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Abstract

This paper presents a consensus-based formation control scheme for autonomous
multi-agent systems represented by double integrator dynamics. Assuming that the
information graph topology consists of an undirected connected graph, a leader-based
consensus-type control law is presented and shown to provide asymptotic formation
stability when subjected to piecewise constant formation velocity commands. It is
also shown that global asymptotic stability is preserved in the presence of (0,∞)-
sector monotonic non-decreasing actuator nonlinearities.

1 Introduction

Cooperative control of autonomous multi-agent systems has been a subject of con-
siderable research in recent years. Although a large volume of literature exists on
this subject, only a few representative references are included in the list of references
in this paper in the interest of brevity. In particular, a comprehensive literature re-
view may be found in [1], while [2] and [3] contain an excellent introduction. In the
context of aviation, large numbers of autonomous vehicles are expected to operate
in the national air space in the future. Autonomous formation flight of multiple air
vehicles has the potential for significantly increasing airspace utilization as well as
fuel efficiency. In other application areas, autonomous multi-agent control strate-
gies are being investigated for optimally performing common tasks. In an abstract
sense, a “formation” may be generically considered to be an arrangement of net-
worked agents. An optimal formation can be designed to maximize some measure of
performance (such as system throughput in airspace or communication networks).

This paper investigates a consensus-based formation control scheme for multi-
agent systems represented by double integrator agent dynamics, wherein each agent
has the ability of bidirectional information exchange with a group of other agents
(referred to as its ‘neighbors’), and at least one information path exists between
every pair of agents, i.e., the information topology is represented by a connected
undirected graph. (The reader is referred to [2] for detailed definitions) In Section
2, a double integrator multi-agent system is defined and a consensus-type formation
control law is presented for a leader-follower architecture wherein the leader is re-
quired to follow a desired piecewise constant velocity command, and the followers
are required to match the commanded velocity while maintaining the formation. To
facilitate the analysis, 1-dimensional systems are considered initially. The results are
readily extendable to higher dimensional motion (e.g., planar or 3-dimensional) using
tools such as Kronecker product algebra, as presented in a latter section. Assuming
that each follower agent has access only to the relative positions and velocities of
its neighbors and the knowledge of the desired formation geometry, it is shown via
Lyapunov approach that the formation is asymptotically stable, i.e., starting from
any initial positions and velocities, the agents will asymptotically attain the desired
formation velocity and the formation shape. In Section 3, actuator nonlinearities are
considered and it is proved that the global asymptotic stability of the formation is
preserved in the presence of (0,∞)-sector monotonic non-decreasing actuator non-

1



linearities. Extension to the multi-dimensional motion case is addressed in Section
4. An example consisting of a 5-agent system is presented in Section 5, and Section
6 contains concluding remarks.

2 Consensus-Based Leader-Follower Type Control

In a system consisting of N agents, suppose the dynamics of the agents are described
by

ξ̈i = ui, i = 1, 2, . . . , N, ξi, ui ∈ <n (1)

where ξi denotes the position of the ith agent and ui is the input. (In multi-agent
systems of this form, in general, the “position” is defined in an abstract sense (e.g.,
information state). For vehicles represented by point masses, the position is usually
planar (n = 2) or 3-dimensional (n = 3)). Suppose Agent 1 is designated as the
leader, and agents 2, . . . , N are the followers. In undirected graph topology, agents
i and j are defined to be neighbors of each other if there exists an edge (which rep-
resents information exchange) between them. The formation geometry is described
by the relative position set D

D = {dij := ξiD − ξjD} (2)

where ξiD, ξjD are the desired position states of agents i and j who are neighbors
of each other. D is assumed to be fixed (time-invariant). The objective is to get
all the agents to converge to the pre-defined formation shape and the commanded
velocity starting from any initial condition, and maintain the formation shape in the
presence of any piecewise constant velocity commands.

