thermal barriers >
 open gap
- Development of high temperature preloaders
 - Rene 41 spring tubes
 - > Refractory alloy preloaders
 - > Single crystal preloaders
- Thermal seals with improved durability

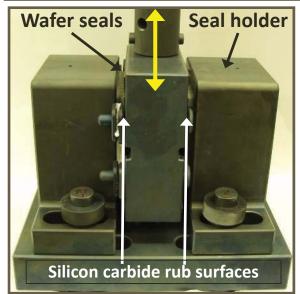
Spring Tube Thermal Barrier

Preloader Performance

Single Crystal CCS
(Patent Pending)

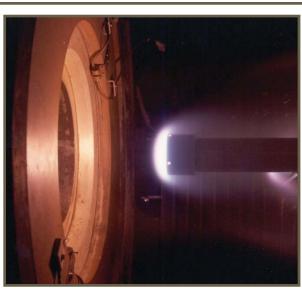
OUR TOOLS:

TEST CAPABILITIES AT NASA GRC


Thermal Seals Testing Methodology

Advancing the Technology Readiness Level (TRL)

Coupon level tests at GRC



System/component level tests in Arc Jet, DCR, GRC Cell 22, etc.

Features:

- •Extreme temperature
- •Scrubbing or compression
- Load cycling
- Leakage

Features:

Combined high temp. heat flux, flow/pressure, scrubbing in realistic environment

TRL 5-6 → TRL 7-9

Features:

Final verification

Coupon Level Mechanical Testing

High Temperature Compression / Scrub Rig

Capabilities:

Purpose: Assess loads, resiliency,

wear at temp.

Temp.: RT to 3000°F

Environment: Air

Max. loads: ±3300 lbf

Max. stroke range: ±3 in.

Stroke rate: 0.001 to 6 in./s

Furnace working size:

9 x 14 x 18 in.

Multi Temperature Compression Rig

Capabilities:

Purpose: Assess loads, resiliency

at temp.

Temp.: -238 to 1100°F

Environment: Air

Max. loads: ±33.7 kip

Max. stroke: 49.6 in.

Stroke rate: 0 to 0.5 in./s

Chamber working size:

15 x 15 x 22 in.

High Temperature Rotary Wear Rig

Capabilities:

Purpose: Assess wear, loads at

temp.

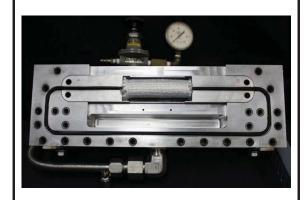
Temp.: RT to 1500°F

Environment: Air

Max torque: ±885 in.-lbf

Rotation range: ±30°

Rot. speed: 0.1 to 370 deg/s


Furnace working size:

12 x 12 x 13 in.

10

Coupon Level Room Temp. Leakage Testing

Ambient Linear Flow Rig #1

Capabilities:

Purpose: Assess leakage against smooth substrates

Temp.: RT

Environment: Air

Flow rates: 0 to 88 SCFM Gap range: 0 to 0.4 in.

Compression range: 0 to 55% Pressure range: 0 to 100 psid

Max sample size:

φ1.5 in. dia. x 12 in. long

Ambient Linear Flow Rig #2

Capabilities:

Purpose: Assess leakage against variable substrates

Temp.: RT

Environment: Air

Flow rates: 0 to 88 SCFM

Gap range: Variable

Compression range: 0 to 70% Pressure range: 0 to 100 psid

Max sample size:

 ϕ 2.5 in. dia. x 5 in. long

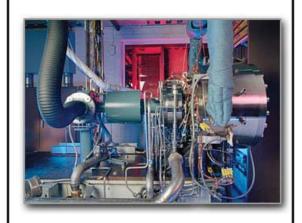
11

Coupon Level High Temp. Leakage Testing

High Temperature Flow Rig

Capabilities:

Purpose: Assess seal leakage at


temp.

Temp.: RT to 1200°F

Environment: Air/Nitrogen Flow rates: 0 to 3.5 SCFM Pressure range: 0 to 25 psid

Furnace working size: ϕ 9.5 in. ID x 11 in. tall

Turbine Seal Test Rig

Capabilities:

Purpose: Assess turbine seal leakage/torque loss at temp


Temp.: RT to 1200°F Environment: Air

Speeds: Up to 1200 ft/s

Pressure range: 0 to 250 psid Max sample size: $\phi 8.5$ in. dia.

