Traveling-Wave Tube Amplifier Second Harmonic as Millimeter-Wave Beacon Source for Atmospheric Propagation Studies

Rainee N. Simons and Edwin G. Wintucky

National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC), MS 54-1, 21000 Brookpark Road, Cleveland, Ohio 44135

E-mail: <u>Rainee.N.Simons@nasa.gov</u>, Tel: (216)433–3462 E-mail: <u>Edwin.G.Wintucky@nasa.gov</u>, Tel: (216)433–6261

2014 IEEE International Symposium on Antennas & Propagation & USNC/URSI National Radio Science Meeting Memphis, TN July 6-12, 2014

Communications & Intelligent Systems Division

Acknowledgement

This work was supported by the NASA Glenn Research Center Innovation Fund

Communications & Intelligent Systems Division

Outline

- ★ Introduction
 - Motivation
 - ♦ Advantages
 - Problem Outline
 - Potential Solutions
 - Implementation & Beacon source Hardware Design
- ★ Objective & Goal
- Multimode Directional Coupler (MDC)
 - Ku/Ka-Band MDC Design/Fabrication/Testing
 - Ka/E-Band MDC Design/Fabrication/Testing
- Discussions & Conclusions Communications & Intelligent Systems Division

Introduction

Communications & Intelligent Systems Division

NASA

Introduction - Motivation

- ★ Growing user community has resulted in increased congestion in the traditional Ku, K, and Ka frequency bands designated for space-to-ground data communications
- ★ The next available bands for satellite downlinks above Ka-band are the Q-band (37-41 GHz) and E-band (71-76 GHz)

Communications & Intelligent Systems Division Glenn Research Center at Lewis Field

Introduction - Advantages Advantages of Q-band & E-band over Ka-band for data transmission

- \diamond To be competitive with terrestrial fiber optic and wireless services, broadband satellite providers need to reduce the cost per transmitted bit. This can be attained by increasing satellite total throughput. At Q-band and V-band the allocated bandwidth is in excess of 4 GHz, which can enhance satellite throughput by 10X or higher
- ♦ Narrower beam width and smaller spot size for a given antenna size
- Smaller spot size enables greater frequency reuse and spectral efficiency

Other U.S. Government Agencies have interest in the large available bandwidth at E-band **Communications & Intelligent Systems Division**

Introduction – Problem Outline

- Lack of rigorous studies to understand the atmospheric effects on radio waves propagation at Q-band & E-band frequencies. These studies are essential for the design of a robust communications system for deployment in space
- ★ To conduct such a study a beacon transmitter at Q-band and E-band frequencies have to be deployed on a satellite and statistical data on rain attenuation, fading, change in the refractive index, scintillation, de-polarization effects, etc., have to be acquired over 3 to 5 years with ground receivers dispersed over climate zones of interest

Communications & Intelligent Systems Division Glenn Research Center at Lewis Field

Introduction – Potential Solutions

- ★ SSPA based Beacon transmitter and antenna system
 - Design of a feasible Q-band beacon transmitter and antenna system was presented at the 2012 IEEE Inter Symp on Antennas & Propagation

★ ALPHASAT - Telecom satellite for technology demonstration

- Scientific experiment payload: Q-Band Beacon (39.402 GHz, EIRP: 26.6 dBW, Global Horn antenna) and a Ka-Band Beacon (19.701 GHz, EIRP: 19.5 dBW, Global Horn antenna) (3 spot beams) (Launched by ESA July 2013)
- High power traveling-wave tube amplifiers (TWTAs) are routinely used in satellite transmitters. These tend to generate harmonics particularly when operating in the non-linear saturation region
 - Isolated 2nd harmonic is potentially useful as a beacon source for RF propagation studies at mm-wave frequencies

Communications & Intelligent Systems Division

Introduction – Implementation & Beacon Source Hardware Design (Simplified Schematic of a Satellite Borne Beacon Source for

RF Propagation Studies)

Communications & Intelligent Systems Division

Objective & Goal

Communications & Intelligent Systems Division

Objective & Goal

★ Objective: Design a waveguide multimode directional coupler (MDC) to separate out the 2nd harmonic signal from the fundamental signal at the output of a traveling-wave tube amplifier (TWTA)

Goal: Proof-of-Concept demonstration of a MDC at
Ku/Ka-band (13.5-15.0 / 27.0-30.0 GHz)
Ka/E-band (31-38 GHz / 71.0-76.0 GHz)

Communications & Intelligent Systems Division Glenn Research Center at Lewis Field

Ku-Band/Ka-Band Waveguide Multimode Directional Coupler (MDC)

Communications & Intelligent Systems Division

MDC Concept & Design

- ★ Two dissimilar waveguides joined together
 - One for fundamental (primary) and one for 2nd harmonic (secondary)
 - Share common wall
- Primary signal propagates in TE₀₁ mode, 2nd harmonic propagates in higher order modes, e.g., TM₁₁
- Appropriately sized and positioned narrow rectangular slots cut in common wall parallel to y-axis of primary waveguide
 - Coupling of TE₀₁ mode is negligibly small
 - Strong coupling of higher order TM₁₁mode
 - 2nd harmonic signal thus selectively coupled to secondary waveguide

Communications & Intelligent Systems Division

Glenn Research Center at Lewis Field

NASA

Schematic of the Ku/Ka-Band Test Setup for Power Measurement at the Output Ports of the MDC

Communications & Intelligent Systems Division

Measured Ku-Band Fundamental Power at the Direct Port (Port 2) of MDC

Measured Ka-Band 2nd Harmonic Power at the Coupled Port (Port 4) of MDC

Measured Ku-Band Power at the Coupled Port (Port 4) of MDC

Communications & Intelligent Systems Division

Ka-Band/E-Band Waveguide Multimode Directional Coupler (MDC)

Communications & Intelligent Systems Division

Schematic of the Ka/E-Band Test Setup for Power Measurement at the Output Ports of the MDC

Communications & Intelligent Systems Division

Measured TWT Input/Output Powers (Fundamental)

Measured 2nd Harmonic Power at 62 to 70 GHz at MDC Port 4

Measured TWT Input/Output Powers (Fundamental)

Measured 2nd Harmonic Power at 70 to 76 GHz at MDC Port 4

Discussions & Conclusions

Communications & Intelligent Systems Division

Conclusions & Discussions

Proof of concept and basic design of a MDC successfully demonstrated

- MDC can be connected directly to RF output port of a TWTA with very minimal loss of fundamental power
- No coupling of fundamental signal
- 2nd harmonic can be isolated from fundamental
- ♦ 2nd harmonic can be amplified to potentially useful levels

Communications & Intelligent Systems Division

Conclusions & Discussions (continued)

- Measurement of 2nd harmonic can be important at production facility to quantify and control amount of interference power
- Knowledge of potential interference power can be important for space borne radio science observations
- Knowledge of potential interference power can be considered for improvement in accuracy of navigation systems

Communications & Intelligent Systems Division

