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Training Knowledge Bots for Physics-Based
Simulations Using Artificial Neural Networks

Jay Ming Wong and Jamshid A. Samareh
NASA Langley Research Center
Hampton, Virginia 23681-2199

Abstract—Millions of complex physics-based simulations are
required for design of an aerospace vehicle. These simulations
are usually performed by highly trained and skilled analysts, who
execute, monitor, and steer each simulation. Analysts rely heavily
on their broad experience that may have taken 20-30 years to
accumulate. In addition, the simulation software is complex in na-
ture, requiring significant computational resources. Simulations
of system of systems become even more complex and are beyond
human capacity to effectively learn their behavior. IBM has
developed machines that can learn and compete successfully with
a chess grandmaster and most successful jeopardy contestants.
These machines are capable of learning some complex problems
much faster than humans can learn.

In this paper, we propose using artificial neural network to
train knowledge bots to identify the idiosyncrasies of simulation
software and recognize patterns that can lead to successful
simulations. We examine the use of knowledge bots for applica-
tions of computational fluid dynamics (CFD), trajectory analysis,
commercial finite-element analysis software, and slosh propellant
dynamics. We will show that machine learning algorithms can
be used to learn the idiosyncrasies of computational simulations
and identify regions of instability without including any additional
information about their mathematical form or applied discretiza-
tion approaches.

I. INTRODUCTION

Traditionally, individuals perform millions of simulations
during the course of a design process by providing inputs,
analyzing the simulation outputs, and identifying patterns
that lead to successful simulations. Trained and experience
analysts have learned the underlying simulation idiosyncrasies,
and they are able to predict the simulation behavior given
a set of input parameters, prior to actually performing the
simulation. Humans are great at identifying complex patterns
for events with small number of variables and given sufficient
time to process the data and develop an expertise. Machine
learning algorithms, such as artificial neural networks, are
rapidly catching up and exceeding human capacity to iden-
tify these patterns that leads to knowledge creation. This is
especially useful for complex simulation as the underlying
implementation may be too difficult to decipher. However, to
obtain such knowledge requires years of simulation experience.
Furthermore, the software itself may not only be extremely
complex, but may require a long period of time for execution.

Jay Ming Wong was supported through the Langley Aerospace Research
Student Scholars (LARSS) program. He is studying Computer Science at the
University of Massachusetts Amherst.

We propose an approach for a trained classifier, in which we
refer to as a knowledge bot that learns the underlying properties
of the black-box, much like a trained expert, and provide a
quick response to whether or not a set of input parameters
will result in failure before actually executing the black-box
with inputs. Therefore, designers may be able to produce initial
designs given the information of the knowledge bot, meanwhile
validating the information by actually executing the black-
box software. We define the term knowledge bot as a piece
of software that has been trained using supervised machine
learning techniques that interrogates simulation software and
captures their underlying properties. The goal is to provide
an accurate model of black-box physics-based simulations via
training such a bot using artificial neural networks.

II. RELEVANT WORK

The computational model of artificial neural networks has
been widely popular in the early 1940s up until the late
1950s for mathematics and algorithms [1], [2]. However, a new
spark of interest emerged in the 1990s and 2000s due to its
roots in biological relevance, where human brain computation
and conventional digital computation differ. Artificial neural
systems are often analogized as “physical cellular systems
which acquire, store, and utilize experiential knowledge [3].”
These cellular systems have been modeled by a network of
interconnected nodes, generalizable to an input layer, one
or more hidden layers, and an output layer. The network
formally defined as a Multilayer Perceptron (MLP) neural
network, where each node takes in a set of input parameters
and computes an output value feeding to nodes further down
the layer hierarchy as input. Eventually, at the output layer
a value is returned as a prediction [4]. This model of the
network acts as a foundation for numerous machine learning
techniques using artificial neural networks. It was shown in
Ref. [5] that multilayer feed-forward networks are a class of
universal approximators, making the use of artificial neural
networks sufficiently good for a large number of varying
applications. For example, neural networks have been used
in areas of robotics and control dynamics for the controls of
robot manipulators and non-linear systems [6], [7] and motion
planning [8]; in areas of computer vision for face detection
[9], [10]; in areas of chemistry to predict secondary structures
of proteins [11]; in areas of clinical medicine [12]; and even
in areas of finance to predict financial markets and bankruptcy
[13], [14], [15]. Therefore, there has been a large amount of
research using these networks in the form of machine learning
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Fig. 1. The role of the knowledge bot in system analysis and design process

to capture specific patterns that can be exploited in making
predictions, similar to humans, although in a much larger
scale. GPU-based implementation of using artificial neural
networks was shown in [16] to be largely successful in pattern
recognition, allowing for massively parallel implementation.
Various means of training neural networks to visualize and
understand complex datasets has been demonstrated in [17].
However, for the purpose of our approach, we are more
concerned with feasibility, precision, and accuracy rather than
visualization because dimensionality reductions may remove
essential components of our problems.

III. LEARNING PHYSICS-BASED SIMULATIONS

The knowledge bot described in Sec. I plays an important
role in the design and system analysis process. Firstly, let’s
assume that the knowledge bot does not exist in the process and
we look at the main cycle of the design process illustrated in
Fig. 1. The design process without the knowledge bot is simply
the traditional design process of input-output relationship with
the simulation software.

A. Design Process without Knowledge Bot
1) User wishes to evaluate the outcomes if several parame-

ters are modified, so user requests the simulation of the
system with a set of input parameters

2) The black-box software executes the simulation and
provides a set of output

3) Execution is complete and output is returned to the user
*) Repeat. Eventually the user will need to re-evaluate the

system with another set of modified input parameters,
thus returning to Step 1.

