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ABSTRACT

Multi-wavelength centimeter continuum observations of non-dusty, non-pulsating K spectral-type red giants directly
sample their chromospheres and wind acceleration zones. Such stars are feeble emitters at these wavelengths,
however, and previous observations have provided only a small number of modest signal-to-noise measurements
slowly accumulated over three decades. We present multi-wavelength Karl G. Jansky Very Large Array thermal
continuum observations of the wind acceleration zones of two dust-free red giants, Arcturus (α Boo: K2 III) and
Aldebaran (α Tau: K5 III). Importantly, most of our observations of each star were carried out over just a few
days, so that we obtained a snapshot of the different stellar atmospheric layers sampled at different wavelengths,
independent of any long-term variability. We report the first detections at several wavelengths for each star including
a detection at 10 cm (3.0 GHz: S band) for both stars and a 20 cm (1.5 GHz: L band) detection for α Boo. This is
the first time single (non-binary) luminosity class III red giants have been detected at these continuum wavelengths.
Our long-wavelength data sample the outer layers of α Boo’s atmosphere where its wind velocity is approaching (or
possibly has reached) its terminal value and the ionization balance is becoming frozen-in. For α Tau, however, our
long-wavelength data are still sampling its inner atmosphere, where the wind is still accelerating probably due to
its lower mass-loss rate. We compare our data with published semi-empirical models based on ultraviolet data, and
the marked deviations highlight the need for new atmospheric models to be developed. Spectral indices are used to
discuss the possible properties of the stellar atmospheres, and we find evidence for a rapidly cooling wind in the
case of α Boo. Finally, we develop a simple analytical wind model for α Boo based on our new long-wavelength
flux measurements.
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stars: winds, outflows
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1. INTRODUCTION

In order to understand the mechanisms that drive the
10−9–10−11 M� yr−1 mass-loss rates from evolved spectral-type
K through mid-M stars, an understanding of the dynamics and
thermodynamics of their atmospheres is essential. An important
discovery in late-type evolved stellar atmospheres resulted from
the first ultraviolet survey of such stars using the International
Ultraviolet Explorer (IUE). The survey revealed a “transition re-
gion dividing line” in the giant branch near spectral type K1 III
which separates these stars based on the properties of their atmo-
spheres (Linsky & Haisch 1979). Stars blueward of the dividing
line were found to possess chromospheres and transition regions
like the Sun, while stars on the red side were found to possess
chromospheres and cool winds. X-ray observations showed that
this dividing line extended to coronal emission (Ayres et al.
1981). Around the same time, another class of late-type evolved
star emerged which showed signs of possessing both a transi-
tion region and a cool wind (e.g., Reimers 1982). Many of these
so-called hybrid atmosphere stars now also show evidence for
coronal emission, albeit much weaker than on the blue side of
the dividing line (Ayres et al. 1997; Dupree et al. 2005). Un-
derstanding the nature of the atmospheric structure of late-type
evolved stars will ultimately lead to a broader understanding of
the mass-loss process.

Mass loss from late-type evolved stars plays a crucial role
in both stellar and galactic evolution and ultimately provides
part of the material required for the next generation of stars and

planets. Despite the importance of this phenomenon and decades
of study, the mechanisms that drive winds from evolved spectral-
type K through mid-M stars remain an enduring mystery (clearly
laid out by Holzer & MacGregor 1985 but still unsolved, e.g.,
Crowley et al. 2009). There is insufficient atomic, molecular,
or dust opacity to drive a radiation-driven outflow (Zuckerman
et al. 1995; Jones 2008), and acoustic/pulsation models cannot
drive the observed mass-loss rates (Sutmann & Cuntz 1995).
Ultraviolet (UV) and optical observations reveal an absence of
significant hot wind plasma, and the winds are thus too cool to
be Parker-type thermally driven flows (e.g., Linsky & Haisch
1979; Haisch et al. 1980; Ayres et al. 1981).

Magnetic fields are most likely involved in the mass-loss
process, although current magnetic models are also unable
to explain spectral diagnostics. Exquisite high signal-to-noise
ratio (S/N) Hubble UV spectra have revealed that the one-
dimensional (1D) linear Alfvén-wave-driven wind models of
the 1980s (e.g., Hartmann & MacGregor 1980; Harper 1988) are
untenable (Harper 2001). These models predict chromospheres
as integral parts of a turbulent, extended, and heated wind
acceleration zone, but the theoretical line profiles and electron
densities do not agree with the Hubble spectra (e.g., Judge &
Carpenter 1998). One important property of cool evolved star
winds gleaned from UV spectra is that, for the most part, the
red giant winds accelerate in a quasi-steady manner and are not
the result of ballistic ejecta as shown by the increase of wind
scattering absorption velocity with optical depth in Fe ii lines
(Carpenter et al. 1999). A new generation of theoretical models
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with outflows driven within diverging magnetic flux tubes has
now emerged (Falceta-Gonçalves et al. 2006; Suzuki 2007), but
these too are not yet in agreement with observations (Crowley
et al. 2009). It has also been suggested that the winds may be
driven by some form of magnetic pressure acting on very highly
clumped wind material (Eaton 2008), but Harper (2010) does
not find compelling evidence for this hypothesis. Progress in
this field continues to be driven by observations that provide
new insights into the mass-loss problem.

1.1. Radio Continuum Observations

Although studies of wind-scattered UV and optical line
profiles have provided clues to the mass-loss rates and radial
distribution of the mean and turbulent velocity fields, the ther-
mal structure remains poorly constrained. In the UV, the source
function, Sν , of electron collisionally excited emission lines is
sensitive to electron temperature, Te (i.e., Sν ∝ e−hν/kTe/

√
Te).

Therefore, a localized hot plasma component in a dynamic at-
mosphere can completely dominate the temporally and spatially
averaged emission and hence not reflect the mean radial elec-
tron temperature distribution. At radio wavelengths, however,
the source function is thermal and is just the Rayleigh-Jeans tail
of the Planck function, which is linear in electron temperature
(i.e., Sν = 2kTeν

2/c2). This should give a more appropriate esti-
mate of the mean radial electron temperature. It is this value that
controls the atomic level populations and ionization of the mean
plasma, which is needed to quantify the implied thermal heating
supplied to the wind by the unknown driving source/sources,
allowing constraints on potential mass-loss mechanisms to be
derived.

In the centimeter-radio regime the radio opacity, κλ, strongly
increases with wavelength (i.e., κλ ∝ λ2.1), and so the longer
wavelengths sample the extended layers of a star’s atmosphere,
thus providing us with spatial information about the star’s
mass outflow region. The NRAO5 Karl G. Jansky Very Large
Array (VLA) is sensitive to over three orders of magnitude in
continuum optical depth, τλ (τ20 cm/τ0.7 cm ≈ 103), and provides
an area-averaged sweep through the wind acceleration zone of
evolved late-type stars. The thermodynamic properties in this
spatial region control the ionization in the far wind because
the ionization balance, which also controls the cooling rates,
becomes frozen-in at large radii due to advection. Furthermore,
it is these outer extended regions of the star’s atmosphere that
contribute to the commonly seen P Cygni line profiles in the UV.
In these profiles the line-of-sight absorption caused by the star’s
wind is superimposed on the blueshifted scattered emission.
Thus, centimeter radio continuum observations can provide a
test of models based on these UV profiles. In this paper we
directly compare our new VLA observations with atmospheric
models derived from UV analysis.

