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Abstract 
This paper presents a model-based architecture for performance trend monitoring and gas path fault 

diagnostics designed for analyzing streaming transient aircraft engine measurement data. The technique 
analyzes residuals between sensed engine outputs and model predicted outputs for fault detection and 
isolation purposes. Diagnostic results from the application of the approach to test data acquired from an 
aircraft turbofan engine are presented. The approach is found to avoid false alarms when presented 
nominal fault-free data. Additionally, the approach is found to successfully detect and isolate gas path 
seeded-faults under steady-state operating scenarios although some fault misclassifications are noted 
during engine transients. Recommendations for follow-on maturation and evaluation of the technique are 
also presented. 

Nomenclature 
C-MAPSS40k   commercial modular aero-propulsion system simulation 40 k lbf thrust 
H    fault influence matrix 
HPC    high pressure compressor 
HPT    high pressure turbine 
LPC    low pressure compressor 
LPT    low pressure turbine 
 m    fault magnitude 
m̂     estimated fault magnitude 
PBM    performance baseline model 
RTSTM    real time self-tuning model 
R    sensor measurement covariance matrix 
u    command vector 
VIPR    vehicle integrated propulsion research 
WSSEE    weighted sum of squared estimation errors 
WSSR    weighted sum of squared residuals 
 y    sensor vector 
y~    sensor residual vector 
ŷ     estimated sensor vector 
ŷ~     estimated sensor residual vector 
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Introduction 
Conventional aircraft engine gas path diagnostic approaches are designed for ground-based post-flight 

processing of “snapshot” measurement data collected at a limited quantity of operating points each flight 
(Refs. 1 to 3). However, advances in onboard processing and flight data acquisition capabilities are 
providing access to increased quantities of flight data and enabling new diagnostic approaches. Analyzing 
full-flight streaming measurement data, either onboard in real-time or post-flight, can help reduce diagnostic 
latency and improve overall engine safety and reliability. In response to this, several research efforts 
conducted within the aviation community focused on the analysis of streaming engine measurement data. 
Merrington et al. applied analytical redundancy methods to process aircraft gas turbine engine transient 
measurement data (Ref. 4), and Kerr et al. (Ref. 5), Dewallef et al. (Ref. 6), and Borguet et al. (Ref. 7) have 
each proposed Kalman filter-based approaches for the on-line processing of aircraft engine measurement 
data for diagnostic purposes. However, these approaches have primarily focused on either performance 
estimation or fault diagnostics as opposed to performing both tasks concurrently. Additionally, the 
approaches that have focused on joint performance estimation and fault diagnostics have only considered 
turbo machinery faults, not actuator or sensor faults. Recently, NASA has developed a model-based 
performance trend monitoring and gas path diagnostic architecture designed to process streaming full-flight 
aircraft engine measurement data (Refs. 8 to 10). This architecture provides the dual functionality of 
estimating and trending engine performance parameters and diagnosing the occurrence of gas path system 
faults and isolating the faults including turbo machinery, actuator or sensor faults. The fault isolation is 
completed under the assumption that only one gas path system fault will be present at a given time. 
Simulation studies have shown that this architecture holds promise for analyzing full-flight engine data 
(Ref. 9). This paper will present results from the application of this architecture on engine test data, 
including both nominal and faulty engine operating scenarios. The remainder of this paper proceeds as 
follows. First, the introduction of the architecture and the various components comprising it are explained. 
Next, the application of the architecture for processing engine test data is discussed and the associated 
results are presented. This is followed by a discussion of the results, planned future work, and conclusions. 

Architecture Description 
A block diagram schematic of the NASA-developed model-based performance trend monitoring and 

gas path fault diagnostic architecture is shown in Figure 1 (Ref. 10). It contains three main components. 
These include: (1) a Real-Time Self Tuning Model (RTSTM); (2) a Performance Baseline Model (PBM); 
and (3) a Fault Diagnostics module. Each component is further discussed in the subsections below. 
 