Now observing this cycle, we see that the most time consuming
event is Step 2. The physical simulation itself, may take a
long time to execute. Furthermore, the user, if lacking expert
intuition, may not be able to proceed with the design process
until the outcome of the simulation is known. Additionally,
if given sufficiently bad input parameters, the simulation may
result in failure. However, only after the simulation is finished
executing does the user finally discover such essential piece of
information. The purpose of the knowledge bot is to alleviate
such ineffectiveness by providing an instantaneous prediction
of whether or not the simulation will execute without failure,

Fig. 2. Abstract model of bot use-case, user provided with abstraction of bot

such that unnecessary failing cases do not have to be simulated
in the design process.

B. Design Process with Knowledge Bot
A1) User wishes to evaluate the outcomes if several param-

eters are modified, so user requests the simulation of
the system with a set of input parameters. However, the
input is given to the knowledge bot.

A2) The knowledge bot make a prediction whether simula-
tion will be successful or failure

A3) If knowledge bot predicts successful simulation, user
will perform the simulation. Otherwise the input param-
eters are adjusted and return to Step A2

A4) Predictive output is returned to the user
*) Repeat. Eventually the user will need to re-evaluate the

system with another set of modified input parameters,
thus return to Step A1.

The role of the knowledge bot is to provide a speedy prediction
of the outcome of simulation without executing the simulation
itself, using the given parameters. Thus, this response is
significantly faster than having to execute the simulation. The
user has a prediction of the outcome of the system, thus
the design process can proceed knowing the general outcome
provided from the knowledge bot. The training process for a
knowledge bot is defined as:
L1) The knowledge bot uses a Monte Carlo sampling tech-

nique to select candidate input parameters. The tech-
nique uses pseudo-random numbers to select samples
from a probability distribution. The Monte Carlo tech-
nique has some similarity to the Latin Hypercube tech-
nique, where samples are selected in a stratified domain
with input probability distributions.

L2) The software finishes executing the simulation with the
specified parameters and provides output.

L3) The knowledge bot uses the output to refine the learned
model.

*) Repeat or stop. The knowledge bot either continues to
learn from the simulation software or user decides that
the learned model is sufficiently accurate and stops the
learning process.

The purpose of the knowledge bot is to learn the underlying
properties of physics-based simulations that govern the phys-
ical world to help accelerate the analysis and design process.
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Fig. 3. Underlying mechanics of the knowledge bot, abstracted away in Fig. 2

Rather than having an analyst wait until after the simulation to
realize that the input parameters results in a failed simulation,
the knowledge bot is capable of providing a rapid prediction.

Partial differential equations are generally used in physics-
based analysis of the physical world. The proposed knowledge
bot is capable of learning the idiosyncrasies of various nu-
merical methods that are used to solve such partial differential
equations as well as capturing underlying properties of com-
plex physics-based simulations.

Nominal classifiers were developed from a Multi-layer Per-
ceptron neural network that is trained via the error back-
propagation training algorithm. The problem formulation is
based on a set of input and output vectors and a collection of
hidden layers. The weight associated with links between layers
are adjusted as learning rules propagate backwards from the
output to input layer [3]. Furthermore, the learning rate for all
sessions, unless specified otherwise is generally r = 0.3.

Weka1 was used for training our neural network in this
paper; Weka is a Java-based general purpose machine learning
software developed at the University of Waikato, New Zealand.

IV. KNOWLEDGE BOT MECHANICS

The knowledge bot represents an abstraction of simulation
software, where to the user, the bot is simply a trained expert
providing accurate predictions of simulation software behav-
iors based on user input parameters. The underlying predictive
model, mechanics, and properties are abstracted, as illustrated
in Fig. 2. However the knowledge bot creation encompasses
various processes as shown in Fig. 3. The knowledge bot can
be in a state of either training or testing. In the training state,
the knowledge bot uses sufficiently large input data set and
executes the simulation software. The outputs along with the
sampled parameters are then collected in a training set. In our
case, sufficiently large data set was denoted as 10000 instances.
As it will be shown later, it is possible to create an accurate
knowledge bot with less than 100 instances of simulations.
The training set is then provided to a Java machine learning
tool, Weka to develop the predictive model that is then fed
back to the knowledge bot to make predictions. Similarly in
the case of training, the bot again uses candidate samples
input parameters, generating another sufficiently large set as
the test set. The set is then provided to Weka, which is tested
against the current predictive model of the knowledge bot. The
resulting statistics are then given as output. MATLAB scripts
is used to develop the classification results of each instance in
the test set. We then used support vector machine algorithm
to determine the boundary between simulation successes and
failures. We also used MATLAB to collapse the resulting
multidimensional classifications into two dimensions for not
only visualization but also to describe in a single function the
behavior of the classification boundary.

The abstraction of the knowledge bot allows for multipur-
pose simulation learning, as separate bots are trained to capture
knowledge in various physics-based simulations. In fact, the
concept of the knowledge bot can be implemented for any
arbitrary physics-based simulations allowing for predictions of
a wide range of physical problems and simulations.

V. DIFFERENTIAL EQUATION CLASSIFICATION

Most physics-based simulations can be accurately modeled
by a set of differential equations. Especially in the case of
aerospace vehicle design, fluid mechanics, structural mechan-
ics, and heat transfer are some of the most important concepts
taken into account in vehicle systems analysis. Furthermore,
these important concepts are governed primarily by a set of
differential equations that share a similar form. The below
simple partial differential equation in two dimensions is used
to describe the classifications.