1.2. Sample Selection

Currently the most detailed spatial information about the
atmospheres of K and early M evolved stars is obtained from the
ζ Aurigae and symbiotic eclipsing binaries (e.g., Wright 1970;
Baade et al. 1996; Eaton 2008; Crowley et al. 2008). Even
though these systems offer us the best opportunity to obtain
information on the dynamics and thermodynamics at various
heights in the evolved star’s atmosphere, the very nature of the

5 The National Radio Astronomy Observatory is a facility of the National
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Universities, Inc.

Table 1
Stellar and Wind Parameters of α Boo and α Tau

Parameter α Boo α Tau

Spectral type K2 III K5 III
HD number 124897 29139
Mass (M�) 0.8 ± 0.2 1.3 ± 0.3
Effective temperature (K) 4294 ± 30 3970 ± 49
Angular diameter (mas) 21.0 ± 0.2 20.2 ± 0.3
Distance (pc) 11.3 ± 0.1 20.4 ± 0.3
Radius (R�) 25.4 ± 0.3 44.4 ± 1.0
Photospheric escape velocity 110 km s−1 106 km s−1

Rotation period (yr) 2.0 ± 0.2 1.8
[Fe/H] 0.5 ± 0.2 0.15 ± 0.2
Wind terminal velocity 35–40 km s−1 30 km s−1

Mass-loss rate (M� yr−1) 2 × 10−10 1.6 × 10−11

Wind temperature (K) ∼10,000 �10,000
Semi-empirical model Drake (1985) McMurry (1999)

Notes. Masses are from Kallinger et al. (2010) and Lebzelter et al. (2012).
Effective temperatures and photospheric angular diameters are from di
Benedetto (1993). Distances are from van Leeuwen (2007). Rotaion periods
are from Gray & Brown (2006) and Hatzes & Cochran (1993). Metallicities are
from Decin et al. (2003). Wind parameters are derived from the semi-empirical
models of Drake (1985) and Robinson et al. (1998). The Ca ii ionization studies
of Harper et al. (2004) indicate a wind temperature of Te � 1×104 K for α Tau.

binary system may introduce further complexities. For example,
the orbital separation is often within the wind acceleration
region, and one could expect flow perturbations to be present
(e.g., Chapman 1981). Using the “old” VLA, Harper et al. (2005)
find a slow wind acceleration for ζ Aurigae and confirm that
its velocity structure is not typical of single stars with similar
spectral types, such as λ Velorum (Carpenter et al. 1999).

In order to avoid the assumed additional complexities of a
companion, we have selected two single luminosity class III
red giants: Arcturus (α Boo: K2 III) and Aldebaran (α Tau:
K5 III). These nearby red giants have been extensively studied
at other wavelengths, and their stellar parameters, which are
briefly summarized in Table 1, are accurately known. Both
of these late-type giants have “hybrid atmospheres” as they
show evidence for both coronal/transition region activity and
strong winds. Even though they are slow rotators, three possible
values for the mean longitudinal magnetic field (albeit weak:
B = 0.65 ± 0.26, 0.43 ± 0.16, and −0.23 ± 0.20 G) have been
reported for α Boo (Sennhauser & Berdyugina 2011) along with
a possible magnetic cycle with a period of �14 yr (Brown et al.
2008). Also, the detection of O vi in α Tau (Dupree et al. 2005)
indicates magnetic activity in its atmosphere. These stars are
predicted to be point sources at all frequencies between 1 and
50 GHz in all VLA configurations, so our radio observations
measure their total flux density, Fν . Moreover, both stars have
existing semi-empirical 1D chromospheric and wind models,
which we directly compare to our data in this paper.

2. OBSERVATIONS AND DATA REDUCTION

Observations of α Boo and α Tau were carried out with the
VLA during Open Shared Risk Observing in 2011 February at
Q, Ka, K, X, C, and S band in B-configuration (PI: G. M. Harper;
Program ID: 10C-105). α Boo was also observed at S and L
band in 2012 July when the VLA was again in B-configuration
(PI: E. O’Gorman; Program ID: 12A-472). Some details of these
observations are given in Table 2. For the 2011 observations, the
correlator was set up with two 128 MHz sub-bands centered on
the frequencies listed in Table 2. Each sub-band had 64 channels
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Table 2
VLA Observations

Star Date Band Frequencya Wavelength Time on Star Restoring Beam Bandwidth Number of Phase
(GHz) (cm) (hr) (′′ × ′′) (GHz) Antennaeb Calibrator

α Boo 2011 Feb 22 Q 43.3 0.7 0.3 0.19 × 0.15 0.256 22 J1357+1919
2011 Feb 22 Ka 33.6 0.9 0.2 0.25 × 0.20 0.256 23 J1357+1919
2011 Feb 22 K 22.5 1.3 0.4 0.35 × 0.28 0.256 24 J1357+1919
2011 Feb 11 X 8.5 3.5 0.3 1.14 × 0.70 0.256 18 J1415+1320
2011 Feb 11 C 5.0 6.0 0.5 2.02 × 1.30 0.256 21 J1415+1320
2011 Feb 13 S 3.1 9.5 1.8 2.57 × 2.08 0.256 12 J1415+1320
2012 Jul 19 S 3.0 10.0 0.7 2.82 × 2.30 2.0 23 J1415+1320
2012 Jul 20 L 1.5 20.0 1.6 4.46 × 3.94 1.0 23 J1415+1320

α Tau 2011 Feb 11 Q 43.3 0.7 0.3 0.18 × 0.16 0.256 22 J0431+1731
2011 Feb 11 Ka 33.6 0.9 0.2 0.22 × 0.20 0.256 19 J0449+1121
2011 Feb 11 K 22.5 1.3 0.4 0.35 × 0.31 0.256 21 J0449+1121
2011 Feb 13 X 8.5 3.5 0.5 0.85 × 0.78 0.256 25 J0449+1121
2011 Feb 13 C 5.0 6.0 1.2 1.48 × 1.32 0.256 21 J0449+1121
2011 Feb 12 S 3.1 9.5 1.8 2.74 × 2.02 0.256 11 J0431+2037

Notes.
a Central frequency of selected bandpass.
b Number of available antennae remaining after flagging.

of width 2 MHz and four polarization products (RR, LL, RL,
LR). For the S- and L-band observations in 2012, the 1–2 GHz
and 2–4 GHz frequency ranges were both divided into 16 sub-
bands, each with 64 channels. The channel width was 2 and
1 MHz for S and L band, respectively.