 
Figure 1.—Performance trend monitoring and gas path fault diagnostic architecture. 
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Real-Time Self Tuning Model 

The RTSTM is a piecewise linear model that is self-tuned by a Kalman tracking-filter. The Kalman 
filter estimates model state variables and a set of model tuning parameters reflecting performance 
deterioration within the engine. Through these Kalman filter estimates, the RTSTM accounts for changes in 
engine dynamics and changes from the gradual performance deterioration that aircraft gas turbine engines 
naturally experience as they wear over time from standard use. The RTSTM was designed to provide 
accurate continuous real-time estimates of engine performance parameters over the lifetime of the engine.  

Performance Baseline Model 

The PBM is built from the same piecewise linear model as used in construction of the RTSTM. 
However, in the case of the PBM, no Kalman filter tracking input is applied. The PBM continuously 
receives actuator commands and sensed fan speed measurements as inputs. The PBM also receives tuning 
parameter updates periodically from the RTSTM. These periodic tuner updates enable the PBM to adapt 
to gradual long-term engine performance deterioration. However, unlike the RTSTM, which continuously 
receives updates via a Kalman filter, the periodic tuner updates provided to the PBM prevents engine 
performance changes, potentially due to a fault, from being instantaneously absorbed into the model. In 
this form, the PBM serves as a baseline for describing recent engine performance because it is updated at 
a slower rate than the RTSTM. By comparing sensed engine outputs to PBM estimated outputs, an abrupt 
performance change, which may be indicative of a fault, can be detected. 

Fault Diagnostics 

The overall fault diagnostics logic is a two-step process consisting of fault detection and then fault 
isolation. Fault detection is performed by monitoring a vector of measurement residuals, y~, between 
sensed engine outputs, y, and the PBM estimated outputs, ŷ , defined by Equation (1).  
 
 yyy ˆ~  (1) 
 

If a gas path fault impacting engine performance occurs, the sensed engine and PBM outputs are 
expected to diverge resulting in an increase in the residuals. Fault detection is accomplished by 
calculating a weighted sum of squared residuals (WSSR) value based on the measurement residual vector 
and comparing this calculated value against a threshold value. The WSSR is calculated as 
 
 yRyWSSR T ~~ 1  (2) 
 
where R is the sensor measurement covariance matrix. Each time step, a new WSSR value is calculated 
based on the most recent sample of measurement data. Then the WSSR value is compared against a 
defined anomaly detection threshold. Logic for recognizing a fault initiates when the WSSR value exceeds 
the threshold. The fault recognition logic requires the high WSSR value to persist for a period to filter out 
anomalous spikes. After this persistence metric is met, then fault isolation logic is engaged to identify the 
root cause for the fault. For the first portion of a test, the WSSR calculation is not compared against the 
threshold. This is a WSSR blackout period to prevent engine start up dynamics from triggering a false 
alarm. The length of the engine start up dynamics defines the duration of the WSSR blackout period. 

Fault isolation is accomplished through a linear least-squares estimation approach implemented with 
the assumption that at a given time only one fault may be present. This assumption is reasonable based on 
the high reliability of gas turbine engines and the low probability that any fault will be present. The 
isolation process compares the residual vector against a matrix of coefficients that were pre-calculated at 
different points throughout the engine operating envelope. This pre-calculated matrix is referred to as the 
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Fault Influence Matrix, H, and it is a collection of single matrices assembled to allow interpolation 
calculations. The Fault Influence Matrix is populated with data collected while running the PBM under 
nominal and faulty operating scenarios. The resulting residuals between the nominal and the faulty PBM 
outputs, normalized by the magnitude of the fault, m, form a column of the H matrix. Each of the H 
matrix columns pertains to a specific fault at a particular operating condition. Equation (3) defines the 
calculation of a single element of the fault influence matrix, Hi,j, where i is the index of engine sensor in 
the residual vector and j is the index of fault type. 
 

 
j

i
ji m

y
H

~
,  (3) 