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ f = 0 (1)

This can be classified into more specific families or classes of
differential equations [18]. Given the set of coefficients a, b, c,
it has been shown that r = b2 − 4ac can be used to classify
these classes of equations based on the sign of r as follows,

1) parabolic differential equation, if r = 0

1http://www.cs.waikato.ac.nz/ml/weka/
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(a) Classification of each instance classified described by (1)

(b) Classification legend

Fig. 4. Classification and legend

2) hyperbolic differential equation, if r < 0
3) elliptic differential equation, if r > 0

Given a simulation governed by a differential equation of the
form described in (1), a method that classifies the equation
into three distinctive classes and provides whether the input
to the simulation will result in failure or success, similar to
the acquired knowledge of a trained expert is demonstrated.
The applications of numerical methods for these differential
equations are treated as a piece of software with unknown
underlying properties. The goal is to train knowledge bot to
learn the underlying solution patterns and classify whether
input to each of these three forms of differential equations
will result in success or failure in numerical convergence and
solution accuracy.

Provided that a partial differential equation is in the form
described in (1), it can be classified into the three classes
described earlier. This problem of classifying the type of
differential equation is isomorphic to classifying whether the
solutions to a quadratic equation is undefined, real, or complex
(however, note that the a, b, c in the case of the quadratic
classification corresponds to the coefficients of an equation
in the form ax2 + bx + c). A classifier was trained using
10000 instances generated by Monte Carlo sampling where
−1 ≤ a, b, c ≤ 1. The artificial neural network model used
for training consisted of a single hidden layer with twenty-five
sigmoid nodes. The input node of the network corresponds to
the a, b, c.

When the classifier, after being trained by a set of training
data, is given a test set to classify, it may classify each instance
as either,

1) r = 0, depicted as a diamond in Fig. 4(a)
2) r > 0, depicted as a square in Fig. 4(a)
3) r < 0, depicted as a circle in Fig. 4(a)
The classification of the 10000 instances was 98.8% ac-

curate using a single hidden layer network architecture with
twenty-five sigmoid nodes. Furthermore in Fig. 4(a), an in-
stance may either be colored solid green or outlined as red.
The green denotes that the prediction is correctly classified.
The red outline denotes that the prediction was incorrect. Each
of these cases corresponds to the classification of a class of
differential equation (parabolic, hyperbolic, or elliptic). Refer
to Fig. 4(b) for a pictorial legend. Note that this classifier
simply classifies a partial differential equation in the form
described by (1) as a general class or form, whether it be
parabolic, hyperbolic, or elliptic. It does not suggest anything
about the equation’s stability or convergence. Simply given a
general form of a partial differential equation, we can classify
it as one of three classes of equations. A classifier that learns
the convergence and stability of each of these forms will be
discussed in following sections.

VI. PARABOLIC EQUATION: 1D-HEAT EQUATION

To understand the properties of parabolic differential equa-
tions, a distinguishable example problem was selected - the
heat equation problem simplified to a one-dimensional space
with initial temperature v(x) = V0 and boundary conditions
with the temperature at zero. Thus, the physics of the problem
assumes that the temperature change propagates from the
boundaries, governed by the differential equation,

ρc
∂v

∂t
= K

∂2v

∂x2
(2)

It can be shown by numerical differentiation and finite dif-
ferences (using the FTCS, forward time central-space method
described in [22]) that the following numerical method follows,

vn+1
i = vni +

K∆t

ρc∆x2
(vni+1 − 2vni + vni−1) (3)

The exact solution, however, described in [21] in the case of
constant initial temperature v(x) = V0, is,

v =
4V0

π

∞∑
n=0

1

2n+ 1
e−κ(2n+1)2π2t/l2sin

(2n+ 1)πx

l
(4)

In our case, we assume l = 1 and κ = K/ρc. The exact
solution is evaluated as described in (4) to the nth term where
we decided that any terms that exceed ε = e−20 is no longer
significant for the purpose of our computations. Thus, nmax
is determined as follows,

nmax =

√
20l2/(κπ2t)− 1

2
(5)

The purpose of computing both the numerical solution and
the exact solution (up to the nth significant term) is that we
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Fig. 5. Classification of each instance for parabolic 1D-heat equation

would like to treat the explicit numerical method as a black-
box, such that it is a procedure that an individual without the
knowledge of the heat equation or the procedure’s underlying
numerical methods can execute and produce the temperature
distribution after sometime t for some positions 0 < x < 1.
Because the discretization in Eq. (3) is explicit in time, the
algorithm will be unstable for some ∆x and ∆t combinations.
Therefore, a classifier was trained to take the same input as the
finite-difference procedure and to determine input validity and
convergence of the numerical method such that an individual
can query the classifier or software bot and determine whether
a set of input will even execute correctly or fail on the black-
box procedure prior to actually executing the code. The input
parameters of the numerical method as well as the software
bot are as follows,

1) Nx - number of discretized points in x
∆x = 1/(Nx − 1)

2) Nt - number of discretized point in t
∆t = 1/(Nt − 1)

3) V0 - initial temperature of the substance (oC)
4) K - conductivity of the substance

((cal/s)/(cm2oC/cm))
5) ρ - density of the substance (g/cm3)
6) c - specific heat of the substance (cal/goC)

We used properties of platinum as an upper bounds for density,
water for specific heat, and silver for conductivity for our
training set and normalized the initial temperature, resulting
in 0 < ρ ≤ 22, 0 < K, c, V0 ≤ 1, and 0 < Nx, Nt ≤ 101.
The training set for each of these networks, then is a seven-
dimensional dataset encompassing the six input parameters and
a convergent-divergent Boolean flag.