Both α Boo and α Tau were slightly offset from the phase
center by ∼5 synthesized beam widths in order to avoid possible
errors at phase center. All scheduling blocks were kept to �2.5 hr
of duration. For the high-frequency observations (i.e., Q, Ka, and
K bands) we used the fast switching technique, which consists of
rapidly alternating observations of the target source and a nearby
unresolved phase calibrator. The total cycle times for the Q-,
Ka-, and K-band observations were 160, 230, and 290 s,
respectively. For both target sources these high-frequency ob-
servations were combined into a single 2 hr observing track and
commenced with X-band reference pointing with solutions be-
ing applied on-line. After X-band pointing the target source was
observed at Q band to ensure that the best pointing solutions
were used. The tracks at lower frequencies were composed of
repeatedly interleaved observations of the target source and a
nearby phase calibrator but had longer cycle times. The primary
calibration sources 3C 286 and 3C 138 were observed at the end
of all tracks and were used to measure the complex bandpass
and set the absolute flux for α Boo and α Tau, respectively.

The data were flagged, calibrated, and imaged within
the Common Astronomical Software Application (CASA;
McMullin et al. 2007) package. Data deemed to be bad by the
VLA online system were flagged, as were zeros, non-operational
antennae, dummy scans at the beginning of each track, and
poorly performing antennae. Visual inspection of each scan was
carried out to determine if data at the beginning or end of these
scans needed to be flagged. For the 2011 low-frequency data
the two sub-bands were centered at relatively radio frequency
interference (RFI) free regions of the bandpass and only a very
small amount of RFI had to be flagged. The 2012 wide-band
data were initially Hanning smoothed (combining adjacent fre-
quency channels with weights 0.25, 0.5, and 0.25) to suppress
Gibbs ringing. We manually flagged entire sub-bands that were
badly contaminated with RFI. The testautoflag task was then
used to conservatively flag RFI from all sources, and any re-
maining RFI was manually flagged.

In order to calibrate the data, we solved for the complex
gains of the calibration sources while applying the bandpass
solution, which was derived from the relevant flux calibrator.
The amplitude gains of the phase calibrators were scaled
according to values derived from the flux calibrators using the
“Perley–Butler 2010” flux density standard (Perley & Butler
2013). At the time, no Ka- or S-band flux density standard
models were available, so instead for these we used the K- and
L-band models, respectively, which were scaled according to
their spectral indices. The more frequently observed phase
calibrators were then used to calibrate the amplitude and
phases of the targets. Atmospheric opacity corrections were
also applied to the high-frequency data sets using the average
of a seasonal model (based on many years of measurements)
and information from the weather station obtained during the
observations.

The visibilities were then both Fourier transformed and
deconvolved using the CASA clean task in multi-frequency
synthesis imaging mode, which separately grids the multiple
spectral channels onto the u–v plane and therefore improves the
overall u–v coverage. We used natural weighting for maximum
sensitivity, and the cell size was chosen so that the synthesized
beam was about five pixels across. For the high frequencies it
was usually sufficient to place just one CLEAN circle around
the target source. For the low frequencies, however, the image
sizes were usually set to a few times the size of the primary
beam so that nearby strong serendipitous sources could be
CLEANed, thus reducing their sidelobe contamination of the
final image. These images were CLEANed interactively, taking
sky curvature into account, down to about the 3σ level with
clean boxes placed around sources as they appeared in the
residual image. All images were corrected for primary beam
attenuation.

In each image the flux density from the unresolved target
source was calculated by (1) taking the peak pixel value from
the source, (2) manually integrating the flux density around
the source, and (3) fitting an elliptical Gaussian model to the
source and deriving the integrated flux density using the CASA
imfit task. Each of these values along with the image rms noise
measured from adjacent background regions and fitting error
produced by imfit are given in Table 3 to indicate the quality of
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Table 3
VLA Flux Densities of α Boo and α Tau

Star Band νa λ Peak Fν Integrated Fν imfit Integrated Fν Image rms imfit Fitting Error
(GHz) (cm) (mJy beam−1) (mJy) (mJy) (mJy beam−1) (mJy)

α Boo Q 43.28 0.7 5.94 6.09 6.42 0.30 0.26
Ka 33.56 0.9 4.16 4.32 4.49 0.08 0.09
K 22.46 1.3 1.83 1.78 1.81 0.04 0.05
X 8.46 3.5 0.51 0.51 0.53 0.03 0.02
C 4.90 6.1 0.21 0.14 0.16 0.04 0.01
S 3.15 9.5 0.15 0.14 . . . 0.03 . . .

S 2.87 10.4 0.13 0.12 0.12 0.01 0.02
L 1.63 18.4 0.07 0.07 . . . 0.01 . . .

α Tau Q 43.28 0.7 3.67 3.73 4.08 0.26 0.18
Ka 33.56 0.9 2.19 1.96 2.13 0.09 0.07
K 22.46 1.3 1.86 1.88 2.07 0.04 0.08
X 8.46 3.5 0.30 0.29 0.28 0.01 0.02
C 4.96 6.0 0.15 0.17 0.18 0.01 0.01
S 3.15 9.5 0.06 0.04 . . . 0.02 . . .

Note. a Frequency of the final image produced using the multi-frequency synthesis imaging mode within CASA’s clean task.

each radio map. Both sources are point sources at all frequencies,
so the peak flux value given in Table 3 will also be its total flux
density value. For weak detections (i.e., Fν � 5σ ) we avoid
using the imfit task to obtain a flux density estimate, as this may
produce biased parameter estimates (Taylor et al. 1999). The
flux density values used in Section 4 are the peak values listed
in Table 3. We assume absolute flux density scale systematic
uncertainties of 3% at all frequencies (Perley & Butler 2013).

3. RESULTS

Apart from α Boo at C band and α Tau at S band, detections
were made in every sub-band for the 2011 data. For all other
bands, the flux densities of the targets in both sub-bands were
found to be the same within their uncertainties, so we do not
present separate values here. Instead we give the values from
the radio maps produced by concatenating the two sub-bands.
We present in Table 3 the target flux densities extracted from
these concatenated radio maps. In the following two sections
we briefly discuss the properties of these radio maps for both
targets.

3.1. α Boo Radio Maps

High-S/N detections (>19σ ) of α Boo were made at 22.5,
33.6, and 43.3 GHz. Some residuals of the dirty beam remained
in the CLEANed maps due to the paucity of uv-coverage in these
short high-frequency observations. At the lower frequencies,
it was necessary to image confusing sources, notably a strong
radio source located 186′′ northwest of α Boo. This non-thermal
source was reported by Drake & Linsky (1986), and their flux
density of 25 mJy at 4.9 GHz is in close agreement with our
measurement of 23.2 mJy at the same frequency. We find the
source to have a spectral index α (Fν ∝ να) of −1.4 between
8.5 and 1.6 GHz; its flux density reaches 80.3 mJy at 1.6 GHz.