 
Upon fault detection, the observed measurement residual vector, y~, is further processed to isolate the 

most likely root cause for the fault based on the type of faults contained in the H matrix. To do so an 
estimated magnitude for each possible fault is first calculated as follows 
 
 yRHHRHm T

jj
T
jj

~ˆ 111  (4) 
 

These estimated fault magnitudes are used to produce an estimated vector of sensor residuals for each 
fault type as shown in Equation (5) 
 
 jjj mHy ˆ~̂  (5) 
 

Finally, fault isolation is performed by identifying the fault type that produces the estimated sensor 
residual vector that most closely approximates the observed measurement residual vector in a weighted 
least squares sense. A vector of values pertaining to the weighted sum of squared estimation errors 
(WSSEE) is calculated using Equation (6) for each potential fault type. The fault type yielding the 
smallest WSSEE, indicating the closest match to the provided fault types contained in H, is classified as 
the fault.  
 
 j

T

jj yyRyyWSSEE ~̂~~̂~ 1  (6) 

Application 
This section will cover the application of this performance trend monitoring and gas path fault 

diagnostic architecture using data obtained from the NASA Vehicle Integrated Propulsion Research 
(VIPR) engine tests (Ref. 12). The VIPR program is a series of ground-based engine tests conducted to 
mature aircraft engine health management technologies. To date, two VIPR tests (denoted as VIPR I and 
VIPR II) have been conducted, with a third test, VIPR III, scheduled to occur in 2015. These tests are 
ongoing at the NASA Armstrong Flight Research Center, formerly the Dryden Flight Research 
Center/Edwards Air Force Base, on a C-17 aircraft equipped with Pratt & Whitney F117 turbofan 
engines. The VIPR tests include baseline runs where the test engine is operating normally without faults 
as well as runs with faults applied that are non-damaging to the engines. These fault cases are created by 
operating the engine with mis-scheduled 14th stage bleed valve and station 2.5 bleed valve actuators. 
These faults provide a good test case because operating the actuators differently than their normal 
scheduled operation will result in observable gas path variations. 

The diagnostic architecture applied for analyzing the available VIPR data was implemented using a 
NASA-developed 40,000 lbf thrust class engine simulation called Commercial Modular Aero-Propulsion 
System Simulation 40k (C-MAPSS40k) (Ref. 11). Exercising the C-MAPSS40k simulation produced a 
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data set that was reduced to the piecewise linear model used to construct the RTSTM and the PBM shown 
in Figure 1. The models generated from C-MAPSS40k displayed notable differences in performance 
compared to the nominal steady-state performance data recorded from the normal operation of the F117 
turbofan engines used in the VIPR tests. To account for these model to engine differences a method was 
developed and applied to modify, or re-trim, the piecewise linear models based on nominal steady-state 
performance data obtained in the VIPR tests (Ref. 10). This enabled better model to engine performance 
agreement and helped to improve overall diagnostic results. Table 1 contains the vector of eight gas path 
sensor measurements and Table 2 contains the four actuator commands. The two sensors in Table 1 
denoted by an asterisk, T25 and P25, were only included during VIPR II testing.  

The asterisk next to the BLD14 symbol in Table 2 indicates the 14th stage bleed valve was not one of 
the actuator commands included in the C-MAPSS40k model used to generate the piecewise linear 
models. As a result, the standard model-based method for calculating the column of the Fault Influence 
Matrix corresponding to the 14th stage bleed valve fault is not possible. Instead, 14th stage bleed valve 
measurement residual vectors were calculated based on actual VIPR data collected during the 14th stage 
bleed valve fault testing. Data collected at given steady-state power setting conditions were averaged and 
referenced against PBM estimated outputs to provide residuals analogous to those simulated for other 
fault types. This method allowed creation of Fault Influence Matrices that included the 14th stage bleed 
valve fault.  