After training 10000 instances, the predictions of the clas-
sifier is illustrated in Fig. 5. The legend description is shown
separately in Fig. 6, and teh following description will be used
for the rest of the paper:

Fig. 6. Convergent-divergent classification legend

The classification of 10000 numerical simulations was over
99.2% accurate using a single layer network with twenty-
five sigmoid nodes. It was shown by [23] that the explicit
finite-difference numerical method has a convergence limit
expression of α(∆t/∆x2) ≤ 1/2, where in this case α =
K/ρc. Thus, the deciding term K/ρc is plotted against the
inverse of the step ratio resulting in ∆x2/∆t. The curve
K/ρc = ∆x2/2∆t is depicted in Fig. 5.

Note, that the term divergence is used very loosely (in this
section and in future sections); in this context, it is more alias
to the term non-convergence which is denoted as the result as
one of the following,

1) the input results in a failed execution or overflowed
outputs

2) the input results in divergence (or oscillation) and
results in arbitrarily large error, ε→∞

3) the input results in convergence but to a point that
results in error that exceeds the maximum, ε > εmax

VII. HYPERBOLIC EQUATION: WAVE EQUATION

The wave equation can be used as an identifiable example of
the class of hyperbolic partial differential equations. The one-
dimensional wave equation, described in [19], which governs
the simulation of vibrations of a string or rod, can be expressed
as the partial differential equation,

∂2u

∂x2
=
∂2u

∂t2
(6)

where u(x, t) represents the deflection at time t of a point
x away from the origin. The hyperbolic wave equation is
solved numerically using FTCS; the numerical method in [19]
is shown to be,

un+1
i = ρuni+1 + 2(1− ρ)uni + ρuni−1 − un−1

i (7)

where,

ρ =

(
∆t

∆x

)2

(8)

The analytic solution for wave equation is,

u(x, t) =
1

2
[f(x+ t) + f(x− t)] (9)

where f(·) is defined to be the initial deflection, thus f(x) =
u(x, 0). In our case of training we assumed a sinusoid where
f(x) = sin(πx), since it encapsulates the boundary conditions
u(0, t) = u(1, t) = 0. A Monte Carlo sampling of 10000
numerical solutions was used for training based on 0 < ρ < 2
and varied 10 ≤ Nx ≤ 1001 to compute Nt = 1 + 1/∆t, with
∆t =

√
ρ∆x. The input parameters are then simply,
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Fig. 7. Classification of each instance for hyperbolic wave equation

1) ρ - the squared ratio of step sizes in t and x
2) Nx - the number of discretized x, ∆x = 1/(Nx − 1)

The trained classifier was observed and compared to the the
actual stability criteria defined to be ρ ≤ 1, which can be
interpreted as Nx ≤ Nt.

After training 10000 instances, the predictions of the clas-
sifier is shown in Fig. 7. The legends are identical to the
convergence predictions of the classifiers in previous sections
(see Fig. 6). Recall that green denotes correct classification and
circles denote that the classifier’s prediction was convergent
and squares correspond to divergent predictions. Note that
the misclassifications lie along the Nx = Nt curve. The
classification of the 10000 instances for the hyperbolic wave
equation problem was over 96.2% accurate using a single layer,
twenty-five node network architecture.

VIII. ELLIPTIC EQUATION: LAPLACE’S EQUATION

Both Laplace’s and Poisson’s equations are important partial
differential equations in mathematical physics and engineering
described by [19] and are examples of elliptic equations. For
the purpose of this paper, we used Laplace’s equation as an
example of an elliptic partial differential equation, which takes
the form,

∂2u

∂x2
+
∂2u

∂y2
= 0 (10)

The analysis of steady conduction in a rectangular region
with prescribed boundary temperatures as described in [20]
and it is demonstrated that a scenario with boundary conditions
where three of the four sides as well as the interior of the region
are initialized to zero with the last side initially T (x, y) =
f(x), which in our case we select f(x) = (∆u)sin(πx) since
it satisfies the boundary conditions. The exact solution for
a half-sine-wave boundary temperature distribution is indeed
described for this particular problem,

u(x, y) = ∆u
sinh(πy/L)

sinh(πH/L)
sin(πx/L) (11)

Fig. 8. Classification of each instance for elliptic Laplace’s equation

where, ∆u describes the amplitude of the sinusoid and as-
sumed to be one in this study. Furthermore, the rectangular
region is fixed as well for simplicity, thus, H = L = 1. The
numerical solution to this elliptic partial differential problem
can be expressed using the successive over relaxation (SOR)
method denoted as,

un+1
i,j = uni,j + ωL(uni,j) (12)

where the function L(·) denotes the residual defined as,

L(uni,j) =
L1(uni,j) + β2L2(uni,j)

2(1 + β2)
(13)

with β = ∆x
∆y and terms L1(·) and L2(·) are the central

difference linear operators,

L1(uni,j) = uni+1,j − 2uni,j + un+1
i−1,j (14)

L2(uni,j) = uni,j+1 − 2uni,j + un+1
i,j−1 (15)

The term ω governs how aggressively the residual plays a role
in the relaxation of uni,j . Monte Carlo techniques were used to
sample the input parameters, which for this particular problem
are the discretizing quantity Nx, Ny and the weight for the
residual ω. Therefore the input parameters are,

1) Nx - the number of discretized x, ∆x = 1/(Nx − 1)
2) Ny - the number of discretized x, ∆y = 1/(Ny − 1)
3) ω - the residual weight

The following input parameter domains were used in our
demonstration, 0 < Nx, Ny ≤ 101 and 0 < ω ≤ 3.

After training 10000 instances of the elliptic Laplace’s
equation, the classifier was over 99.9% accurate when clas-
sifying instances for convergence and non-convergence. The
classification for each instance is demonstrated in Fig. 8, which
demonstrates the predictions and whether they correspond to
results of numerical method (see Fig. 6 for legend description).
The network architecture of the classifier demonstrated is a
single hidden layer, twenty-five node network. Note that the
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Fig. 9. Classification of each instance for linearized viscous Burgers’ equation

misclassifications and boundary between convergent and non-
convergent lies approximately at ω = 2.