The basic consensus protocol can be modeled using the degree matrix D and
the adjacency matrix A. The degree matrix is an N × N diagonal matrix with
Dii = degree of node i, i.e, the number of neighbors of the ith agent. The N × N
adjacency matrix denotes the connectivity between nodes (in the sense of information
exchange), with Aij = 1 if j is a neighbor of i; otherwise, Aij = 0 (for undirected
graphs). For example, for the 5-agent system shown in Figure 1,

D =


2 0 0 0 0
0 3 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 1

 , A =


0 1 1 0 0
1 0 1 1 0
1 1 0 0 0
0 1 0 0 1
0 0 0 1 0

 (3)

The Laplacian matrix L, which plays a central role in the dynamics of the consensus
protocol, is defined as

L = D −A (4)

For the example system in Figure 1,

L =


2 −1 −1 0 0
−1 3 −1 −1 0
−1 −1 2 0 0

0 −1 0 2 −1
0 0 0 −1 1

 (5)
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Figure 1. Multi-agent system

For undirected connected graphs, the Laplacian matrix L is symmetric positive
semidefinite and has a single zero eigenvalue [2]. Also all the row sums are zero, i.e.,
1 = [1, 1, . . . , 1]T is an eigenvector corresponding to the zero eigenvalue.

The aggregated (summed) relative position and velocity for agent i, ypi and yri,
are given by

ypi =
∑
j∈Ni

(ξi − ξj), yri =
∑
j∈Ni

(ξ̇i − ξ̇j) (6)

where Ni denotes the set of neighbors of agent i. For the example system in Figure
1, N1 = {2, 3}, N2 = {1, 3, 4}, etc.

Suppose the leader is given a constant velocity command vD, such that the
leader’s desired position satisfies

ξ̇1D = vD. (7)

The objective of the system is to form and maintain a fixed formation D starting
from any initial states of the agents for any given constant velocity command. (Note
that the followers’ desired velocity is also the same, i.e., ξ̇iD = vD ∀i ∈ [1, . . . , N ].
Thus, vD is the desired formation velocity, which is assumed to be piecewise constant
(in time).

Consider the consensus control law for the follower agent i (i = 2, . . . , N):

ui = −
∑
j∈Ni

kp(ξi − ξj) + kr(ξ̇i − ξ̇j)− kp(ξiD − ξjD)− kr(ξ̇iD − ξ̇jD) (8)

= −[kpypi + kryri] + kp
∑
j∈Ni

dij , for i = 2, . . . , N (9)

where kp kr are positive scalars. (Note that the last term in Eq. (8) vanishes because
ξ̇iD = vD ∀i).
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The leader’s control law is given by

u1 = utr −
∑
j∈N1

kp(ξ1 − ξj) + kr(ξ̇1 − ξ̇j)− kpd1j (10)

where utr is the tracking component of the leader’s control law which is given by

utr = −[κp(ξ1 − ξ1D) + κr(ξ̇1 − vD)] (11)

where κp, κr are positive constants. Suppose the tracking control law gains in Eq.
(11) are given by

κp = γkp; κr = γkr (12)

where γ is a positive scalar. Define the matrix L as

L11 = L11 + γ

Lij = Lij for all other i, j. (13)

where L denotes the Laplacian matrix. It is shown next that L is positive definite.
Proposition 1. The matrix L is positive definite.
Proof- Since L is positive semidefinite, L is at least positive semidefinite. Also,
since L has a single zero eigenvalue with a corresponding eigenvector δ1 (where δ
is any non-zero scalar), zTLz ≥ 0 ∀z ∈ <N , and zTLz = 0 only for z = δ1. Since
(δ1)TL(δ1) = γδ2 > 0, L is positive definite. �

2.1 Formation Stability

Define
X = ξ − ξD (14)

Note that ξD is time-varying in view of (7). The agent dynamics can be written as:

Ẍ = u (15)

The control input from Eqs. (10) and (9) can be written as

u = −kpLX − krLẊ (16)

and the closed-loop dynamics are given by

Ẍ = −kpLX − krLẊ (17)

The asymptotic stability of the closed-loop system in (17) can be readily established
by considering the Lyapunov function

V = ẊT Ẋ + kpX
TLX (18)

which, after differentiation with respect to t and simplification, yields

V̇ = −2krẊ
TLẊ (19)

Thus V̇ is negative semidefinite. Furthermore, V̇ ≡ 0 implies Ẋ = 0, which in
turn implies (from (17)) that X = 0. Therefore, by LaSalle’s invariance principle,
the system in (17) is asymptotically stable, i.e., the consensus-based leader-follower
control law in (9), (10) provides asymptotic formation convergence (∀i, j, [ξi(t) −
ξj(t)] → dij , and ξ̇i → vD, as t → ∞) for any initial conditions for any constant
velocity command vD.
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2.1.1 Remarks

1. The agents’ dynamics consist of double integrators, which represents, for ex-
ample, mass-normalized dynamics of point masses.