We detected α Boo at 6σ in the lower frequency sub-band
of C band, at 4.9 GHz. The noise was slightly higher and the
images were poorer quality in the C-band higher frequency sub-
band, with artifacts exceeding ±200 μJy, and we cannot report
a detection in this sub-band, so values given in Table 3 are
taken from the lower frequency sub-band only. We obtain good
detections (>5σ ) of the star for both epochs at ∼3 GHz (S band),
and the peak flux densities agree within their uncertainties. We

can therefore safely assume that the 1.5 GHz (L-band) flux
density has not changed significantly over that period either and
so can safely be included in any analysis. The map at L band
was highly contaminated by the sidelobes of the strong source
northwest of α Boo, but the star is still detected at the 5σ level.
There is a slight positional offset of 1′′ between the position
of the peak flux density at 1.5 and at 3.0 GHz for the 2012
data, which were taken within 1 day of each other. However,
the position uncertainties due to noise and phase uncertainties
between the directions of the phase reference source and the
target are at least 1′′, and so we feel that it is highly likely that
both detections are of α Boo.

3.2. α Tau Radio Maps

The final deconvolved radio maps of α Tau were of excellent
quality with the rms noise reaching the predicted noise levels
in many cases. The target field at all frequencies was free from
strong serendipitous radio sources, and thus the final images
were free of the sidelobe contamination that was present in
the low-frequency α Boo images. α Tau was the only source
in the high-frequency maps, while the brightest source in the
low-frequency maps was located 106′′ north-northeast of α Tau
and had flux densities of 0.85, 1.35, and 1.7 mJy at 8.5, 5.0,
and 3.5 GHz, respectively. Strong detections (>14σ ) of α Tau
were made at all frequencies between 5.0 and 43.3 GHz. Due
to the limited number of S-band receivers available at the time,
a full 2.5 hr track was dedicated to α Tau at 3.1 GHz in order
to achieve the required sensitivity to give a possible detection.
We report a tentative 3σ detection of α Tau at 3.1 GHz when
we take its peak pixel value as its total flux density.

4. DISCUSSION

4.1. Results versus Previous Observations

Prior to and during the early operation of the “old” VLA, a
small number of single-dish radio observations reported the
detection of flares from single red giants (e.g., Slee et al.
1989). These transient radio events have never been re-observed,
however, even with more sensitive interferometers, suggesting
that such detections were spurious (e.g., Beasley et al. 1992).
The first definitive detection of thermal free–free emission from
a luminosity class III single red giant at centimeter wavelengths
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Table 4
Compilation of Previous Radio Observations of α Boo and α Tau (ν � 250 GHz)

Star ν λ Date Fν S/N Source
(GHz) (cm) (mJy)

α Boo (K2 III) 4.9 6.1 1983 Jan 21 0.39 3.0 Drake & Linsky (1986)
4.9 6.1 1983 May 20 0.26 3.3 Drake & Linsky (1986)
4.9 6.1 1983 Dec 26 �0.18(3σ ) . . . Drake & Linsky (1986)
4.9 6.1 1984 Mar 17 0.24 4.8 Drake & Linsky (1986)

15.0 2.0 1984 Nov 6 0.68 7.6 Drake & Linsky (1986)
22.5 1.3 1999 Jan 6 1.7 8.5 Dehaes et al. (2011)
43.3 0.69 1999 Jan 6 3.3 8.3 Dehaes et al. (2011)
43.3 0.69 2004 Jan 25 3.34 41.8 Dehaes et al. (2011)
86.0 0.35 1985 Nov 21.4 3.0 Altenhoff et al. (1986)

108.4 0.28 1997 Nov–2000 Jun 20.1 29.1 Cohen et al. (2005)
217.8 0.14 1997 Nov–2000 Jun 83.5 48.8 Cohen et al. (2005)
250.0 0.12 1986 Dec–1989 Mar 78.0 9.8 Altenhoff et al. (1994)

α Tau (K5 III) 4.9 6.1 1983 Jan 21 �0.27(3σ ) . . . Drake & Linsky (1986)
4.9 6.1 1984 Nov 6 �0.22(3σ ) . . . Drake & Linsky (1986)
5.0 6.0 1997 Sep 27 �0.07(3σ ) . . . Wood et al. (2007)
8.5 3.5 1997 Sep 27 0.28 9.3 Wood et al. (2007)

14.9 2.0 1997 Sep 27 0.95 11.9 Wood et al. (2007)
15.0 2.0 1984 Nov 6 0.60 6.0 Drake & Linsky (1986)

108.4 0.28 1997 Nov–2000 Dec 14.0 9.6 Cohen et al. (2005)
217.8 0.14 1999 Sep–2000 Dec 25.8 4.6 Cohen et al. (2005)
250.0 0.12 1986 Dec–1987 Jan 51.0 8.5 Altenhoff et al. (1994)
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Figure 1. Spectral energy distribution of α Boo for 1 GHz � ν � 1 THz. Our
new multi-frequency VLA observations, which were mainly acquired over a
few days in 2011 February, are the blue circles and disagree with the existing
chromospheric and wind models of Drake (1985). The overlap between the two
models is represented by the green shaded area. The red diamonds are previous
observations which were acquired sporadically over the past three decades with
the “old” VLA, IRAM, and BIMA. The black dashed line is the expected radio
emission from the Drake model which undergoes rapid wind cooling beyond
∼2.3 R	 (see Sections 4.3 and 4.4).

(A color version of this figure is available in the online journal.)

was of α Boo at 6 cm (Drake & Linsky 1983a, 1986). Since then
there has been a modest number of centimeter and millimeter
observations of this star. In Table 4 we list the majority of
these observations and plot their flux densities as a function of
frequency in Figure 1. In comparison to other single red giants,
α Boo had been relatively well observed at radio continuum
wavelengths before this study, including detections in four VLA
bands (i.e., Q, K, Ku, and C). No Ku-band receivers were
available during the commissioning phase of the VLA in early
2011, so we can compare three of our detections with previous
ones.

Previous detections of α Boo at 6 cm ranged from a 3σ upper
limit of 0.18 mJy to a 3σ detection at 0.39 mJy. Our 6 cm
value agrees to within ∼10% of the highest S/N (5σ ) value of
Drake & Linsky (1986). There is no significant difference
between our 1.3 cm value and that of Dehaes et al. (2011).
There is however a notable difference in flux density values at
0.7 cm, where Dehaes et al. (2011) report values that are lower
than ours by over 40%. Although we do not rule out such a level
of chromospheric radio variability, it is not expected based on
the small level of UV variability observed from such supposedly
inactive stars (Harper et al. 2013). Another possibility for the
difference in values is that the longer cycle time used by Dehaes
et al. (2011), which was over double our value, may lead to larger
phase errors and thus lower final flux density values. Future
high-frequency VLA observations of α Boo will clarify this
discrepancy at 0.7 cm, but past detections at longer wavelengths
appear to be in good agreement with our data.

In Figure 2 we plot the previous radio measurements of α Tau
at all frequencies below 250 GHz (i.e., >0.12 cm). Prior to this
study, α Tau had only been detected at two VLA bands (i.e.,
X and Ku) and had never been detected at wavelengths longer
than 3 cm due to its relatively low mass-loss rate. Our lack of
a Ku-band measurement means that we can only compare the
previous 3 cm detection reported in Wood et al. (2007) to ours.
We find that there is no significant difference between the two.
Interestingly, Wood et al. (2007) reported a non-detection of α
Tau at 6 cm and placed a 3σ upper limit of 0.07 mJy on its
emission. In stark contrast to this, we were able to detect the
star at 6 cm with a flux density over two times greater than
this value. This hint of variability at long wavelengths would
be consistent with the predictions of the broadband nonlinear
Alfvén wave model of Airapetian et al. (2010) but can only be
confirmed with future high-S/N observations.