IX. BURGERS’ EQUATION

The Burgers’ equation is a differential equation that de-
scribes gas dynamics behavior. It includes a convective term
that adds some complexity in the formulation. We chose
linearized viscous Burgers’ equation for this study, and the
equation is defined [23] as:

∂u

∂t
+ c

∂u

∂x
= µ

∂2u

∂x2
(16)

The exact steady-state solution of the linearized viscous Burg-
ers’ equation can be computed by the following,

u = u0

{
1− eRL( x

L−1 )

1− e−RL

}
(17)

where
RL =

cL

µ
(18)

Using an explicit forward-time and central-space finite dif-
ferences, the viscous linearized Burger’s equation can be
discretized as:

un+1
j − unj

∆t
+ c

unj+1 − unj−1

2∆x
= µ

unj+1 − 2unj + unj−1

(∆x)2
(19)

Because the method is explicit, it may run into stability
issues. We trained a software bot to learn about the stabil-
ity behavior of Burgers’ equation for the following selected
parameters: ∆x,∆t, u0, c, and µ.

We used a Monte Carlo technique to select the input
parameters that are used solve the Burgers’ equation. The input
parameters and resulting solution are used to train an artificial
neural network to predict stability behavior of discretized
Burgers’ equation. The parameter L = 1.0 was fixed as the

specified domain of interest, thus the input parameters are as
follows,

1) Nx - number of discretized x, ∆x = 1/(Nx − 1)
2) Nt - number of discretized t, ∆t = 1/(Nt − 1)
3) u0 - the initial condition, initial velocity
4) c - wave speed
5) µ - viscosity of the fluid

Some parameters were normalized, resulting in the following
ranges of our input parameters 0 < u0, c, µ ≤ 1. For
the viscous linearized Burgers’ equation, we selected 0 <
Nx, Nt ≤ 1001. When adjusting the network architecture the
input nodes are labeled corresponding to the input parameters
Nx, Nt, u0, c, and µ, respectively.

The stability criteria described in [23] for the explicit finite-
difference numerical method holds a convergence expression
in terms of a heuristic stability region of,

2ν ≤ Re∆x ≤ 2/ν (20)

where the mesh Reynolds number Re∆x = c∆x/µ and
stability constraint ν = c∆t/∆x. To study the impact of Re∆x

and ν on stability, we fixed Nx = Nt = 101 and u0 = L = 1.
We used Monte Carlo sample distributions for Re∆x and v.
The domain of our problem then lies in the following area,
0 ≤ Re∆x

< 10 and 0 < ν ≤ 3.
After training with 10000 instances, using a single layer with

twenty-five sigmoid node network, the classification to predict
stability was over 99.6% accurate. Results are shown in Fig. 9,
which also incorporates the heuristic stability defined by Eq.
(20) illustrated as the two blue curves. See Fig. 6 for legend
description. Note that the heuristic stability described by Eq.
(20) is much more conservative than capability of the numer-
ical method as shown in Fig. 9, where the method is stable
in regions outside the heuristic stability. The artificial neural
network predicts the stability regions far more accurately than
the heuristic approach.

X. ERROR BEHAVIORS IN NUMERICAL METHODS

The numerical methods presented in previous sections are
approximate solutions to the differential equations. In order
to evaluate and learn the accuracy behavior of these nu-
merical methods, software bots were trained to learn and
predict how accurate numerical solutions for a given a set
of input parameters. The same numerical methods and exact
solutions as presented in the previous sections were used but
we provide the error between the numerical method and the
exact solution as opposed to a convergence-divergence Boolean
flag in the training data. The error is computed as the l2-
norm or Euclidean norm of the difference between the two
solutions. Furthermore, if the numerical method diverges, then
the method may exhibit arbitrarily large error (until overflow
occurs). Thus if divergence begins to occur, we assume that
the error is εmax = 1.0, which is an upper bounds on the error
for our training set, therefore, the absolute error is normalized
such that 0 ≤ ε ≤ 1.

A numerical predictor was trained to learn the l2-norm error
behavior for each numerical method to predict the accuracy of
convergence for specified input parameters. In other words,
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Fig. 10. Root mean squared error of the numerical predictor as network
complexity increases for each numerical method convergence error predictor

the predictor acts as a convergence error predictor for each
numerical method, predicting the error between the numerical
solution and the exact solution. The root mean squared error
of the predictor is illustrated in Fig. 10 as the number of
nodes in the hidden layer increases. For this demonstration,
a single hidden layer network with varying sigmoid nodes is
used. It is shown that the predictors are able to predict the
error of the numerical method within εnm = 0.05 for methods
in the form described in (1) of Sec. V. Burgers’ equation,
resulted in a numerical prediction error that was slightly higher
with εnm = 0.07. We see that the true εnm varies from
method to method, and that as the number of nodes increase in
the network architecture, the predictors plateaus at their own
respective εnm. The error can be further reduced by including
additional network layers.

XI. SLOSH PROPELLANT DYNAMICS

It has been demonstrated in previous sections that artificial
neural networks can be used to predict and classify stability
criteria of numerical methods for computational fluid dynamics
in addition to predicting the success and failure of simulations
when given a set of input parameters for simulation software.
However, the use of neural network training can be extended
to learning other complex models.