Prior to analyzing VIPR data with the performance trend monitoring and fault diagnostic architecture, 
Equation (4) was used to construct a Fault Influence Matrices, and the WSSR anomaly detection 
thresholds were defined. The Fault Influence Matrices were constructed assuming eight possible single 
fault types, as identified in Table 3. While the only faults evaluated during the VIPR testing were a 
station 2.5 bleed fault and a 14th stage bleed valve fault, the six additional fault types were included as  

 
TABLE 1.—GAS PATH SENSOR MEASUREMENTS 

Symbol Description 
N1 Fan speed 
N2 Core speed 
T25* Low pressure compressor exit temperature 
T35 High pressure compressor exit temperature  
T5  Low pressure turbine exit temperature  
P25* Low pressure compressor exit pressure 
Ps3 High pressure compressor exit pressure 
P5 Low pressure turbine exit pressure  

*- Research sensors unique to VIPR II engine data. 
 

TABLE 2.—ACTUATOR COMMANDS 
Symbol Description 

Wf Fuel flow  
VSV Variable stator vane 
BLD25 Station 2.5 bleed valve 
BLD14* 14th stage bleed valve 

*- Valve not modeled in C-MAPSS40k 
 

TABLE 3.—FAULT INFLUENCE MATRIX FAULT TYPES 
Fault index Fault types 

1 Fan  
2 Low pressure compressor 
3 High pressure compressor  
4 High pressure turbine 
5 Low pressure turbine 
6 Station 2.5 bleed valve 
7 Variable stator vane 
8 14th stage bleed valve 
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possible fault scenarios to provide a more representative and challenging fault isolation problem. The 
anomaly detection threshold and persistency values were established through a manual process of running 
non-faulted VIPR data through the architecture and selecting threshold and persistency values that did not 
produce false alarms. In conducting this process, the WSSR signal and the measurement residual vector, y~, 
were filtered using a median filter to help reduce signal noise, and removed outliers in an effort to 
improve overall diagnostic results. The WSSR anomaly detection threshold and persistency values applied 
for analyzing the VIPR I and VIPR II data are not identical. This variation is because the test engine used 
in the VIPR II test contained two additional sensors, P25 and T25, that the VIPR I test engine did not. The 
increase in the number of sensors produced a larger WSSR while no fault was present. This required a 
slight increase in the anomaly detection threshold for VIPR II tests.  

Results 
The following is a sample of the results obtained from processing VIPR I and VIPR II data through 

the performance trend monitoring and fault diagnostic architecture. The illustration in Figure 2 describes 
a typical engine test. As illustrated in Figure 2, the tests were segmented into two parts, a steady-state 
portion followed by a transient power sweep portion. The steady-state portion involved stepping up and 
stepping down the engine fan speed. The steady-state testing held the engine fan speed at a constant value 
for a short period, and then the fan speed was changed to a new level. The transient portion included two 
transient operations. The first transient slowly ramped the fan speed up and down; whereas, the second 
transient was faster. All of the test cases presented below, except for the VIPR II baseline test, which did 
not include the transient power sweeps, followed the test format as depicted in Figure 2. The test cases 
containing faults have the fault inserted for the entire test unless otherwise noted. 

Results from the VIPR I and VIPR II baseline runs where the engine was operating nominally without 
any faults are shown in Figures 3 and 4, respectively. In these figures, and all remaining figures of the 
document, parameter names and engineering units have been omitted due to the proprietary nature of the 
data. The top subplots of each figure show an unspecified gas path parameter plotted against time. For these 
subplots, the blue line represents the sensed engine measurement, the red line represents the PBM produced 
estimate, and the green line represents the RTSTM estimate. For both Figures 3 and 4 the green line is not 
visible due to the close agreement between the RTSTM estimate and the sensed engine measurement.  

 
 
 
 

 
 

Figure 2.—Representative VIPR event test sequence. 
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The sensed and PBM estimated values also match very well. No faults were present during the tests 
conducted to acquire the data displayed in Figures 3 and 4, so the close agreement in the sensed and PBM 
estimated values was expected and desired. The middle subplots displays the WSSR values plotted against 
time in blue and the selected anomaly detection threshold are represented with a dash-red trace. For these 
two cases, the WSSR signal remained below the established anomaly detection threshold throughout the 
entire run. Since the WSSR signal never exceeded the threshold, the fault isolation logic never engaged and 
“No Fault” is reported over the duration of these test cases. The bottom subplots of Figures 3 and 4 show the 
fault classification plotted against time, which in the baseline cases was “No Fault”. 
 