4.2. Existing Atmospheric Models

One of the most important diagnostic features indicating mass
outflows in late-type evolved stars are the blue shifted absorption
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(A color version of this figure is available in the online journal.)

components present in the Ca ii H and K and Mg ii h and k
resonance lines. Figure 3 shows one of the two chromosphere
and wind models of α Boo (Drake 1985, “model A”), which
is based on the Mg ii k λ2796 emission line observed with the
IUE telescope. The line was modeled by solving the radiative
transfer equation in a spherical co-moving frame, and the effects
of partial redistribution (e.g., Drake & Linsky 1983b) were
taken into account. Both of Drake’s atmospheric models are
semi-empirical and contain no assumptions about the wind-
driving mechanism. They contain the photospheric model of
Ayres & Linsky (1975), predict the wind to reach a terminal
velocity of 35–40 km s−1 by 2 R	, and reach a maximum
microturbulence of 5 km s−1. They contain a broad temperature
plateau with Te ≈ 8000 K between 1.2 and ∼20 R	 with a cooler
region farther out, and hydrogen is ∼50% ionized. We compute
the radio spectrum from these models assuming spherical 1D
geometry (Harper 1994) with the free-free Gaunt factors from
Hummer (1988). The radiative transfer equation is solved using
the Feautrier technique (Mihalas 1978), and the boundary
condition is determined by ensuring that the atmosphere is
optically thick at the deepest layers. Drake (1985) predicts that
their atmospheric model would produce a flux density value
of 0.4 mJy at 6 cm, and encouragingly, our radio spectrum
reproduces this value. Departures from spherical symmetry are
to be expected in magnetic stellar atmospheres. For example, α
Boo has an inclination axis of 58◦ ± 25◦ (Gray & Brown 2006),
and a global magnetic dipole could cause density variations
between the equator and the polar regions. Despite this fact, the
study of a spherically symmetric atmosphere forms the basis
of understanding the more complex environments in real stellar
atmospheres.

Figure 1 shows the resulting predicted radio spectrum
between 1 GHz and 1 THz for α Boo from these chromosphere
and wind models (green line). At high frequencies the radio
spectra produced by these models have a blackbody-like slope
(i.e., ∼ν2) as a result of the small ion density scale heights close
to the star where the temperature is changing slowly. At low
frequencies, however, where the Drake models predict the wind
to have constant velocity, ionization fraction, and temperature,
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Figure 3. Existing atmospheric model for α Boo (Drake 1985, “model A”)
along with the same model which undergoes rapid wind cooling beyond ∼2.3
R	 (see Section 4.4). The original Drake models have a temperature plateau of
∼8000 K between 1.2 and ∼20 R	 (solid black line), reach a terminal velocity of
35–40 km s−1 within 2 R	 (solid green line), and have a wind which is 50%
ionized (dashed and dotted black lines).

(A color version of this figure is available in the online journal.)

the slope approaches the well-known ∼ν0.6 limit (Wright &
Barlow 1975; Olnon 1975; Panagia & Felli 1975). The paucity
and, in some cases, low S/N of previous observations made
it difficult to discern the validity of this model prior to our
multi-frequency study of α Boo. Our new data reveal significant
deviations from the semi-empirical model at both low and high
frequencies (in this case below ∼8 GHz and above ∼25 GHz).
At high frequencies our VLA data indicate a flux excess which
is in agreement with previous mm observations. This may be
due to larger chromospheric ion densities or to the possible pres-
ence of transition region plasma not accounted for in the Drake
model. The discrepancy at low frequencies may be due to a
lower ionization fraction in the wind, or a lower mass-loss rate
than that used in the Drake model.

In Figure 2 we plot the expected radio spectrum of α Tau based
on the semi-empirical 1D chromosphere and transition region
model of McMurry (1999) embedded in the 1D wind model of
Robinson et al. (1998). The semi-empirical McMurry model was
created by using the radiative transfer code MULTI (Carlsson
1986) to reproduce the fluxes of collisionally excited C i, C ii,
Si iii, Mg ii, and C iv lines in a plane-parallel, hydrostatic, one-
component atmosphere. It contains the photospheric model of
Johnson (1973) and reaches a maximum temperature of 105 K at
1.2 R	. As it does not contain a wind outflow, we use Robinson
et al.’s wind characteristics beyond 1.2 R	 to describe the outflow
velocity. In this wind model, the wind reaches ∼80% of its
terminal value of 30 km s−1 by 3 R	. The Robinson et al.
wind characteristics are based on matching the Fe ii λ2755
line and the O i triplet near 1304 Å with a simplified wind
model using the SEI computer code (Lamers et al. 1987). We
assume the wind to have a constant temperature of 10,000 K
and have a constant ionization fraction of 0.6 throughout, based
on the ionization fraction at the corresponding temperature in
the McMurry model.

The radio flux densities at high frequencies (i.e., ν > 30 GHz)
are overestimated by the combination of both atmospheric
models, although this approach does well in reproducing the
VLA flux densities below 30 GHz. The VLA, Institut de
Radioastronomie Millimétrique (IRAM) 30 m telescope, and
Berkeley Illinois Maryland Association (BIMA) continuum flux

6



The Astronomical Journal, 146:98 (10pp), 2013 October O’Gorman et al.

densities confirm that this model predicts a flux excess at even
higher frequencies. One possible explanation for this is that
the inner atmosphere contains extensive amounts of cooler gas
than that predicted by the 1D static chromosphere and transition
region model of McMurry. This scenario agrees with the findings
of Wiedemann et al. (1994), who conclude that cool regions exist
close to the stellar surface with large (>99%) filling factors, i.e.,
a thermally bifurcated CO-mosphere (Ayres & Rabin 1996).
The wind which we have overlain on top of the McMurry
chromosphere and transition region is found to be optically
thin at nearly all VLA wavelengths, and only contributes a very
small flux at the longest wavelengths. As our model matches
the data reasonably well below 30 GHz, we conclude that α
Tau’s wind is optically thin and the VLA radio emission at all
wavelengths emanates from the inner atmosphere.