For large launch vehicles, a significant portion of the gross
mass is taken up by liquid propellant, thus fuel sloshing
dynamics plays an important role in vehicle stability [24].
The issue of slosh dynamics is a crucial factor for spacecraft
and various other large flight vehicles. Sloshing dynamics may
results in anomalies in flight with partial loss of control due to
oscillations resulting from propellant sloshing citeslosh-motiv
and [26]. In [28], it was shown that proportional-integral-
derivative (PID) control systems can be designed to provide
further stability and “avoiding adverse interaction with the
propellant slosh and structural dynamics.” It was shown later
that the slosh dynamics in a spacecraft can be modeled and

Fig. 11. Classification of each instance for the slosh propellant dynamics
pendulum model problem

simulated using a pole-cart system, in which the pole-cart
acts as an inverted pendulum and attached to it is a second
pendulum which acts as the slosh load [24]; the problem
was simplified to observe the system stability in terms of the
hinge location (the position where the second pendulum is
attached) and the length of the second pendulum with the goal
to establish an analytical expression that predicts the second
pendulum’s instability.

We used knowledge bot to classify whether parameters of
this system may correspond to instability in the propellant
slosh dynamics. The pendulum system is treated as a simu-
lation with the parameters defined as,

1) L - hinge location (position 2nd pendulum is attached)
2) l2 - the length of the second pendulum

The data given by [24] was interpolated to generate a denser
model. Monte Carlo sampling technique was used to generate
the training set for the artificial neural network; the sampling
was within the domain of 0m ≤ L ≤ 1.0m; 0m ≤ l2 ≤ 1.5m.

After training with a set of 10000 instances, the accuracy
of artificial neural network classification was over 99.4%
accurate. The classification details are illustrated in Fig. 11.
Note that the instances classified as unstable (depicted as green
squares) lie generally in the l2 < 0.5 region. Furthermore,
misclassifications lie along the boundary of stable and unstable
instances. The results demonstrate that artificial neural network
can accurately predict complicated stability region.

XII. PRESSURE VESSELS DESIGN CONCEPTS

The same methodologies of training can be demonstrated
with commercial simulation software. For this demonstration,
we observe the design of pressure vessels using NASTRAN
[30], a commercial finite element analysis simulation pro-
gram initially developed for NASA. The design concept of
pressure vessels for planetary probe missions depends on
key parameters such as the external pressure and allowable
stress the system undergoes. In terms of systems analysis, the
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Fig. 12. Pressure vessel design contour (m
√
E) with σ and E-dominance

design of the pressure vessel’s mass is highly correlated to
the maximum allowable stress σ and the modulus elasticity
E of the material. Generally, when designing the vessel, a
material with sufficiently high σ is selected in order to meet
constraints, however, in reality, there exists instances in which
E could dominate the design. Thus, a classifier or knowledge
bot is used to classify and predict the instances for which the
two governing parameters σ and E dominate in contribution
to pressure vessel design. For this particular problem we used
NASTRAN (MSC commercial Finite-Element Analysis tool
[29]) for simulating optimal design mass when given the
parameters σ and E.

The mass m of the pressure vessel varies inversely with
the root of the modulus elasticity

√
E as described by [31].

Therefore, observing the contour plots of m
√
E in the material

domain 0 < E ≤ 2400000, 0 < E/σ ≤ 500 demonstrated in
Fig. 12, demonstrates that when m

√
E ≤ 450 is constant,

corresponding to the region of E-dominance. Conversely, the
region described by m

√
E > 450 then corresponds to the

region of σ-dominance. Therefore, the magnitude of ,
√
E was

used as a identifier for whether the region was E-dominant or
σ-dominant. By σ,E-dominances, we refer to the fact that
either σ or E is the driving parameter in terms of design and
mass contribution.

The training for the pressure vessel design concepts using
NASTRAN will be discussed in a later section. But firstly, we
will observe another type of simulation software and introduce
a method to visually demonstrate the classifications of multi-
dimensional results. In Sec. XIV, we will integrate this with
the previously discussed training sets as well as the NASTRAN
pressure vessel design classifications.

XIII. PLANETARY DIRECT ENTRY SIMULATIONS

The method of atmospheric-assisted direct entry for
aerospace vehicles is a widely explored concept, governed by
complex dynamics of systems of nonlinear partial differential
equations. An analytic solution for a simplified version of the

Fig. 13. Classification of each instance for direct entry simulations

direct entry problem is described in [32]. We used POST2
(Program to Optimize Simulated Trajectories II), a point mass,
discrete parameter targeting and optimization program. The
goal for this simulation was to predict capture into Venus
atmosphere, making atmospheric-assisted direct entry possible.
Four potential input parameters that are most essential to the
direct entry problem were observed,

1) d - the diameter of the capsule
2) m - the mass of the capsule
3) ve - the entry velocity of the capsule
4) γe - the entry flight path angle

The Monte Carlo sampling techniques was used in the domains
of, 0.5m ≤ d ≤ 4.0m; 500kg ≤ m ≤ 5000kg; 10km/s ≤
ve ≤ 13km/s; and −30o ≤ γe < 0o.

POST2 solves a system of nonlinear partial differential
equations of motion and generates a trajectory for the capsule
given a set of input parameters. We determine if the input
parameters allowed for successful direct entry by observing
the resulting trajectory. If the trajectory resulted in a final
position within ε ≤ 1km of the surface of the body, then we
consider the capsule to be captured into the atmosphere and
as a result a successful direct entry trial. For the purpose of
demonstration, a direct entry simulation by a 45o sphere-cone
capsule into the atmosphere of the planet Venus was observed
by generating 10000 instances of training data via Monte Carlo
sampling within the specified domains for input parameters to
interrogate the POST2 software.