 
Figure 3.—Baseline VIPR I results. 

 

 
Figure 4.—Baseline VIPR II results. 
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Figures 5 and 6 contain results from VIPR I and VIPR II test cases when the station 2.5 bleed valve 
was intentionally failed open for the entire test case. The gas path parameter depicted in the top subplots 
of Figures 5 and 6 show very close agreement between the sensed measurement and the PBM estimate for 
the majority of this test. This is expected as the station 2.5 bleed valve is normally scheduled open during 
lower power settings and modulates closed as the engine increases in power setting. During lower power 
settings, the sensed engine parameter measurements and PBM produced estimates show close agreement, 
because the failed open valve position is the same as the normally scheduled position. Once the engine is 
operating at higher power settings, sensed engine measurements and PBM estimates begin to diverge and  
 

 
Figure 5.—Station 2.5 bleed valve fault VIPR I results. 

 

 
Figure 6.—Station 2.5 bleed valve fault VIPR II results. 



NASA/TM—2015-218448 9 

the presence of the fault becomes apparent. This is evident in the WSSR signal shown in the middle 
subplots of Figures 5 and 6. In the middle subplots, the WSSR signal can be seen to increase as the engine 
increases to higher power settings and eventually surpassing the anomaly detection threshold. The fault 
isolation logic engages after the WSSR has exceeded the anomaly detection threshold and it remains 
above the threshold for a period that satisfies the persistency requirement. Comparing the middle subplots 
of Figures 5 and 6, there is a noticeable difference in the duration that the WSSR signal exceeds the 
threshold. The VIPR II test in Figure 6 shows a wider range of power settings in which an anomaly was 
detected compared against the VIPR I test in Figure 5. In addition, the bottom subplot of Figure 6 shows 
that faults are detected for both transients near the end of the test while in Figure 5 a fault is only briefly 
detected during the second transient. The improved fault detection displayed in VIPR II data can be 
attributed to the additional P25 and T25 sensors added for this test. The faults that were misclassified can 
be attributed to dynamic modeling inaccuracies contained in the PBM. The misclassifications in Figure 5 
occurred during the second transient sweep. For the results illustrated in Figure 6, misclassifications 
occurred in both the steady-state and transient portions of the test. The misclassification during the 
steady-state portion occurred while the engine speed was transitioning to a new power setting. Therefore, 
this error was not a steady-state operation misclassification. The other misclassifications in Figure 6 were 
during the transient sweep portions of the test. However, both test results illustrated in Figures 5 and 6 
correctly classify the fault as a station 2.5 bleed valve fault during steady-state operation. As evident in 
the data from these experiments, accurate diagnostics during large rapid transient engine operation proved to 
be challenging for both VIPR I and VIPR II tests. The analysis shows faults were occasionally incorrectly 
classified during these tests; however, they were both correct while analyzing the steady-state data. 