We also include the predicted radio spectrum from the theo-
retical Alfvén-wave-driven outflow model for α Tau (Krogulec
1989) in Figure 2 to demonstrate how radio observations can
empirically challenge theoretical models. This model has a fully
ionized outflow inside 10 R	 and has a mass-loss rate of 6.3 ×
10−9 M� yr−1, more than two orders of magnitude higher than
the more recent estimate given in Table 1. As the radio opacity
is proportional to nenion, where ne and nion are the electron and
ion number densities, respectively, this model greatly overes-
timates the actual radio flux density at all VLA wavelengths.
The linear Alfvén wave models for α Boo (Krogulec 1988) also
assume full ionization and have higher mass-loss rates than the
value given in Table 1, predicting higher flux densities than ob-
served. The lack of agreement between the Alfvén-wave-driven
wind models of Krogulec (1988, 1989) and our observed radio
fluxes may not necessarily be due to an incorrect wind-driving
mechanism and instead may be due to the simplifications and
uncertainties in these models, such as wind densities, magnetic
field strengths, damping lengths, and flow geometries close to
the star. For example, the mass-loss rate is very sensitive to
the radial surface magnetic field strength (i.e., Ṁ ∝ B4) in
these Alfvén wave models (Holzer et al. 1983), so a small un-
certainty in the mass-loss rate can lead to a large uncertainty
in the magnetic field strength. Relaxing some of these sim-
plifications such as purely radial flows or non-assumption of
the Wentzel–Kramers–Brillouin approximation (Charbonneau
& MacGregor 1995) may also lead to better agreement with our
radio data.

Recently, Ohnaka (2013) has detected a layer of CO in the
outer atmosphere of α Tau (i.e., a so-called MOLsphere) which
extends out to ∼2.5 R	, has a temperature of 1500 ±200 K, and
has a CO column density of ∼1×1020 cm−2. They were unable
to constrain the geometrical thickness, ΔL, of the MOLsphere
from the data, however, and arbitrarily set it to 0.1 R	. It can be
shown that such a MOLsphere would have an optical depth of
τ6 cm = 4.6 at C band and would produce a corresponding flux
density of 0.06 mJy, which is considerably lower than our high-
S/N measurement of 0.15 mJy. Here, we have conservatively
assumed that the electrons in this region of the atmosphere
come from singly ionized metals and have an abundance of
∼1×10−5nH, where nH is the total hydrogen number density.
We have also assumed the CO filling factor to be unity. The
disagreement in values between our radio data and the predicted
flux for an optically thick disk could mean that the MOLsphere
is optically thin at long VLA wavelengths and that the radio
emission emanates from the more ionized material closer to the
star. It can be shown that the MOLsphere becomes optically
thin at C band (i.e., τ6 cm < 1) for ΔL >0.46 R	, so if the
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Figure 4. Radio spectra for α Boo and α Tau, together with the best fit power law
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spectral indices for α Boo and α Tau are found to be 1.05 and 1.58, respectively,
which are both larger than the 0.6 value expected for a constant property wind
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(A color version of this figure is available in the online journal.)

long VLA wavelength radio emission from α Tau comes from
a region closer in to the star, then the MOLsphere either has a
geometrical width >0.46 R	 or has a filling factor less than unity.

4.3. Radio Spectral Indices

Long-wavelength radio emission from non-dusty K spectral-
type red giants is due to thermal free-free emission in their
partially ionized outflows, while shorter wavelength radio emis-
sion emanates from nearly static lower atmospheric layers. The
radio flux density–frequency relationship for these stars is usu-
ally found to be intermediate between that expected from the
isothermal stellar disk emission, where α follows the Rayleigh-
Jeans tail of the Planck function (i.e., α = +2), and that from an
optically thin plasma (α = −0.1). It can be shown that the ex-
pected radio spectrum from a spherically symmetric isothermal
outflow with a constant velocity and ionization fraction varies
as ν0.6 (Wright & Barlow 1975; Olnon 1975; Panagia & Felli
1975). If we relax some of the assumptions about the outflow in
this constant property wind model and instead assume that the
electron density and temperature vary as a function of distance
from the star r and have the power-law form ne(r) ∝ r−p and
Te(r) ∝ r−n, respectively, then

α = 4p − 6.2 − 0.6n

2p − 1 − 1.35n
(1)

(e.g., Seaquist & Taylor 1987). These power-law approxima-
tions are only going to be valid over certain radial ranges of the
star’s outflow.

The radio spectra for both stars are shown in Figure 4, together
with the power laws that were fitted to the long-wavelength flux
densities by minimizing the chi-square error statistic. For α Boo
a power law with Fν ∝ ν1.05±0.05 fits the four longest wavelength
data points well. This spectral index is larger than the 0.8 value
obtained by Drake & Linsky (1986), whose value was based
on a shorter wavelength (2 cm) value and a mean value of four
low S/N measurements at 6 cm. α Tau was found to have a
larger spectral index and a power law with Fν ∝ ν1.58±0.25 best
fitted the three longest wavelength data points. This value is
in agreement with Drake & Linsky (1986), who report a value
�0.84, and is lower than the value of 2.18 that can be derived
from the shorter wavelength data given in Wood et al. (2007).
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It should be emphasized that the spectral index for both stars
is steeper than that expected from the constant property wind
model.

Equation (1) can be used in conjunction with our new spectral
index for each star to calculate the density and temperature
coefficients that may describe their outflows. The combinations
of the electron temperature and density coefficients are shown
for each star in Figure 5 (α Boo is represented by the solid line
and α Tau by the dash-dotted line) along with the coefficients
obtained by assuming either an isothermal flow (n = 0) or a
constant velocity flow (p = 2). One potential explanation for
spectral indices of stellar outflows being larger than 0.6 is that
the wind is still accelerating in the radio emitting region, if the
thermal gradients are assumed to be small. For an isothermal
flow, the density coefficients are p = 2.7 and 5.5 for α Boo and
α Tau, respectively. From mass conservation, and assuming a
steady flow, the power-law coefficients for the velocity profiles
of each star can be found, i.e., v(r) ∝ rp−2. For α Boo we find
v(r) ∝ r0.7, while for α Tau we find v(r) ∝ r3.5. This suggests
that our long VLA wavelengths may probe a steep acceleration
region for α Tau’s outflow but for α Boo may probe a region
where the wind is close to its terminal velocity.

The assumption of shallow thermal gradients in a stellar
outflow is probably unreliable, however. It is likely that some
form of Alfvèn waves are required to lift the material out
of the gravitational potential as suggested by Hartmann &
MacGregor (1980). These waves need damping lengths which
are much larger than the chromospheric density scale height
H (where H ∼ 0.01 R	 for our targets) in order to lift the
material out of the gravitational potential, but �1 R	 in order
to avoid wind terminal velocities greater than those observed
(e.g., Holzer et al. 1983). It has also been shown that these
waves are expected to produce substantial heating near the
base of the wind (e.g., Hartmann et al. 1982). If the long-
wavelength radio emission from α Tau is indeed emanating
from the wind acceleration region, then the dissipation of these
Alfvèn waves may introduce thermal gradients in this region
and its velocity profile will not be described by v(r) ∝ r3.5.
Furthermore, diverging flow geometries have been invoked as a
more realistic representation of stellar atmospheres (Hartmann
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& MacGregor 1982; Jatenco-Pereira & Opher 1989; Vidotto
et al. 2006), and so one could write the area of a flux tube
(normalized to its value at r1) as (r/r1)2f (r), where f (r) is
a function describing the divergence from a purely radial flow
[i.e., when f (r) = 1]. If the non-radial expansion term can be
described by a power law f (r) ∝ rs , where s > 1 indicates
super-radial expansion, then v(r) ∝ r3.5−s would describe the
velocity profile of α Tau (assuming an isothermal flow with
a constant ionization fraction). Therefore, including diverging
geometries reduces the magnitude of the acceleration. Farther
out in the wind, where it has reached its terminal velocity,
one would also expect a thermal gradient (but now of opposite
sign) due to adiabatic expansion and line cooling. If the long-
wavelength radio emission emanates from this region of the
wind, then Equation (1) provides us with a direct estimate of the
temperature coefficient as we can assume the density coefficient
is p = 2. This may be the case for our long VLA wavelength
measurements of α Boo, in which case Te(r) ∝ r−1.65.