An artificial neural network was trained using the 10000
training instances. Furthermore, we used support vector ma-
chine (SVM) to identify the boundary between the trajectory
cases with successful and failed direct entry parameter. The
instances on the boundary was then used for nonlinear least
squares regression to identify a nonlinear expression to classify
successful direct entry cases in the following form,

J(d,m, ve) = ambvced
d (21)
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(a) Sec. V classifier (b) Sec. VI classifier (c) Sec. VII classifier (d) Sec. VIII classifier (e) Sec. IX classifier

Fig. 14. Estimated boundaries of numerical method classifiers using support vector machine regression on close-perspective classification plots

Solving for the exponents a, b, c, and d using least squares,
the resulting function J(·) can be used to classify the prob-
lem of atmospheric-assisted direct entry given the parameters
d,m, ve, and γe such that,

J(d,m, ve) = 0.0219m0.0096v0.6646
e d−0.0017 (22)

1) if γe < J(d,m, ve), predicted skipped entry
2) if γe > J(d,m, ve), predicted successful capture

Furthermore, note that J(·) is defined in terms of m, ve, d. The
reason behind this is that γe is found to the be most influencing
parameter in successful direct entries, thus we chose to isolate
this in two-dimensional space resulting in J(·) defined in terms
of the remaining parameters.

The resulting classification on a separate set of 10000
Monte Carlo sample input parameters is depicted in Fig. 13.
The curve described in (22) is illustrated as the boundary
between instances that were success direct entry parameters
and instances that resulted in failure (skipped entries). The
legend is similar to the previous sections with convergence
relating to the success of the direct entry. The classification
for the success of direct entry simulations given d,m, ve, and
γe using a single layer twenty-five sigmoid node network was
over 99.6% accurate.

XIV. SUPPORT VECTOR MACHINE REGRESSION

It was shown in the previous section that using the support
vectors generated by support vector machine, combined with
a nonlinear least squares regression, we can calculate an ana-
lytical approximate boundary between different classifications
(e.g., successful and unsuccessful instances). Furthermore, this
process enabled us to reduce our multidimensional problem
into two dimensions for more effective visualization. In this
section we revisit the numerical method classifiers described
in the previous sections and capture the boundary instances
via support vector machine to compare the curve generated by
regressions of these instances against the known analytical and
heuristic boundaries.

Support vector machine is a supervised machine learning
technique that constructs one or more hyperplanes in mul-
tidimensional space. The algorithm was originally proposed
by Vladimir N. Vapnik [34] in 1995. The algorithm has
been widely used in various machine learning applications,
including text classification [35]; image retrieval [36] and
[36]; biology and bioinformatics predicting protein subcellular

localization [38], protein primary, secondary structures [39]
and [40]; and bankruptcy prediction [41]. Additionally, other
applications of the technique demonstrates its classification
ability in terms of brain state [42] and drug use classifica-
tion [43]. Although support vector machine can produce an
accurate classifier for a properly-selected dataset, the tech-
nique was chosen due to its ability to identify boundaries
among discrete classifications. The identified boundaries can
be used to develop an analytical expression representing the
boundary between failure and success cases. Similar to the
previous section, we used SVM to reduce our multidimensional
classification results in two dimensions for more effective
visualization.

Support vector machine was used with previous classifiers
to identify the boundary of success and failure (e.g., conver-
gence or non-convergence) such that an approximate analytic
boundary can be developed and compared to the classifier’s
boundary. Both polynomial interpolation and nonlinear regres-
sion were used on the classification results demonstrated in the
previous sections.

Let ∂0 denote the mathematically derived boundaries (e.g.,
heuristic stability boundary) and ∂̇1 denote the boundary curve
predicted by using polynomial fit and ∂̇2 denote the boundary
curve determined by nonlinear regression on the instances
identified by SVM. The nonlinear regression was completed
using the model of the form,

Yparam = C + α(Xparam)β (23)

where Xparam, Yparam denote the expressions denoted in the
x-axis and y-axis of the classification plot and the unknown
constants C,α, and β was calculated using nonlinear regres-
sion. Furthermore, piecewise regressions and fitting was done
on the classifier described in Fig. 14(e). Note in Fig. 14, ∂0

is labeled by a blue curve, ∂̇1 by a red curve and ∂̇2 by
a black curve, as a result the following approximations for
the numerical method classifiers in the previous sections are
identified,

1) Differential equation classifier, Fig. 14(a)
∂0 b2 − 4ac = 0
∂̇1 b2 − 4ac = 0.0117 + 0.0029a
∂̇2 b2 − 4ac = 0.444− 0.555aε, ε = 1.675E-22

2) Parabolic 1D-heat equation classifier, Fig. 14(b)
∂0 K/ρc = 0.5(∆x2/∆t)
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∂̇1 K/ρc = 0.5131(∆x2/∆t)− 0.0016
∂̇2 K/ρc = 0.652(∆x2/∆t)1.237

3) Hyperbolic wave equation classifier, Fig. 14(c)
∂0 Nt = Nx
∂̇1 Nt = 1.0019(Nx)− 1.2713
∂̇2 Nt = 1.025(Nx)0.996

4) Elliptic Laplace’s equation classifier, Fig. 14(d)
∂0 No analytic stability criteria
∂̇1 ω = 1.9855− 0.0002β
∂̇2 ω = 1.493 + 0.493β0.00036

5) Burger’s equation classifier, Fig. 14(e)
∂0 Re∆x = 2/ν
∂̇1 Re∆x = 0.38ν4− 6.4ν3 + 25.7ν2− 41.5ν + 26.9
∂̇2 Re∆x = 5.130ν−1.306

∂0 Re∆x = 2ν
∂̇1 Re∆x = −0.39ν2 + 1.94ν − 0.003
∂̇2 Re∆x = 1.402ν0.855

The boundary predictions of both polynomial and nonlinear
regression fitting, ∂̇1, ∂̇2 in cases 1-4, produced via regression
on the support vector instances, were sufficiently good ap-
proximations to the analytical boundary. The insets in Fig. 14
demonstrate a closer view of the classification plots, demon-
strating both the analytic boundary ∂0 as well as the predicted
boundaries ∂̇1 and ∂̇2.