Figures 7 and 8 contain VIPR I and VIPR II results for a 14th stage bleed valve fault case. The top 
subplots in Figures 7 and 8 show divergence between the sensed measurement and the PBM estimate for 
most of the test case. In Figure 7 the divergence is present from the beginning of the test until 2600 sec 
when the fault is removed. The top subplot of Figure 8 begins with the sensed measurement and PBM 
estimate in relative agreement for the first 300 sec, then the fault was inserted. After fault insertion, the 
PBM estimate diverges from the sensed measurement. The middle subplots in Figures 7 and 8 show that 
the calculated WSSR value has exceeded the anomaly threshold, which indicates a fault. Figure 7 shows 
the WSSR signal surpassing the threshold for the entire test until the fault is removed. Figure 8 illustrates 
that the WSSR signal was above the threshold once the fault was inserted around 300 sec; however, the 
WSSR signal did drop below the threshold at 2150 sec and at 2600 sec. These drops in WSSR signal below 
the threshold occurred at low power settings. This point indicates that the sensed measurements and the 
PBM estimates show relatively close agreement, even though the fault is still present during this time. 
The bottom subplots of both VIPR I and II tests show accurate fault classification during most of the 
steady-state portions of the test. At the very beginning of the VIPR I test, “No Fault” is reported even 
though the middle subplot of Figure 7 indicated an anomaly is present. This is due to the detection logic 
suppressing any faults for the first 40 sec of data to insure engine start up dynamics do not trigger a false 
alarm. The bottom subplot of Figure 7 shows a few instances where the fault is identified as something 
other than the 14th stage bleed valve fault. These are very brief instances, and they occurred while the 
engine was transitioning between power settings. The bottom subplot of Figure 8 displays a few incorrect 
fault classifications when the WSSR signal dropped below the threshold and reported there was “No 
Fault” detected. In addition, this subplot illustrates a brief misclassification when reporting a LPC fault 
during an engine transient. The incorrect classifications show that there are areas for improvement with 
the method. However, despite these inaccuracies the method proves to be very accurate for steady-state 
engine operation.  
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Figure 7.—14th stage bleed valve fault VIPR I results. 

 
 

Figure 8.—14th stage bleed valve fault VIPR II results. 
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Discussion 
Analysis of the VIPR engine test data marks the first time the model-based performance trend 

monitoring and gas path fault diagnostic architecture was applied for processing real engine data. Overall, 
the results are encouraging. The first step of fault diagnostics, fault detection, was shown to avoid false 
alarms when presented nominal data and to correctly detect anomalies when presented faulty data. 
Furthermore, the second step of the fault diagnostics, fault isolation, was found to correctly identify the 
fault type during steady-state engine operating conditions. However, this process did experience fault 
misclassifications during engine transients. This suggests that the PBM provides good steady-state 
agreement with the engine, but it exhibits some issues when working with dynamic transient behavior. 
More work is needed to investigate potential enhancements to help improve the PBM transient accuracy 
and the architecture diagnostic during transient performance. The ultimate goal would be to improve the 
architecture and model to a point where real-time processing of engine data could occur with confidence 
in the fault detection and isolation capabilities during transients. However, the first step is to implement 
this method as a ground based post-processing tool. In this scenario, the architecture could be easily 
modified to disengage during transients and only convey the fault most frequently diagnosed throughout 
the entire flight. The results shown above suggest that the architecture could successfully provide that 
type of analysis.  

While the architecture is capable of combined performance trend monitoring and gas path fault 
diagnostics, this paper only reports on an assessment of the fault diagnostic results. The performance 
trend monitoring aspect of the architecture, provided by the RTSTM Kalman filter, was not able to be 
fully evaluated based on the available VIPR I and VIPR II data because the engines underwent little to no 
performance variations during these tests. However, the VIPR III test to be conducted in 2015 will 
intentionally degrade the engine through volcanic ash ingestion testing. As such, the VIPR III test data is 
expected to provide the opportunity to assess the performance deterioration trend monitoring functionality 
of the architecture.  

Conclusion 
The model-based approach to gas path fault detection and isolation presented in this paper is a 

promising architecture for the processing of streaming engine sensor data. During steady-state operating 
periods, the architecture was able to avoid false alarms and was consistently able to correctly identify and 
classify the two bleed valve faults introduced in the VIPR test cases presented in this paper. The approach 
did experience fault misclassifications during engine transients. Inaccuracies between the model dynamics 
and the engine dynamics are believed to be the cause of these misclassifications, and further work is 
needed to focus on improving the model dynamic accuracy. The continuation of the VIPR test series 
includes an upcoming third test where engine performance will be degraded via volcanic ash ingestion 
testing. This test will provide data for evaluating the effectiveness of the performance trend monitoring 
estimation capability of the architecture.  
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