To investigate this matter further, we estimate the effective
radius of the radio emitting region as a function of wavelength
based on the Drake model for α Boo and the hybrid McMurry
and Robinson et al. model for α Tau. We follow the approach
used by Cassinelli & Hartmann (1977) and assume that the radio
emission at each wavelength is characterized by emission from
a radial optical depth τrad ∼ 1/3. This is a modification of the
Eddington–Barbier relation for an extended atmosphere where
emission from smaller optical depths has added weight. Since
the radio free-free opacity increases at longer wavelengths,
the optical depth along a line of sight into the stellar outflow also
increases at longer wavelengths. This implies that the effective
radius (i.e., the radius where τλ = τrad) will increase with
longer wavelengths and will be greater for outflows with higher
densities of ionized material as τλ(r) ∝ λ2.1

∫
nion(r)ne(r)dr .

The larger mass-loss rate of α Boo in comparison to α Tau
means that the latter has a substantially smaller effective radius
at longer wavelengths, as seen in Figure 6. At 6, 13, and 20 cm
the effective radius of α Boo at τrad=1/3 is predicted to be 1.6,
2.8, and 3.7 R	 but is only ∼1.2 R	 at 6 and 13 cm for α
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Tau. Robinson et al. (1998) predict that α Tau’s wind reaches
∼80% of its terminal velocity by 3 R	, but even our longest
wavelength observations are highly unlikely to sample the wind
outside the lower velocity layers closer to the star. For α Boo,
however, Drake (1985) predicts that the wind has reached its
terminal velocity by ∼2 R	, so based on this model our longest
wavelength measurements are of the region where the wind has
reached a steady terminal velocity. From Figure 5, this implies
that the ne coefficient is p = 2 and thus the Te coefficient is
n = 1.65. Pure adiabatic spherical expansion cooling with no
heat source has n = 1.33, so additional cooling routes must
be operating, possibly due to line cooling. Finally, the wind
ionization balance may not have become frozen-in in the region
of α Boo’s wind where the radio emission emanates from. If
this is true, then the excess slope of the spectral index could be
due to a combination of both cooling and changing ionization
fraction. In this scenario the temperature coefficient n would be
smaller than our derived value because Equation (1) assumes a
constant ionization fraction.

4.4. Analytical Advection Model for α Boo’s Wind

A failure of the Drake model for α Boo is that it overestimates
the radio fluxes at long VLA wavelengths which sample the
outer atmosphere, as clearly shown in Figure 1. If these
wavelengths are indeed sampling the wind at its terminal
velocity, then one reason for this overestimation is that the wind
is cooling closer in than predicted by the existing model, which
assumes a constant temperature of 8000 K out to ∼20 R	. The
main mechanism for such cooling would be adiabatic expansion
(O’Gorman & Harper 2011) and would cause lower electron
densities than those predicted by the existing model due to larger
recombination rates.

To investigate the possibility of the wind undergoing more
rapid cooling closer in to the star, we adjusted one of the existing
models (referred to as “Model A” in Drake 1985) to include a
temperature power-law falloff of the form

Te(r) = Te(r1)
( r1

r

)n

, (2)

at some distance r1 from the star, and used the temperature
coefficient n = 1.65 obtained from our new VLA data assuming
a constant velocity flow (see Figure 5). We introduce the distance
r1 as the outer limit to ionization processes; at r > r1, the
ionization fraction is only determined by recombination. To
calculate the new electron density in the wind regime where this
temperature falloff occurs, we used the analytical expression
of Glassgold & Huggins (1986) to calculate the hydrogen
ionization fraction, xH ii = nH ii/nH, where nHII and nH are the
ionized and total hydrogen number densities, respectively. To
do so, we need to make a number of assumptions about the wind
properties beyond radius r1, namely:

1. A constant velocity mass outflow, i.e., nH(r) = C/r2,
where C is a constant proportional to the ratio of the
mass-loss rate divided by the terminal velocity. For α
Boo, C = 1.7 × 1032 cm−1 assuming a wind velocity of
35 km s−1.

2. All hydrogen ionization processes cease beyond r1. The
ionization of hydrogen in the chromosphere and wind is a
two-stage process: the n = 2 level is excited by electron col-
lisions and Lyα scattering, followed by photoionization by
the optically thin Balmer continuum. When the temperature
begins to decrease in the wind, the collisional excitation rate
and thus ionization rate decrease rapidly.

3. Only radiative recombination of hydrogen is considered,
and the temperature variation of the recombination co-
efficient αB which excludes captures to the n = 1 level
(Spitzer 1978) is included. The recombination coefficient
varies with temperature as

αB(r) = αB(r1)

[
Te(r1)

Te(r)

]0.77

, (3)

where the power-law coefficient is obtained by finding the
slope of the recombination coefficients between 1000 K
and 16,000 K given in Spitzer (1978).

4. A fixed ion contribution from metals with a low first
ionization potential, xion = nion/nH = 10−4, as these are
easily ionized in the outflow.

Using these assumptions, it can be shown that the ionization
fraction beyond r1 is given by (Glassgold & Huggins 1986)

xH ii(r) = xH ii(r1)xione
−I (r)

xion + xH ii(r1)[1 − e−I (r)]
, (4)

where

I (r) = 4.7 × 109

r1

[( r1

r

)−0.27
− 1

]
, and r � r1. (5)

We adjusted the value of r1 to obtain the best fit to our long-
wavelength observations and found that this happened when
r1 = 2.3 R	. To get this best fit, the existing atmospheric
model (plotted in Figure 3) needed to be adjusted, so that it
now has a narrower and slightly larger temperature plateau of
Te = 10, 000 K between 1.2 and 2.3 R	 and a temperature
profile and a density profile governed by Equations (2) and (4)
beyond r1 = 2.3 R	, respectively. This gives good agreement
with our new long-wavelength VLA data as shown in Figure 1.
This new hybrid model, which is plotted along with the original
Drake model in Figure 3, still has the original ionization fraction
of xH ii ≈ 0.5 inside 2.3 R	 but now contains an initial rapid
decrease in xH ii beyond 2.3 R	, which then freezes-in to a
constant value of ∼0.04 beyond ∼10 R	.