2. The control laws for each follower agent only needs the knowledge of the relative
positions and velocities of its neighbors (with respect to itself), and the knowl-
edge of the formation geometry {dij} of its neighbors. The leader’s control law
additionally needs the desired leader position and velocity.

3. It is assumed in this paper that the position and rate gains are the same for
all the agents. It is possible to use different gains for each agent, but would
require some additional conditions for stability.

3 Stability in the Presence of Actuator Nonlinearities

In practice, it is important to consider the fact that the actuators have limited
control authority. In [4], a control law that uses an inherently bounded control input
was presented for the double integrator consensus problem. A different approach is
used in this paper to show that the control law given in Section 2 preserves global
asymptotic stability in spite of saturation type (and more general types of) actuator
nonlinearities.

Suppose each agent’s actuator has a continuous, monotonic non-decreasing, (0,∞)-
sector nonlinearity, which results in the actual inputs uai:

uai = φi(ui), i = 1, . . . , N (20)

where
σφi(σ) > 0 ∀σ ∈ <, σ 6= 0, and φ(0) = 0 (21)

Figure 2 shows an example of a (0,∞)-sector monotonic non-decreasing nonlinearity.

Figure 2. (0,∞)-sector monotonic non-decreasing nonlinearity

Then the closed-loop system is given by

Ẍ = φ(−kpwp − krwr) (22)
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where φ(.) denotes the vector of nonlinearities (assumed to be continuous single-
valued functions), and

wp = LX, wr = LẊ (23)

The following theorem shows that the closed-loop system is globally asymptoti-
cally stable in the presence of (0,∞)-sector monotonic non-decreasing actuator non-
linearities.
Theorem 1- The closed-loop system (22) is globally asymptotically stable if the
actuator nonlinearities φi(.) are monotonic non-decreasing and belong to the (0,∞)-
sector.
Proof- Denoting

ψi(σ) = −φi(−σ), i . . . , N (24)

it can be shown that the nonlinear functions ψi(.) are also in the (0,∞)-sector and
monotonic non-decreasing. The closed-loop system can be expressed as

Ẍ = −ψ(kpwp + krwr) (25)

Consider the Lyapunov function

V = ẊTLẊ +
2

kp

N∑
i=1

∫ kpwpi

0
ψi(σ)dσ (26)

V is non-negative ∀X ∈ <N , and V = 0 only when Ẋ = 0 and wp = 0, i.e., X = 0
(from (23)), therefore V is positive definite. It is also radially unbounded. Upon
differentiating with respect to time t and using (23),

V̇ = −2ẊTLψ(kpwp + krwr) + 2

N∑
i=1

ẇpiψi(kpwpi)

= −2
1

kr
(krwr)

T [ψ(kpwp + krwr)− ψ(kpwp)] (27)

Since ψi(.) are monotonic nondecreasing, V̇ ≤ 0. Also, V̇ ≡ 0 would imply that wri =
0 ∀i, or kpiwpi and (kpiwpi +kriwri) are both in a flat non-zero region of the graph of
each actuator nonlinearity ψi ∀t. The former situation (wr = 0) would imply (from
(23)) that Ẋ = Ẍ = 0, and therefore (from (25) and (21)) that wp = 0 and X = 0
(from (23)). From (25), the latter situation can occur only when Ẋ (and therefore
V ) grows unbounded, which is not possible because V̇ ≤ 0. Therefore V̇ cannot
be zero along any non-zero trajectories, and the system is globally asymptotically
stable. �

4 Multi-Dimensional Motion

The results presented in Sections 2 and 3 for 1-d motion can be readily extended
to the planar and 3-dimensional cases (or generally for the n-dimensional case for
abstract networks). For the n-dimensional case, noting that each ξi is n-dimensional,

6



X and u in Eq. (15) are (N.n)-dimensional, as are wp and wr. The control input of
(16) can be written as

u = −kp[L ⊗ In]wp − kr[L ⊗ In]wr (28)

Alternatively, it may be more intuitive to express the position vector X partitioned
by the n axes. When n = 3, define

χ = [χT
x , χ

T
y , χ

T
z ]T (29)

where
χx = [X1x, X2x, . . . , XNx]T (30)

(similar for y- and z-axes). With wp, wr, u re-ordered similarly as ωp, ωr, υ the
closed-loop equations for each axis can be written separately as

χ̈i = υi = −kpiωpi − kriωri, i = x, y, z. (31)

Then the stability results of Sections 2 and 3 carry over in a straightforward manner.
(Note that a different kp, kr, and γ can be chosen for each axis).

4.1 Effect of Rotation

In 2-d and 3-d motion, it is often important to change the formation’s orientation to
match the orientation of the velocity vector vD. Suppose the formation’s orientation
is initially aligned with the velocity vector vD0, and a new formation velocity vector
vD1 is desired, which has a different magnitude as well as orientation, expressed by
Euler rotation angles φ, θ, ψ about the x, y, z axes, i.e.,

vD1 = T3(ψ)T2(θ)T1(φ)vD0 + δv (32)

where Tis are the Euler rotation matrices and δv ∈ <3. If all the motion is expressed
in the new coordinate system, the formation geometryD remains unchanged. Assum-
ing each vehicle has the knowledge of the new coordinate system (i.e., the direction
of the velocity command) (φ, θ, ψ) and that the vehicles can change their individual
orientation to match the new coordinate system, the vehicles’ relative positions and
velocities are measured in the new coordinate system and the control laws would
remain unchanged.

5 Example

For the 5-agent system in Figure 1, suppose it is required to form and maintain a
V-shaped formation with Agent 1 as the leader, as shown in Figure 3. The motion
is assumed to be planar, and the agents are initially at rest and dispersed at random
locations. Suppose a velocity command vD = (1,−2) is given to the leader. Using
the control laws (9), (10) with arbitrarily chosen gains kpx = kpy = 10, krx = kry =
5, and γ = 1, it can be verified that all closed-loop eigenvalues have negative real
parts. The resulting trajectories are shown in Figure 4 from t = 0s to t = 10s,
which indicate that the desired formation shape and velocity are mostly attained by
t = 6.5s, and fully attained and maintained by t = 10s in the presence of constant
velocity command.
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6 Concluding Remarks

A consensus-based formation control scheme was presented for multi-agent systems
consisting of agents described by double integrator dynamics. The information topol-
ogy of the system was assumed to consist of a connected undirected graph, and a
leader-follower architecture was used wherein the leader is required to follow a piece-
wise constant velocity command. It was shown that the control scheme provides
asymptotic stability, i.e., the formation shape is asymptotically attained and main-
tained, and the formation velocity asymptotically approaches the desired velocity. It
was also shown that global asymptotic stability is preserved in the presence of (0,∞)-
sector monotonic non-decreasing actuator nonlinearities, which include saturation.
An important application of multi-agent systems theory is the multi-vehicle coopera-
tive control problem for autonomous vehicles. Considerable further work needs to be
done in this area to realistically address this problem and to find practical solutions.
In the example problem presented, the controller gains were chosen arbitrarily. It
would be highly desirable to investigate techniques for designing controller gains to
optimize a given performance index. In addition, optimal design of the communi-
cation structure (e.g., selecting the most effective edges in the information topology
graph) should be investigated. Furthermore, the control laws and the stability re-
sults need to be substantially extended, first to agents represented by inertial masses
with translation-rotation coupling, and then to general uncertain dynamic systems,
both linear and nonlinear, such as aircraft. An important topic that was not ad-
dressed in this paper is collision avoidance strategies, which should be built into the
control laws. It is also necessary to develop reliable simulation-based methods and
experimental techniques to demonstrate, validate, and verify the control schemes.
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