Note that the regression for the classifier demonstrated
in Sec. IX for Burgers’ Equation is done via a split at
Re∆x = 1.5, resulting in two curves for the upper and
lower constraints for the stability of the numerical method.
The resulting equations for the upper and lower constraints
demonstrated by polynomial interpolation (∂̇1) are given as a
fourth order and second order equation. The approximations
for ∂̇1 and ∂̇2 provide a sufficiently good border estimations,
illustrated in Fig. 14(e) as red curves and black curves respec-
tively. The support vector machine polynomial interpolation
(∂̇1, red) curves and the nonlinear regression (∂̇2, black) pro-
vides much closer fit to the stability border than the heuristic
stability constraints ∂0 described in (20) and illustrated in
Fig. 14(e) as blue curves. Generally speaking via observations,
the polynomial fitting technique producing boundary curves
much closer to the true boundaries with well-behaved, mostly-
linear boundaries. However, in the case of Burgers’ stability
domain, the nonlinear regression with powers performs slightly
more accurate as demonstrated in Fig. 14(e) due to its highly-
nonlinear boundary.

A. Pressure Vessel Design using NASTRAN

Fig. 15 illustrates the classifications results using 10000
instances for training and 10000 for testing. The resulting
classifier, obtained by a single hidden layer network with
twenty-five sigmoid nodes, was over 99.5% accurate. Note
that the classification described here do not denote failure
and success rather the regions of E-dominance (green circles)
and σ-dominance (green squares) are illustrated (with previous
conventions circle corresponded to success and square to
failure, thus one may observe the plots with E-dominance

Fig. 15. Classification of each instance for the pressure vessel simulation

corresponding to success in mind). The red outlines represent
incorrectly classified instances which were either identified as
E and σ but were in reality the opposite.

The boundary equation between successful and failure cases
was found via support vector machine and polynomial interpo-
lation resulting in the following fourth-order equation relating
the modulus elasticity E to the ratio E/σ at the boundary,

J1(E) = −0.28E4 + 1.4E3 − 2.7E2 + 58.9E + 77.6 (24)

The technique of polynomial interpolation (red) was com-
pared to nonlinear regression (black) illustrated in Fig. 15.
The nonlinear regression of the boundary curve in terms of
the power equation, described in (23) for the pressure vessel
NASTRAN simulations is,

J2(E) = .031977E0.51747 (25)

Thus, J(E) = E/σ corresponds to the instances along the
boundary (illustrated as a red line for polynomial interpolation
and black for nonlinear regression in Fig. 15). Furthermore,
similar to the case described in the previous section, the
function J(·) can be used to classify instances as either σ-
dominant or E-dominant generally by the following guidelines,

1) if E/σ > J(E), predicted σ-dominant
2) if E/σ < J(E), predicted E-dominant

Figure 15 shows the boundary generated by nonlinear regres-
sion in the specified power form (black) provided a closer fit
to the true boundary in the case of the NASTRAN simulation
problem as opposed to the boundary generated by polynomial
interpolation (red).

XV. IMPACT OF NUMBER OF INSTANCES ON ACCURACY

It should be noted that the training and testing performed in
all previous sections with artificial neural networks used sets
of 10000 instances. We studied the impact of training size on
the accuracy of the learned artificial neural network model for
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Fig. 16. Accuracy growth with set size increase for mentioned classifiers

the previous discussed problems at discretized set sizes for the
training dataset (10, 15, 20, 50, 100, 1000, 1000).

Figure 16 illustrates the accuracy of the classifiers as func-
tion of training set size. With a minimum of ten training
instances, the classifiers have a mean accuracy of 80% with
the minimum being the hyperbolic-wave equation classifier
at 71.77%. At 10000 training instances, the resulting neural
network classifier achieves over 99% accuracy, with the excep-
tion of the hyperbolic-wave equation (96.2%); the classifiers
all exhibit similar behavior in achieving over 90% accuracy
with less than 100 training instances and exhibits growth in
accuracy, which corresponds to eventual convergence to all
solutions of the black-box simulation software. Furthermore,
some problems are presumably better suited and easier to pre-
dict with artificial neural networks. For example, the Laplace
equation and pressure-vessel NASTRAN classifiers were over
90% accurate when trained with only 10 training instances.
The legend depicted illustrates the maximum and minimum
accuracy values between the range of 10 to 10000 instances in
the training set. All classifiers demonstrated are achieved via
an artificial neural network with a single hidden layer, twenty-
five sigmoid node architecture.

XVI. CONCLUSION

We have shown that machine learning techniques can be
used to learn the idiosyncrasies of computational simulations
and identify regions of instability without including any ad-
ditional information about mathematical modeling of partial
differential equations. We have also demonstrated that the use
of artificial neural network to learn the underlying properties
of numerical method for solving differential equations is both
feasible and accurate. The applications in this study included
various types of physical simulation of fluid and heat flows
important to systems analysis of an aerospace vehicle.

By training classifiers using neural networks, we develop
knowledge bots to detect simulation failures prior to execution
and identify idiosyncrasies of unknown black-box simulation

software. Furthermore, we demonstrated that the use of support
vector machines helps to reduce the multidimensional and
highly nonlinear classification datasets by obtaining simple
expressions describing the boundary between success and
failure instances in the dataset.
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