Thermal Testing

Mach 0.3 Torch Testing

Capabilities:

Purpose: Assess performance under moderate heat flux conditions, evaluate thermal cycling performance

Location: GRC

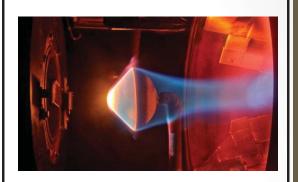
Temp.: 700 to 2500°F

Heat Flux: 10 to 20 W/cm²

Fuel: Jet + Air

QARE Testing

Capabilities:


Purpose: Assess performance under high heat flux conditions, evaluate environmental durability

Location: GRC Temp.: 2500°F+

Heat Flux: Up to 400 W/cm²

Fuel: $H_2 + O_2$

Arc Jet Testing

Capabilities:

Purpose: Assess performance under reentry-like conditions

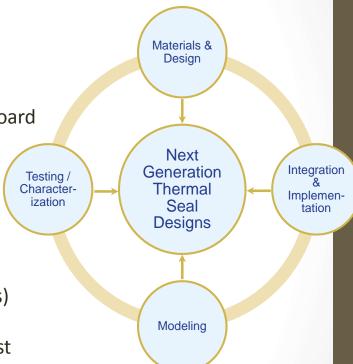
Location: ARC Facility: PTF, IHF Temp.: 2500°F+

Mach No: 5.5 - 7.5

Heat Flux: Up to 750 W/cm²

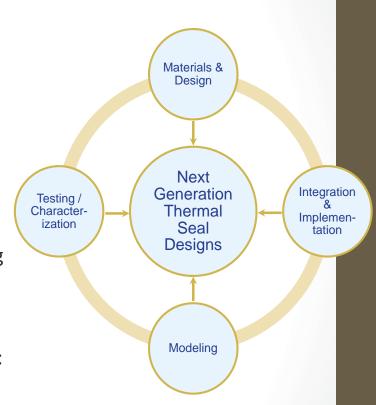
Gas: Air

Hardware config.: Static


13

OUR [DESIRED] PATH:

WHERE WE HOPE TO GO


Key Approaches: Thermal Seals

- Materials & Design Develop/identify/test materials and unique configurations to meet requirements
 - > Improved material systems/configurations
 - High temp (3000°F), oxidation resistant, flexible fibers and batting
 - Aerogels
 - OFI (opacified fibrous insulation)
 - MLI (multi-layer insulation)
 - Functionally graded thermal seal systems (e.g., inboard preloaders, thermal + environ. barriers)
 - Coatings (thermal, wear-resistant, etc.)
 - Design tools (e.g., preliminary sizing calculator, config. design guide, etc.)
 - > Game-changing designs
 - Smart seals (e.g., SMA)
 - Seal-less interfaces (e.g., physics-based approaches)
- Testing/Characterization Capabilities Develop/identify test methods/facilities to better characterize performance
 - Mechanical testing under realistic temp., temp. gradient, and partial pressure O₂ conditions
 - Testing under simultaneous conditions (temperature, pressure, vibrations, etc.)
 - Quantifying thermal transfer mechanisms under different conditions for optimized thermal seal design

Key Approaches: Thermal Seals (cont'd)

- Modeling Develop/identify/incorporate methodologies/modeling approaches to help predict/optimize thermal seal system performance
 - Thermal modeling (heat transfer mechanisms, design effects)
 - Mechanical modeling (design, environ. effects)
- Integration & Implementation Provide aerospace vehicle developers with tools to confidently implement thermal seals in various subsystems
 - > Design for implementation
 - Accurate documentation/databases of previous testing and implementations in heritage vehicles
 - Improved methods for verifying proper thermal seal installation/operation
 - > Health and condition monitoring for multiple missions: retire for cause

Conclusions

- NASA GRC has had a long history in high temperature thermal seal development and testing
 - > NASP
 - > Shuttle
 - > X-vehicles
 - > MPCV
- NASA GRC has extensive thermal seal testing capabilities/experience
 - Temps: Near-cryogenic to 3000°F
 - > Types of tests: Mechanical, physical, thermal
 - Both static and dynamic (durability) testing capabilities
- NASA GRC is looking to advance the technologies across many facets of thermal seal development
 - Materials and Design
 - Testing/characterization Capabilities
 - Modelling
 - > Integration & Implementation

Points of Contact

Jeff DeMange <u>jeffrey.j.demange@nasa.gov</u> 216-433-3568

Pat Dunlap <u>patrick.h.dunlap@nasa.gov</u> 216-433-3017