Encouraging as it is that such a simple analytical model can
reproduce values close to the observed radio fluxes at long
wavelengths, it must be stressed that this hybrid model is just
a first-order approximation. It assumes that the excess slope
from the radio spectrum is a result of rapid cooling only. It still
does not reproduce the radio fluxes at wavelengths shorter than
∼3 cm, and therefore a new atmospheric model is still required
that can reproduce all of the observed flux densities. To do so, the
non-trivial task of simultaneously solving the radiative transfer
equation and non-LTE atomic level populations which include
advection will be required.

5. CONCLUSIONS

We have presented the most comprehensive set of multi-
wavelength radio continuum observations of two standard lu-
minosity class III red giants to date. This is the first time such
stars have been detected at wavelengths longer than 6 cm. Such
long-wavelength detections are crucial if one wants to study
the outer environments of these partially ionized stellar out-
flows. Our observations were carried out with the VLA during
its commissioning phase when only a fraction of the now avail-
able bandwidth was at our disposal. The continuous bandwidth
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coverage between 1 and 50 GHz of the new VLA will allow
fast detections of historically weak or undetectable radio con-
tinuum luminosity class III red giants at both long and short
wavelengths. Previous upper limits will be replaced by firm
detections, allowing a greater understanding of their outer at-
mospheric properties.

The spectral index of both α Tau and α Boo at long
wavelengths is found to be greater than that expected from
a constant property wind. For α Tau our longest wavelength
detections are still sampling emission from an accelerating
region within the outflow, while for α Boo the emission probably
emanates from a region where the flow is close to, or indeed
has reached, its terminal velocity. Using our new VLA data,
we have developed a simple analytical model for the outer
atmosphere of α Boo which contains a rapid wind cooling
profile. Future detailed non-LTE radiative transfer models which
include advection are required to match all radio flux densities
at all wavelengths.

The data presented in this paper were obtained with the Karl
G. Jansky Very Large Array (VLA), which is an instrument
of the National Radio Astronomy Observatory (NRAO). The
NRAO is a facility of the National Science Foundation oper-
ated under cooperative agreement by Associated Universities,
Inc. We wish to thank the NRAO helpdesk for their detailed
responses to our CASA-related queries. We thank the referee
for their careful reading of the manuscript and their valuable
comments. This publication has emanated from research con-
ducted with the financial support of Science Foundation Ireland
under Grant Number SFI11/RFP.1/AST/3064, and a grant from
Trinity College Dublin.
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Falceta-Gonçalves, D., Vidotto, A. A., & Jatenco-Pereira, V. 2006, MNRAS,

368, 1145
Glassgold, A. E., & Huggins, P. J. 1986, ApJ, 306, 605
Gray, D. F., & Brown, K. I. T. 2006, PASP, 118, 1112
Haisch, B. M., Linsky, J. L., & Basri, G. S. 1980, ApJ, 235, 519
Harper, G. M. 1988, PhD thesis, Oxford Univ.
Harper, G. M. 1994, MNRAS, 268, 894
Harper, G. M. 2001, in ASP Conf. Ser. 223, 11th Cambridge Workshop on Cool

Stars, Stellar Systems and the Sun, ed. R. J. Garcia Lopez, R. Rebolo, & M.
R. Zapaterio Osorio (San Francisco, CA: ASP), 368

Harper, G. M. 2010, ApJ, 720, 1767
Harper, G. M., Brown, A., Ayres, T., & Sim, S. A. 2004, in IAU Symp. 219,

Stars as Suns: Activity, Evolution and Planets, ed. A. K. Dupree & A. O.
Benz (San Francisco, CA: ASP), 651

Harper, G. M., Brown, A., Bennett, P. D., et al. 2005, AJ, 129, 1018
Harper, G. M., O’Riain, N., & Ayres, T. R. 2013, MNRAS, 428, 2064
Hartmann, L., Avrett, E., & Edwards, S. 1982, ApJ, 261, 279
Hartmann, L., & MacGregor, K. B. 1980, ApJ, 242, 260
Hartmann, L., & MacGregor, K. B. 1982, ApJ, 257, 264
Hatzes, A. P., & Cochran, W. D. 1993, ApJ, 413, 339
Holzer, T. E., Fla, T., & Leer, E. 1983, ApJ, 275, 808
Holzer, T. E., & MacGregor, K. B. 1985, in Mass Loss from Red Giants, ed. M.

Morris & B. Zuckerman (Astrophysics and Space Science Library, Vol. 117;
Dordrecht: Reidel), 229

Hummer, D. G. 1988, ApJ, 327, 477
Jatenco-Pereira, V., & Opher, R. 1989, A&A, 209, 327
Johnson, H. R. 1973, ApJ, 180, 81
Jones, M. H. 2008, MNRAS, 387, 845
Judge, P. G., & Carpenter, K. G. 1998, ApJ, 494, 828
Kallinger, T., Weiss, W. W., Barban, C., et al. 2010, A&A, 509, A77
Krogulec, M. 1988, AcA, 38, 107
Krogulec, M. 1989, AcA, 39, 51
Lamers, H. J. G. L. M., Cerruti-Sola, M., & Perinotto, M. 1987, ApJ,

314, 726
Lebzelter, T., Heiter, U., Abia, C., et al. 2012, A&A, 547, A108
Linsky, J. L., & Haisch, B. M. 1979, ApJL, 229, L27
McMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. 2007, in ASP

Conf. Ser. 376, Astronomical Data Analysis Software and Systems XVI, ed.
R. A. Shaw, F. Hill, & D. J. Bell (San Francisco, CA: ASP), 127

McMurry, A. D. 1999, MNRAS, 302, 37
Mihalas, D. 1978, Stellar Atmospheres (2nd ed.; San Francisco, CA: Freeman)
O’Gorman, E., & Harper, G. M. 2011, in ASP Conf. Ser. 448, 16th Cambridge

Workshop on Cool Stars, Stellar Systems, and the Sun, ed. C. Johns Krull,
M. K. Browning, & A. A. West (San Francisco, CA: ASP), 691

Ohnaka, K. 2013, A&A, 553, A3
Olnon, F. M. 1975, A&A, 39, 217
Panagia, N., & Felli, M. 1975, A&A, 39, 1
Perley, R. A., & Butler, B. J. 2013, ApJS, 204, 19
Reimers, D. 1982, A&A, 107, 292
Robinson, R. D., Carpenter, K. G., & Brown, A. 1998, ApJ, 503, 396
Seaquist, E. R., & Taylor, A. R. 1987, ApJ, 312, 813
Sennhauser, C., & Berdyugina, S. V. 2011, A&A, 529, A100
Slee, O. B., Stewart, R. T., Bunton, J. D., et al. 1989, MNRAS,

239, 913
Spitzer, L. 1978, Physical Processes in the Interstellar Medium (New York:

Wiley), 333
Sutmann, G., & Cuntz, M. 1995, ApJL, 442, L61
Suzuki, T. K. 2007, ApJ, 659, 1592
Taylor, G. B., Carilli, C. L., & Perley, R. A., (eds.) 1999, ASP Conf. Ser. 180,

Synthesis Imaging in Radio Astronomy II (San Francisco, CA: ASP)
van Leeuwen, F. 2007, A&A, 474, 653
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